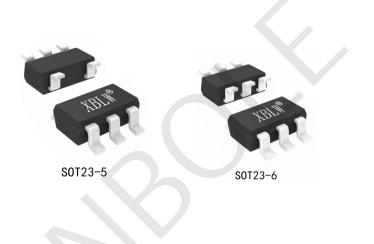


Product Specification

XBLW INA180/INA181

Zero Drift Bidirectional Current Detection Amplifier

Downloaded From Oneyac.com


Descriptions

INA181 and INA180 are wideband, zero-drift, bidirectional current detection amplifiers, mainly used in battery monitoring, power management,Overcurrent detection, etc. The circuit can induce the voltage drop on the shunt resistor at a common-mode voltage ranging from -0.2V to 30V. The INA181 and INA180 circuits are integrated with a matching resistor gain network with four fixed gain options: 20 V/V, 50 V/V, 100 V/V and 200 V/V. The INA181 and INA180 circuits are powered by a single source from 2.7V to 5.5V with a maximum supply current of 260µA.

Feature

- Rail to rail output
- Offset voltage:
 - ±150µV (maximum), VCM=0V
 - ±500μV (maximum), VCM=12V
- Accuracy and zero drift characteristics:
 Gain error: ±1% (Max)
 - Offset drift: 1µV/°C (maximum)
 - Gain drift: 20ppm/°C (Max))
- Output voltage gain:
 - 20V/V (INA181 A1 、INA180 A1 、 B1)
 - 50V/V (INA181 A2 、INA180 A2 、B2)
 - 100V/V (INA181 A3 、INA180 A3 、B3)
 - 200V/V (INA181 A4 、INA180 A4 、B4)
- High bandwidth:
 350kHz (INA181 A1 、INA180 A1 、B1)
- Package form:

INA180: SOT23-5 INA181: SOT23-6

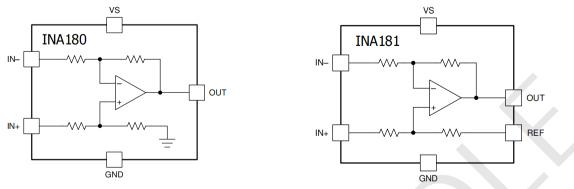
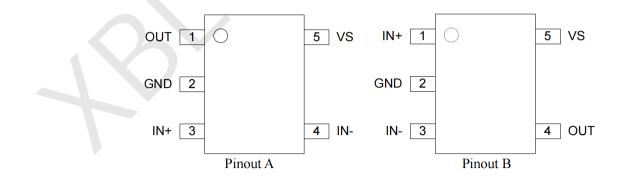
Applications

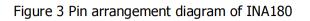
- Motor control
- Lighting control
- Solar inverters
- > Overcurrent detection
- Power management
- Battery monitoring

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
INA180A1IDBVR	SOT23-5	18ID	Таре	3000Pcs/Reel
INA180A2IDBVR	SOT23-5	1A8D	Таре	3000Pcs/Reel
INA180A3IDBVR	SOT23-5	1A9D	Таре	3000Pcs/Reel
INA180A4IDBVR	SOT23-5	1AAD	Таре	3000Pcs/Reel
INA180B1IDBVR	SOT23-5	18RD	Таре	3000Pcs/Reel
INA180B2IDBVR	SOT23-5	1ABD	Таре	3000Pcs/Reel
INA180B3IDBVR	SOT23-5	1ACD	Таре	3000Pcs/Reel
INA180B4IDBVR	SOT23-5	1ADD	Таре	3000Pcs/Reel
INA181A1IDBVR	SOT23-6	18JD	Таре	3000Pcs/Reel
INA181A2IDBVR	SOT23-6	1AED	Таре	3000Pcs/Reel
INA181A3IDBVR	SOT23-6	1AFD	Таре	3000Pcs/Reel
INA181A4IDBVR	SOT23-6	1AGD	Таре	3000Pcs/Reel

Block Diagram


Figure 1 Functional block diagram of INA180 and INA181

Pin Configurations

Pin Description

	Pin of lead				
INA181	INA180	INA180	Symbol	Attribute	Function
INATOT	Pin Out A	Pin out B			
1	1	4	OUT	0	Output voltage
2	2	2	GND	GND	Negative power supply or ground
3	3	1	IN+	I	Current detection amplifier in the same direction input
4	4	3	IN-	I	Reverse input of current detection amplifier
5	_	_	R _{EF}	I	Voltage of reference
6	5	5	Vs	V _{CC}	Positive power supply

Electrical characteristic

Absolute Maximum Ratings

Unless otherwise specified, T_{amb} =25 ° C

Parameter	Symbol	Min	Мах	Unit
Power supply voltage	Vs	-	6	V
The input voltage is IN+, IN-	Difference (IN+)-(IN-)	-30	30	V
The input voltage is in+, in-	Common mode (VCM)	GND-0.2	35	V
Current of output	Iout	—	8	mA
Maximum junction temperature	τı	-	150	°C
Temperature of storage	Tstg	-65	150	°C
Welding temperature (10 seconds)	TL	260		°C

ESD

Parameter	Symbol	Condition	Value	Unit
Grade of ESD	HBM	ANSI/ESDA/JEDEC JS-001	±3	kV

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Common mode input voltage	Vсм	-0.2	12	30	V
Power supply voltage	VS	2.7	5	5.5	V
Operating temperature	Tamb	-40	25	125	°C

Electrical Characteristics

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Input in						
Input offset	Vos	$V_{SENSE}=0mV$		±100	±500	μV
voltage	VOS	$V_{\text{SENSE}}=0mV$, $V_{\text{IN+}}=0V$	—	±25	±150	μV
Input offset voltage temperature drift	Vos Tc	V _{SENSE} =0mV,-40~125°C	_	0.2	1	µV/°C
Common mode input range	V _{CM}	-40~125°C	-0.2		30	V
Common mode inhibition ratio	Cmrr	V _{IN} +=0~30V ,V _{SENSE} =0mV, -40~125°C	84	100	-	dB
Input bias	IB	$V_{SENSE}=0mV, V_{IN}+=0 V$	-	-6	_	μA
current	ID	V _{SENSE} =0mV		75		μA
Input offset current	\mathbf{I}_{OS}	V _{SENSE} =0mV		0.05	_	μA
Power supply rejection ratio	P _{SRR}	V_{S} =+2.7 \sim 18V , V_{IN} +=18V, V_{SENSE} =0mV	-	±8	±40	μV/V
NOISE RTI (refer	ed to inpu	t)		ł	I	
Input voltage noise density	en	f =1 kHz	_	40	_	nV /√Hz
Output				1	1	
		INA181A1/ INA180A1 ,B1	_	20	_	V/V
Gain of gain	G	INA181A2/ INA180A2 ,B2	_	50		V/V
Gain or gain	G	INA181A3/ INA180A3 ,B3	_	100		V/V
		INA181A4/ INA180A4 ,B4		200		V/V
Error of gain	EG	V _{OUT} =0.5V \sim VS-0.5V, -40 \sim 125°C	—	±0.1%	±1%	_
Gain error drift	EG TC	-40∼125°C	_	1.5	20	ppm
Error of nonlinearity		V_{OUT} =0.5V to VS–0.5V		±0.01%		
Maximum capacitive load	CLOAD	No sustained oscillation	_	1	_	nF
Swing to Vs power-supply rail	Vsp	R _{LOAD} =10kΩ toGND, -40 \sim 125°C	VS- 0.03	VS- 0.02		V
Swing to GND	Vsn	R _{LOAD} =10kΩ toGND, -40 \sim 125°C	_	VGND+ 0.0005	VGND +0.005	V

Frequency response							
		C _{LOAD} =10pF,INA181A1, INA180A1,B1	_	350	_	kHz	
Bandwidth	P	C _{LOAD} =10pF, INA181A2 INA180A2,B2	_	210	_	kHz	
	Bw	C _{LOAD} =10pF, INA181A3, INA180A3,B3	_	150	_	kHz	
		C _{LOAD} =10pF,INA181A4 INA180A4,B4	_	105	-	kHz	
		INA181A1, INA180A1, B1	—	2	_	V/µs	
Rate of swing	SR	INA181A2, INA180A2, B2	—	4	—	V/µs	
Rate of Swing	SK	INA181A3 , INA180A3 , B3	—	6		V/µs	
		INA181A4, INA180A4, B4	_	8	—	V/µs	
Power supply						~	
Power supply voltage	VS	_	2.7		5.5	V	
		INA181, INA180, VSENSE=0 mV		175	260	μA	
Static current	IQ	INA181 ,INA180 , V _{SENSE} =0 mV -40~125°C			300	μA	

Curve of characteristic

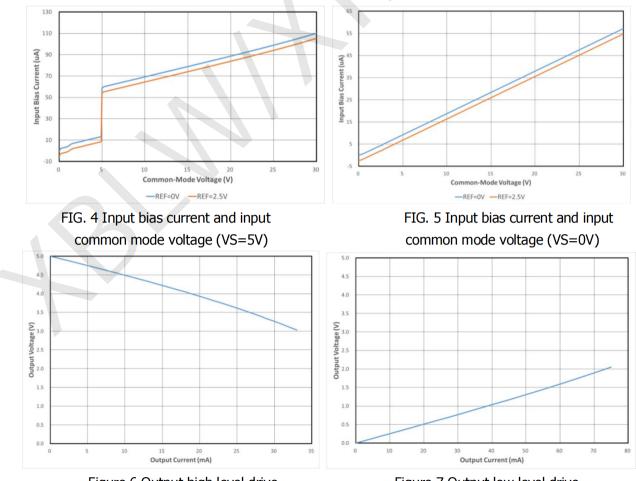


Figure 6 Output high level drive

Figure 7 Output low level drive

XBLW INA180/INA181

Zero Drift Bidirectional Current Detection Amplifier

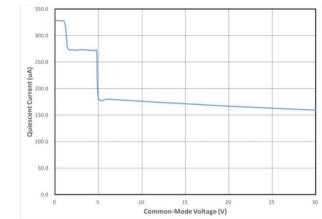
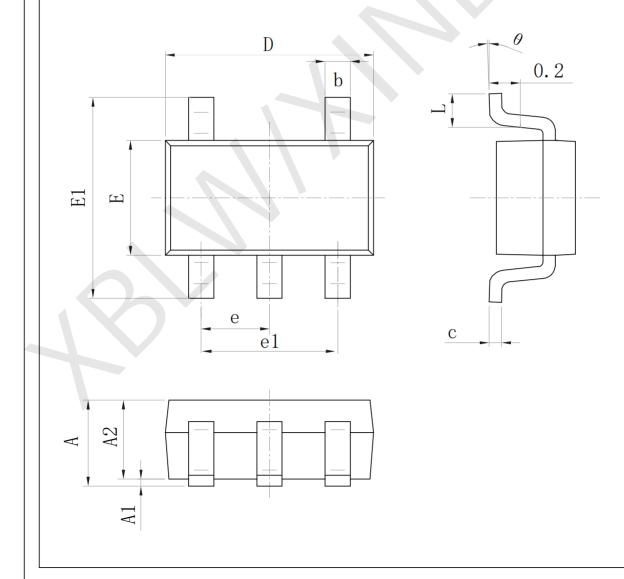


FIG. 8 Input common mode voltage and quiescent current (VS=5V)

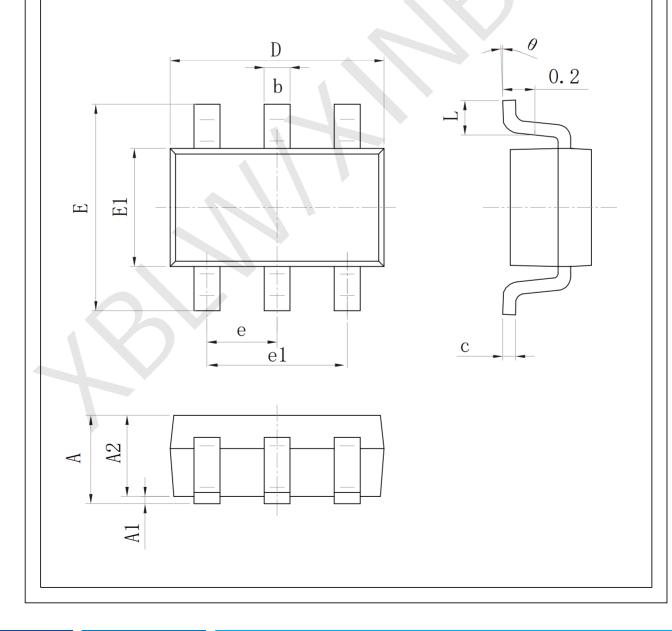
Typical application lines and instructions

Figure 10 Typical application lines of INA180


Above, the basic application connection of INA181/INA180 is shown. Input pins IN+ and IN- should be directly connected to the detection resistor as much as possible, To minimize any resistance in series with the detection resistor. To ensure stability, it is necessary to use the power supply bypass capacitor, which is placed close to the device pin.

Package Information

• S0T23-5


SIZE	Dimensions In Millimeters		SIZE	Dimensions	In Inches
SYMBOL	MIN (mm)	MAX (mm)	SYMBOL	MIN(in)	MAX(in)
A	1.050	1.250	A	0.041	0.049
A1	0.000	0.100	A1	0.000	0.004
A2	1.050	1.150	A2	0.041	0.045
b	0.300	0.500	b	0.012	0.020
С	0.100	0.200	С	0.004	0.008
D	2.820	3.020	D	0.111	0.119
Е	1.500	1.700	Е	0.059	0.067
E1	2.650	2.950	E1	0.104	0.116
е	0.9	5 (BSC)	е	0.0)37 (BSC)
e1	1.800	2.000	e1	0.071	0.079
L	0.300	0.600	L	0.012	0.024
θ	0°	8°	θ	0°	8°

• SOT23-6

SIZE	Dimensions In Millimeters		SIZE	Dimensions	In Inches	
SYMBOL	MIN (mm)	MAX (mm)	SYMBOL	MIN(mm)	MAX (mm)	
А	1.050	1.250	А	0.041	0.049	
A1	0.000	0.100	A1	0.000	0.004	
A2	1.050	1.150	A2	0.041	0.045	
b	0.300	0.500	b	0.012	0.020	
С	0.100	0.200	С	0.004	0.008	
D	2.820	3.020	D	0.111	0.119	
Е	1.500	1.700	Е	0.059	0.067	
E1	2.650	2.950	E1	0.104	0.116	
е	0.9	50 (BSC)	е	0. 037 (BSC)		
e1	1.800	2.000	e1	0.071	0.079	
L	0.300	0.600	L	0.012	0.024	
θ	0 °	8°	θ	0°	8 °	

XBLW Version 2.0

www.xinboleic.com

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)