

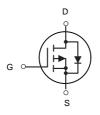
Product Specification

XBLW AO4485

P-Channel Enhancement Mode MOSFET

Description

The AO4485 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.


General Features

- ➤ VDS =-40 V ID = -13A
- ightharpoonup RDS(ON) < 19m Ω @ VGS= 10V

Application

- Battery protection
- Load switch
- Uninterruptible power supply

P-Channel MOSFET

Package Marking and Ordering Information

Package Type	Marking	Packing	Packing Qty
SOP-8	AO4485	Tape	3000Pcs/Reel

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	- 40	V
VGS	Gate-Source Voltage	±20	٧
I _D @T _A =25°C	Drain Current ³ , V _{GS} @ 10V	-13	А
IDM	Pulsed Drain Current ¹	-52	Α
PD@TA=25°C	Total Power Dissipation	3	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	41	°C/W

Electrical Characteristics (TJ = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics			1	ı	l		l	
Drain-Source Breakdown Voltage		V _{(BR)DSS}	$V_{GS} = 0V, I_D = -250\mu A$	-40	-	_	V	
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain	TJ=25°C	IDSS	10/1/	-	-	-1	μA	
Current	T _J =100°C		$V_{DS} = -40V, V_{GS} = 0V$	-	-	-100		
Gate-Threshold Voltage	1	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.0	-1.5	-2.2	V	
		_	V _{GS} = -10V, I _D = -10A	-	14.0	19		
Drain-Source On-Resistance ⁴		R _{DS(on)}	V _{GS} = -4.5V, I _D = -5 A	-	19.5	25	mΩ	
Forward Transconductance ⁴		g fs	V _{DS} = -10V, I _D = -10A	-	44	-	S	
Dynamic Characteristics5		1						
Input Capacitance		Ciss		-	2525	_		
Output Capacitance Reverse Transfer Capacitance		Coss	V _{DS} = -20V, V _{GS} =0V, f =1MHz	-	190	-	pF	
		C _{rss}	· ·····-	-	172	-		
Gate Resistance		Rg	f=1MHz	-	10	-	Ω	
Switching Characteristics	5	1						
Total Gate Charge		Qg		-	35	-		
Gate-Source Charge		Qgs	$V_{GS} = -10V, V_{DS} = -20V,$ $I_{D} = -10A$	-	5.5	-	nC	
Gate-Drain Charge Q		\mathbf{Q}_{gd}		-	8	-		
Turn-On Delay Time		t _{d(on)}		-	14.5	-		
Rise Time Turn-Off Delay Time		tr	V _{GS} = -10V, V _{DD} = -20V,	-	20.2	_	ns	
		t _{d(off)}	$R_G = 3\Omega$, $I_D = -10A$	-	32	_		
Fall Time		t _f		-	10	_	•	
Drain-Source Body Diode	Character	istics	1	<u> </u>	ı	1	1	
Diode Forward Voltage ⁴		V _{SD}	I _S = -10A, V _{GS} = 0V	-	-	-1.2	V	
Continuous Source Current	T _C =25°C	Is	-	-	-	-13	Α	

Note:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2. The EAS data shows Max. rating . The test condition is V_{DD} = -25V, V_{GS} = -10V, L= 0.1mH, I_{AS} = -34A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Characteristics

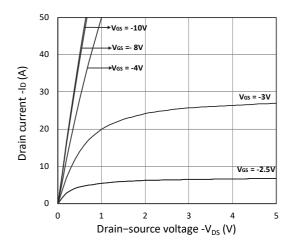


Figure 1. Output Characteristics

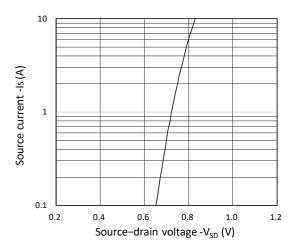


Figure 3. Forward Characteristics of Reverse

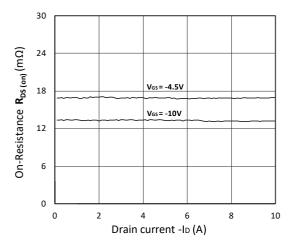


Figure 5. $R_{DS(ON)}$ vs. I_D

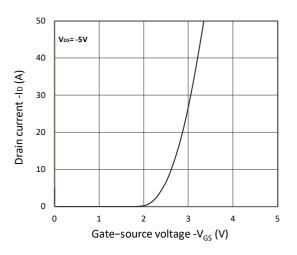


Figure 2. Transfer Characteristics

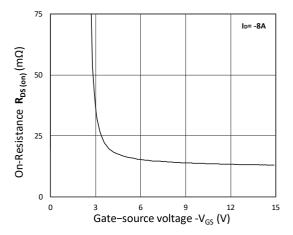


Figure 4. R_{DS(ON)} vs. V_{GS}

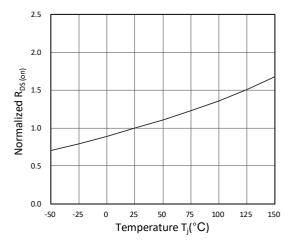


Figure 6. Normalized $R_{\text{DS(on)}}$ vs. Temperature

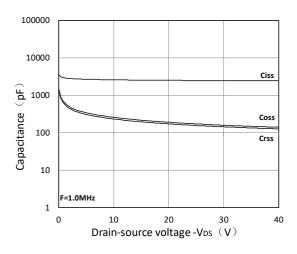


Figure 7. Capacitance Characteristics

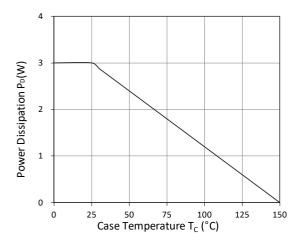


Figure 9. Power Dissipation

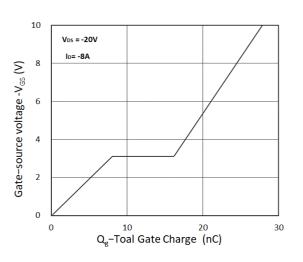


Figure 8. Gate Charge Characteristics

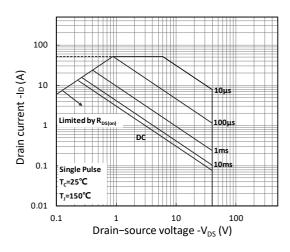


Figure 10. Safe Operating Area

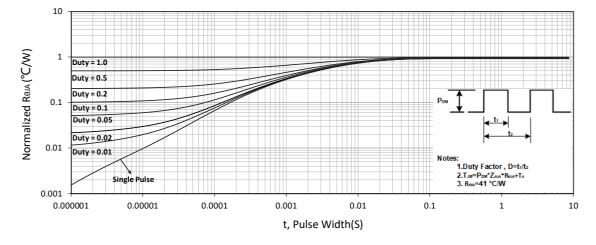


Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

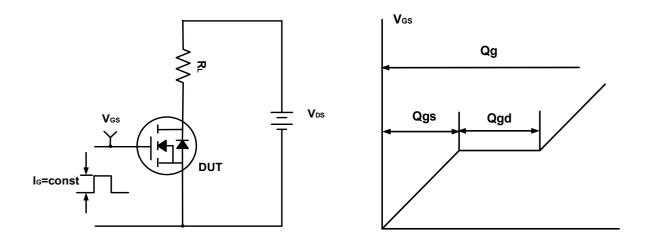


Figure A. Gate Charge Test Circuit & Waveforms

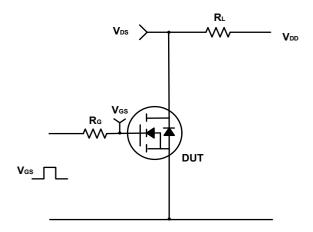
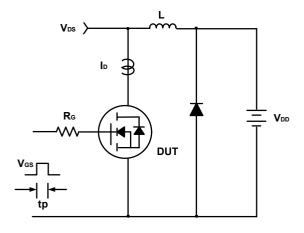
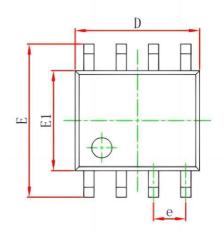
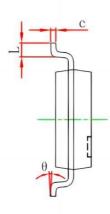
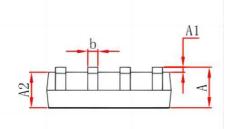


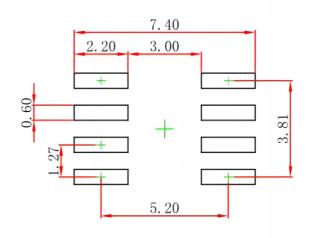
Figure B. Switching Test Circuit & Waveforms


Figure C. Unclamped Inductive Switching Circuit & Waveforms



Package Outline Dimensions


SOP-8

Symbol	Dimensions I	n Millimeters	Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
Al	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0. 013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0. 197
e	1.270 (BSC)		0.050 (BSC)	
E	5.800	6. 200	0. 228	0. 244
El	3.800	4.000	0.150	0.157
L	0.400	1. 270	0.016	0.050
θ	0 °	8°	0 °	8°

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)