

# **Product Specification**

# XBLW SN74AHC1G04

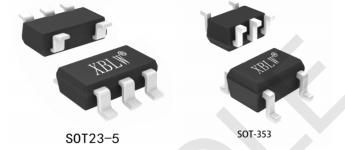
Single Inverter












# **Description**

The SN74AHC1G04 is a high-speed Si-gate CMOS devices. Provide a inverting buffer.

### **Feature**

- ➤ Specified from -40°C to +125°C
- ➤ Packaging information: SOT-23-5/SOT-353
- > Low power consumption
- Operating range 2 V to 5.5 V



# **Applications**

- Cameras
- E-Meters
- > Infotainment
- > Ethernet Switches

# **Ordering Information**

| Product Model        | Package Type | Package Type Marking |      | Packing Qty  |  |
|----------------------|--------------|----------------------|------|--------------|--|
| XBLW SN74AHC1G04T235 | SOT-23-5     | CBXX                 | Таре | 3000Pcs/Reel |  |
| XBLW SN74AHC1G04T353 | SOT-353      | CBXX                 | Tape | 3000Pcs/Reel |  |



# **Block Diagram**

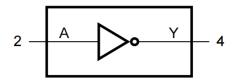



Figure 1. Logic symbol

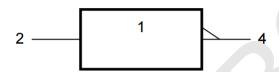
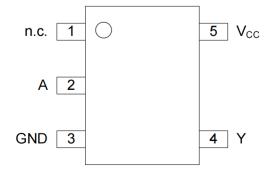




Figure 2.ICE Logic symbol



Figure 3.ICE Logic diagram

# **Pin Configurations**





# **Pin Description**

| Pin No. | Pin Name | Description    |
|---------|----------|----------------|
| 1       | n.c.     | not connected  |
| 2       | A        | data input     |
| 3       | GND      | ground (0V)    |
| 4       | Y        | data output    |
| 5       | Vcc      | supply voltage |

# **Function Table**

| Input | Output |
|-------|--------|
| A     | Y      |
| L     | Н      |
| Н     | L      |

Note: H=HIGH voltage level; L=LOW voltage level.

# **Electrical Parameter**

### **Absolute Maximum Ratings**

(Voltages are referenced to GND(ground=oV), unless otherwise specified.)

| Parameter                            | Symbol             | Conditions                    | Min. | Max. | Unit |
|--------------------------------------|--------------------|-------------------------------|------|------|------|
| supply voltage                       | $V_{CC}$           | -                             | -0.5 | +7.0 | V    |
| input voltage                        | $V_{\rm I}$        | -                             | -0.5 | +7.0 | V    |
| input clamping current               | $I_{1K}$           | $V_1 < -0.5V$                 | -20  | -    | mA   |
| output clamping current              | $I_{OK}$           | Vo< -0.5V or Vo>Vcc+0.5V      | -    | ±20  | mA   |
| output current                       | $I_0$              | $-0.5V < V_0 < V_{CC} + 0.5V$ | -    | ±25  | mA   |
| supply current                       | $I_{CC}$           | -                             | -    | 75   | mA   |
| ground current                       | $I_{GND}$          | -                             | -75  | -    | mA   |
| storage temperature                  | $T_{\mathrm{stg}}$ | -                             | -65  | +150 | °C   |
| total power dissipation              | P <sub>tot</sub>   |                               | -    | 250  | mW   |
| Soldering T <sub>L</sub> temperature |                    | 10s                           | 20   | 50   | °C   |



### **Recommended Operating Conditions**

| Parameter             | Symbol      | Conditions       | Min. | Тур. | Max. | Unit |
|-----------------------|-------------|------------------|------|------|------|------|
| supply voltage        | $V_{CC}$    | -                | 2.0  | 5.0  | 5.5  | V    |
| input voltage         | $V_{\rm I}$ | -                | 0    | -    | 5.5  | V    |
| output voltage        | $V_0$       | -                | 0    | -    | Vcc  | V    |
| ambient temperature   | $T_{amb}$   | -                | -40  | -    | +125 | °C   |
| input transition rise | A + / A T/  | Vcc=3.0V to 3.6V | -    | -    | 100  | ns/V |
| and fall rate         | ∆t/∆V       | Vcc=4.5V to 5.5V | -    | -    | 20   | ns/V |

# **ESD Ratings**

| Parameter |               | Defintion                                                                     | Vaue  | Unit |  |
|-----------|---------------|-------------------------------------------------------------------------------|-------|------|--|
| V(ESD)    | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)              | ±2000 | V    |  |
| V (ESD)   | discharge     | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) | ±1000 | V    |  |

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control (1)

# **Electrical Characteristics**

### **DC** Characteristics 1

 $(T_{amb}=25\,^{\circ}\text{C}$ , voltages are referenced to GND (ground=oV), unless otherwise specified.)

| Parameter                 | Symbol          |                                              | Conditions                         | Min. | Тур. | Max. | Unit |
|---------------------------|-----------------|----------------------------------------------|------------------------------------|------|------|------|------|
| HIGH 1                    |                 |                                              | $V_{cc}=2.0V$                      | 1.5  |      | -    | V    |
| HIGH-level input voltage  | V <sub>IH</sub> | Vcc=3.0V                                     |                                    | 2.1  |      | -    | V    |
|                           |                 |                                              | Vcc=5.5V                           | 3.85 |      | -    | V    |
|                           |                 |                                              | Vcc=2.0V                           | -    |      | 0.5  | V    |
| LOW-level input voltage   | $V_{IL}$        |                                              | Vcc=3.0V                           | -    |      | 0.9  | V    |
| voltage                   |                 |                                              | Vcc=5.5V                           | -    |      | 1.65 | V    |
|                           |                 |                                              | Io=-50uA; Vcc=2.0V                 | 1.9  | 2.0  |      | V    |
| HIGH I                    |                 | $V_{I} = V_{IH} \text{ or } V_{IL}$          | Io=-50uA; Vcc=3.0V                 | 2.9  | 3.0  |      | V    |
| HIGH-level output voltage | V <sub>OH</sub> |                                              | Io=-50uA; Vcc=4.5V                 | 4.4  | 4.5  |      | V    |
| Voltage                   |                 |                                              | Io=-4mA; Vcc=3.0V                  | 2.58 | -    |      | V    |
|                           |                 |                                              | Io=-8mA; Vcc=4.5V                  | 3.94 | -    |      | V    |
|                           | V <sub>OL</sub> | $V_{OL}$ $V_{I} = V_{IH} \text{ or } V_{IL}$ | Io=50uA; Vcc=2.0V                  |      | 0    | 0.1  | V    |
| LOWIS                     |                 |                                              | Io=50uA; Vcc=3.0V                  |      | 0    | 0.1  | V    |
| LOW-level output voltage  |                 |                                              | Io=50uA; Vcc=4.5V                  |      | 0    | 0.1  | V    |
| Voltage                   |                 |                                              | Io=4mA; Vcc=3.0V                   |      | -    | 0.36 | V    |
|                           |                 |                                              | Io=8mA; Vcc=4.5V                   |      | -    | 0.36 | V    |
| input leakage current     | II              |                                              | 5.5V or GND;<br>c=0V to 5.5V       | -    | -    | 1.0  | uA   |
| supply current            | I <sub>CC</sub> |                                              | Vi=Vcc or GND; Io=0A;<br>Vcc= 5.5V |      | -    | 1.0  | uA   |
| input capacitance         | Cı              |                                              | -                                  | -    | 1.5  | 10   | pF   |

process. (2) J JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



### DC Characteristics 2

 $(T_{amb}=-40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$ 

| Parameter                 | Symbol             |                                              | Conditions                                     | Min. | Тур. | Max. | Unit |
|---------------------------|--------------------|----------------------------------------------|------------------------------------------------|------|------|------|------|
| THE CITY I                |                    | Vcc=2.0V                                     |                                                | 1.5  |      | -    | V    |
| HIGH-level input voltage  | VIH                |                                              | Vcc=3.0V                                       | 2.1  |      | -    | V    |
| voltage                   |                    |                                              | Vcc=5.5V                                       | 3.85 |      | -    | V    |
|                           |                    |                                              | Vcc=2.0V                                       | -    |      | 0.5  | V    |
| LOW-level input voltage   | $V_{IL}$           |                                              | Vcc=3.0V                                       | -    |      | 0.9  | V    |
| vortage                   |                    |                                              | Vcc=5.5V                                       | -    |      | 1.65 | V    |
|                           |                    |                                              | Io=-50UA; Vcc=2.0V                             | 1.9  |      |      | V    |
| HIGH 11                   | ut V <sub>OH</sub> | $V_{I} = V_{IH}$ or $V_{IL}$                 | Io=-50UA; Vcc=3.0V                             | 2.9  |      |      | V    |
| HIGH-level output voltage |                    |                                              | Io=-50uA; Vcc=4.5V                             | 4.4  |      |      | V    |
| vortage                   |                    |                                              | Io=-4mA; Vcc=3.0V                              | 2.48 |      |      | V    |
|                           |                    |                                              | Io=-8mA; Vcc=4.5V                              | 3.8  |      |      | V    |
|                           |                    | $V_{OL}$ $V_{I} = V_{IH} \text{ or } V_{IL}$ | Io=50uA; Vcc=2.0V                              |      |      | 0.1  | V    |
| LOW-level output          |                    |                                              | Io=50uA; Vcc=3.0V                              |      |      | 0.1  | V    |
| voltage                   | $V_{OL}$           |                                              | Io=50uA; Vcc=4.5V                              |      |      | 0.1  | V    |
| vortage                   |                    |                                              | Io=4mA; Vcc=3.0V                               |      |      | 0.44 | V    |
|                           |                    |                                              | Io=8mA; Vcc=4.5V                               |      |      | 0.44 | V    |
| input leakage<br>current  | l <sub>l</sub>     |                                              | V <sub>1</sub> =5.5V or GND;<br>Vcc=0V to 5.5V |      | -    | 1.0  | uA   |
| supply current            | Icc                |                                              | e or GND; Io=0A;<br>Vcc= 5.5V                  | -    | -    | 10   | uA   |
| input capacitance         | Cı                 |                                              |                                                | -    | -    | 10   | pF   |

### DC Characteristics 3

( $T_{amb}$ =-40 °C to +125 °C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

| Parameter                    | Symbol          |                                     | Conditions                    | Min. | Тур. | Max. | Unit |
|------------------------------|-----------------|-------------------------------------|-------------------------------|------|------|------|------|
| THOU I                       |                 |                                     | Vcc=2.0V                      | 1.5  |      | -    | V    |
| HIGH-level input voltage     | $V_{IH}$        | Vcc=3.0V                            |                               | 2.1  |      | -    | V    |
|                              |                 |                                     | Vcc=5.5V                      | 3.85 |      | -    | V    |
|                              |                 |                                     | Vcc=2.0V                      | -    |      | 0.5  | V    |
| LOW-level input voltage      | VIL             |                                     | Vcc=3.0V                      | -    |      | 0.9  | V    |
| voltage                      |                 |                                     | Vcc=5.5V                      | -    |      | 1.65 | V    |
|                              |                 |                                     | Io=-50uA; Vcc=2.0V            | 1.9  |      |      | V    |
| IIICII I I                   | V <sub>ОН</sub> | $V_I = V_{IH}$ or $V_{IL}$          | Io=-50uA; Vcc=3.0V            | 2.9  |      |      | V    |
| HIGH-level output<br>voltage |                 |                                     | Io=-50uA; Vcc=4.5V            | 4.4  |      |      | V    |
|                              |                 |                                     | Io=-4mA; Vcc=3.0V             | 2.4  |      |      | V    |
|                              |                 |                                     | Io=-8mA; Vcc=4.5V             | 3.7  |      |      | V    |
|                              | VoL             | $V_{I} = V_{IH} \text{ or } V_{IL}$ | Io=50uA; Vcc=2.0V             |      |      | 0.1  | V    |
| I OW level enteret           |                 |                                     | Io=50uA; Vcc=3.0V             |      |      | 0.1  | V    |
| LOW-level output voltage     |                 |                                     | Io=50uA; Vcc=4.5V             |      |      | 0.1  | V    |
| voluge                       |                 |                                     | Io=4mA; Vcc=3.0V              |      |      | 0.55 | V    |
|                              |                 |                                     | Io=8mA; Vcc=4.5V              |      |      | 0.55 | V    |
| input leakage<br>current     | II              |                                     | 5.5V or GND;<br>c=0V to 5.5V  | -    | -    | 2.0  | uA   |
| supply current               | I <sub>CC</sub> |                                     | e or GND; Io=0A;<br>Vcc= 5.5V | _    | -    | 40   | uA   |
| input capacitance            | Cı              |                                     |                               | -    | -    | 10   | pF   |



#### **AC Characteristics 1**

(T<sub>amb</sub>=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

| Parameter                     | Symbol          |                       | Conditions                            | Min. | Тур. | Max. | Unit |
|-------------------------------|-----------------|-----------------------|---------------------------------------|------|------|------|------|
|                               |                 |                       | Vcc=3.0V to 3.6V                      |      |      |      |      |
|                               |                 | see Figure 5          | G=15pF                                | ı    | 4.3  | 7.1  | ns   |
| A to Y propagation            | t <sub>pd</sub> |                       | CL=50pF                               | 1    | 6.1  | 10.6 | ns   |
| delay                         |                 |                       | Vcc=4.5V to 5.5V                      |      |      |      |      |
|                               |                 |                       | G=15pF                                | ı    | 3.1  | 5.5  | ns   |
|                               |                 |                       | CL=50pF                               | ı    | 4.5  | 7.5  | ns   |
| Power dissipation capacitance | $C_{PD}$        | C <sub>L</sub> =50pF; | $f_i$ =1MHz; $V_I$ =GND $\sim V_{CC}$ | -    | 15   | -    | pF   |

#### Note:

[1]tpd is the same as tphL and tpLH.

[2]Typical values are measured at Vcc=3.3V or 5V.

[3] CPD is used to determine the dynamic power dissipation (PD in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$  where:

fi=input frequency in MHz;

fo=output frequency in MHz;

CL=output loadcapacitance in pF;

Vcc=supply voltage in V;

 $\sum (C_L \times V_{CC}^2 \times f_0)$ =sum of outputs.

#### **AC Characteristics 2**

(T<sub>amb</sub>=-40 °C to +85 °C, voltages are referenced to GND (ground=0 V), unless otherwise specified.)

|  | Parameter          | Symbol                 |              | Conditions       | Min. | Тур. | Max. | Unit |
|--|--------------------|------------------------|--------------|------------------|------|------|------|------|
|  | A to Y propagation |                        |              | Vcc=3.0V to 3.6V |      |      |      |      |
|  |                    | gation t <sub>pd</sub> |              | G=15pF           | 1.0  | -    | 8.5  | ns   |
|  |                    |                        | see Figure 5 | CL=50PF          | 1.0  | -    | 12   | ns   |
|  | delay              |                        |              | Vcc=4.5V to 5.5V |      |      |      |      |
|  |                    |                        |              | CL=15PF          | 1.0  | -    | 6.5  | ns   |
|  |                    |                        |              | CL=50PF          | 1.0  | -    | 8.5  | ns   |

### Note:

- [1] tpd is the same as tPHL and tPLH.
- [2] Typical values are measured at Vcc=3.3V or 5V.

#### **AC Characteristics 3**

 $(T_{amb}=-40 \,^{\circ}\text{C} \text{ to } +125 \,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$ 

| Parameter          | Symbol          |              | Conditions                        | Min. | Тур. | Max. | Unit |
|--------------------|-----------------|--------------|-----------------------------------|------|------|------|------|
|                    |                 |              | Vcc=3.0V to 3.6V                  |      |      |      |      |
|                    |                 |              | C <sub>L</sub> =15 <sub>P</sub> F | 1.0  | -    | 11   | ns   |
| A to Y propagation | <b>.</b>        | see Figure 5 | CL=50PF                           | 1.0  | -    | 14.5 | ns   |
| delay              | t <sub>pd</sub> | see Figure 3 | Vcc=4.5V to 5.5V                  |      |      |      |      |
|                    |                 |              | C <sub>L</sub> =15 <sub>P</sub> F | 1.0  | -    | 7.0  | ns   |
|                    |                 |              | CL=50PF                           | 1.0  | -    | 9.5  | ns   |

### Note:

- [1] tpd is the same as tPHL and tPLH.
- [2] Typical values are measured at Vcc=3.3V or 5V.



# **Testing Circuit**

### **AC Testing Circuit**

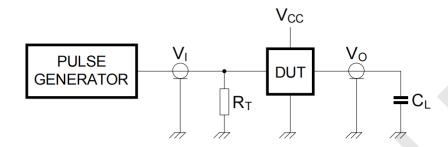



Figure 4. Load circuitry for switching times

Definitions for test circuit:

CL=Load capacitance including jig and probe capacitance.

RT=Termination resistance should be equal to output impedance Zo of the pulse generator.

# **AC Testing Waveforms**

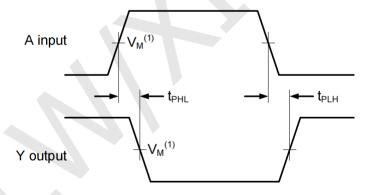



Figure 5. The input (A) to output (Y) propagation delay times

#### **Measurement Points**

| Tyno        | Inj                       | Output                    |                           |
|-------------|---------------------------|---------------------------|---------------------------|
| Туре        | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{M}}$ |
| SN74AHC1G04 | GND to Vcc                | 0.5xVcc                   | 0.5xVcc                   |

### **Test Data**

| Inj        | Load                    |      |
|------------|-------------------------|------|
| Vı         | $t_{ m r}$ , $t_{ m f}$ | CL   |
| GND to Vcc | < 3.0ns                 | 15pF |
| GND to Vcc | < 3.0ns                 | 50pF |



# **Package Information**

• SOT23-5

|        | Dimensions In | Millimeters | SIZE   | Dimensions   | In Inches |
|--------|---------------|-------------|--------|--------------|-----------|
| SYMBOL | MIN(mm)       | MAX (mm)    | SYMBOL | MIN(in)      | MAX(in)   |
| A      | 1.050         | 1.250       | A      | 0.041        | 0.049     |
| A1     | 0.000         | 0.100       | A1     | 0.000        | 0.004     |
| A2     | 1.050         | 1. 150      | A2     | 0.041        | 0.045     |
| b      | 0.300         | 0.500       | b      | 0.012        | 0.020     |
| С      | 0.100         | 0.200       | С      | 0.004        | 0.008     |
| D      | 2.820         | 3. 020      | D      | 0.111        | 0.119     |
| Е      | 1. 500        | 1.700       | E      | 0. 059       | 0.067     |
| E1     | 2.650         | 2.950       | E1     | 0. 104       | 0.116     |
| е      |               | 5 (BSC)     | е      | 0. 037 (BSC) |           |
| e1     | 1.800         | 2.000       | e1     | 0.071        | 0.079     |
| L      | 0.300         | 0.600       | L      | 0.012        | 0.024     |
| θ      | 0°            | 8°          | θ      | 0°           | 8°        |
| EI     |               | e e1        |        | c            |           |
| A      |               |             |        |              |           |



# • SOT-353

|                                        | T                         |          |          |                      | . 1       |  |
|----------------------------------------|---------------------------|----------|----------|----------------------|-----------|--|
| Size                                   | Dimensions In Millimeters |          | Size     | Dimensions In Inches |           |  |
| Symbol                                 | Min(mm)                   | Max(mm)  | Symbol _ | Min(in)              | Max(in)   |  |
| A                                      | 0.900                     | 1. 100   | A        | 0.035                | 0.043     |  |
| A1                                     | 0.000                     | 0. 100   | A1       | 0.000                | 0.004     |  |
| A2                                     | 0.900                     | 1.000    | A2       | 0.035                | 0.039     |  |
| b                                      | 0. 150                    | 0.350    | b        | 0.006                | 0.014     |  |
| С                                      | 0.080                     | 0. 150   | С        | 0.003                | 0.006     |  |
| D                                      | 2.000                     | 2. 200   | D        | 0.079                | 0.087     |  |
| E                                      | 1. 150                    | 1.350    | E        | 0.045                | 0.053     |  |
| E1                                     | 2. 150                    | 2. 450   | E1       | 0.085                | 0.096     |  |
| e                                      |                           | 50 (TYP) | е        | 0. 026 (TYP)         |           |  |
| e1                                     | 1. 200                    | 1. 400   | e1       | 0.047                | 0.055     |  |
| L                                      |                           | 25 (REF) | L        |                      | 021 (REF) |  |
| L1                                     | 0. 260                    | 0. 460   | L1       | 0.010                | 0.018     |  |
| θ                                      | 0°                        | 8°       | θ        | 0°                   | 8°        |  |
| el e e l e l e l e l e l e l e l e l e |                           |          |          |                      |           |  |



## Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

# 单击下面可查看定价,库存,交付和生命周期等信息

# >>XBLW(芯伯乐)