

Product Specification

XBLW SN74LVC1G00

Single 2-input NAND Gate

Downloaded From Oneyac.com

Description

The SN74LVC1G00 is a single 2-input NAND Gate. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments. Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.

Features

- ➢ Wide supply voltage range from 1.65V to 5.5V
- > ± 24 mA output drive (V_{CC}=3.0V)
- CMOS low power consumption
- Input accepts voltages up to 5V
- Specified from -40°Cto +125°C
- > Packaging information: SOT-23-5/SOT-353

Applications

- AV Receiver
- Embedded PC
- Tablet: Enterprise
- Audio Dock: Portable
- Blu-ray Player and Home Theater
- Video Analytics: Server
- Wireless Headset, Keyboard, and Mouse
- Personal Digital Assistant (PDA)
- MP3 Player/Recorder (Portable Audio)
- > Solid State Drive (SSD): Client and Enterprise
- > TV: LCD/Digital and High-Definition (HDTV)
- > Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital

Ordering Information:

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SN74LVC1G00T235	SOT-23-5	AHXX	Tape	3000Pcs/Reel
XBLW SN74LVC1G00T353	SOT-353	AHXX	Таре	3000Pcs/Reel

SOT-353

Block Diagram

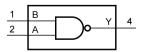


Figure 1. Logic symbol

Figure 2. IEC logic symbol

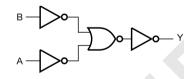
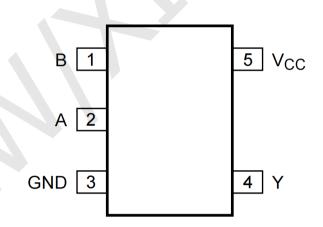



Figure 3. Logic diagram

Pin Configurations

Pin Description

Pin No.	Pin Name	Description
1	В	data input
2	A	data input
3	GND	ground (0V)
4	Y	data output
5	V _{CC}	supply voltage

Function Table

Inj	Output	
Α	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

Note: H=HIGH voltage level; L=LOW voltage level.

Electrical Parameter

Absolute Maximum Ratings

(Voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Conditions	Min.	Max.	Unit
supply voltage	V _{CC}	_	-0.5	+6.5	V
input clamping current	I_{IK}	$V_I < 0V$	-50	-	mA
input voltage	VI	_	-0.5	+6.5	V
output clamping current	I _{OK}	$V_{\rm O} > V_{\rm CC}$ or $V_{\rm O} < 0V$	-	±50	mA
output voltage	Vo	Active mode	-0.5	V _{CC} +0.5	V
output voltage		Power-down mode	-0.5	+6.5	V
output current	Io	$V_0=0V$ to V_{CC}	-	± 50	mA
supply current	I _{CC}	_	-	100	mA
ground current	I _{GND}		-100	-	mA
storage temperature	T_{stg}	-	-65	+150	°C
total power dissipation	\mathbf{P}_{tot}	-	-	250	mW
soldering temperature	T _L	10s	260		°C

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
supply voltage	Vcc	-	1.65	-	5.5	V
input voltage	VI	-	0	-	5.5	V
output voltage	N	Active mode	0	-	V _{CC}	V
	Vo	Power-down mode; V _{CC} =0V	0	-	5.5	V
ambient temperature	T _{amb}	-	-40	-	+125	°C

ESD Ratings

Parameter		Defintion		Unit	
Van	Electrostatic	Electrostatic IS-001, all pins (1)		V	
V(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	v	
(1)	JEDEC docum	ent JEP155 states that 500-V HBM allows safe manufacturing v	vith a standar	d ESD contro	
 (1) JEDEC document JEP155 states that 500-V FIBM allows safe manufacturing with a standard ESD control process. (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 					

Electrical Characteristics

DC Characteristics 1

 $(T_{amb}=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol		Conditions	Min.	Тур.	Max.	Unit		
HIGH-level		V _{cc} =1	.65V to 1.95V	0.65× Vcc	-	-	V		
		V _{CC} =	2.3V to 2.7V	1.7	-	-	V		
input voltage	V _{IH}	V _{CC} =	2.7V to 3.6V	2.0	-	-	V		
		V _{cc} =	4.5V to 5.5V	0.7× Vcc	-	-	V		
		V _{CC} =1	.65V to 1.95V	-	-	0.35× V _{CC}	V		
LOW-level	V	V _{CC} =	2.3V to 2.7V	-	-	0.7	V		
input voltage	VIL	V _{CC} =	2.7V to 3.6V	-	-	0.8	V		
		V _{CC} =	4.5V to 5.5V	-	•	0.3× V _{cc}	V		
	V _{OH}		I_0 =-100uA; V _{CC} =1.65V to 5.5V	V _{CC} - 0.1	-	-	V		
			$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V		
HIGH-level		$V_{I} = V_{IH}$ or V_{IL}	I ₀ =-8mA; V _{CC} =2.3V	1.9	-	-	V		
output voltage			I ₀ =-12mA; V _{CC} =2.7V	2.2	-	-	V		
			$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V		
			$I_0 = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V		
	Vol				$I_0=100$ uA; V _{CC} =1.65V to 5.5V	-	-	0.1	V
			$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	V		
LOW-level		Vol	$V_{I} = V_{IH} \text{ or } V_{IL}$	I ₀ =8mA; V _{CC} =2.3V	-	-	0.3	V	
output voltage			I ₀ =12mA; V _{CC} =2.7V	-	-	0.4	V		
			$I_0=24 \text{ mA}; V_{CC}=3.0 \text{ V}$	-	-	0.55	V		
			$I_0=32 \text{ mA}; V_{CC}=4.5 \text{ V}$	-	-	0.55	V		
input leakage current	I		5.5V or GND; =0V to 5.5V	-	-	±1	uA		
power-off leakage current	Ioff	V _I or V	$_{0}$ =5.5V; V _{CC} =0V	-	-	±2	uA		
supply current	I _{CC}	V_{I} =5.5V or GND; I_{0} =0A; V_{CC} =1.65V to 5.5V		-	-	4	uA		
additional supply current	△I _{cc}	per pin; $V_{I}=V_{CC}-0.6V$; $I_{0}=0A$; $V_{CC}=2.3V$ to 5.5V		-	-	500	uA		
input capacitance	С	V _{cc} =3.3	V; $V_I = GND$ to V_{CC}	-	5	-	pF		

Note: All typical values are measured at V_{CC} =3.3V and T_{amb} =25 °C.

DC Characteristics 2

 $(T_{amb}=-40^{\circ}C \text{ to } +125^{\circ}C, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	(Conditions	Min.	Тур.	Max.	Unit			
HIGH-level		V _{cc} =1	65V to 1.95V	0.65× V _{CC}	-	-	V			
		V _{CC} =	2.3V to 2.7V	1.7	-	-	V			
input voltage	V _{IH}	V _{CC} =	2.7V to 3.6V	2.0	-	-	V			
		V _{CC} =	4.5V to 5.5V	0.7× V _{CC}	-	-	V			
		V _{CC} =1	65V to 1.95V	-	-	0.35× V _{CC}	V			
LOW-level		V _{CC} =	2.3V to 2.7V	-	-	0.7	V			
input voltage	V_{IL}	V _{CC} =	2.7V to 3.6V	-	-	0.8	V			
		V _{CC} =	4.5V to 5.5V	-	-	0.3× Vcc	V			
	V _{OH}		I ₀ =-100uA; V _{CC} =1.65V to 5.5V	V _{CC} - 0.1	-	-	V			
		$V_{\rm OH}$ $V_{\rm I} = V_{\rm IH} \text{ or } V_{\rm IL}$	I ₀ =-4mA; V _{cc} =1.65V	0.95	-	-	V			
HIGH-level			I ₀ =-8mA; V _{CC} =2.3V	1.7	-	-	V			
output voltage			I ₀ =-12mA; V _{CC} =2.7V	1.9	-	-	V			
				$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V		
				$I_0 = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	-	V		
						$I_0=100$ uA; $V_{CC}=1.65$ V to 5.5V	-	-	0.1	V
						$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.7	V
LOW-level	VOL	$V_{I} = V_{IH} \text{ or } V_{IL}$	I ₀ =8mA; V _{CC} =2.3V	-	-	0.45	V			
output voltage			$I_0=12 \text{ mA}; V_{CC}=2.7 \text{ V}$	-	-	0.6	V			
			$I_0=24 \text{ mA}; V_{CC}=3.0 \text{ V}$	-	-	0.8	V			
			$I_0=32 \text{ mA}; V_{CC}=4.5 \text{ V}$	-	-	0.8	V			
input leakage current	II	$V_1=5.5V$ or GND; $V_{cc}=0V$ to $5.5V$		-	-	±1	uA			
power-off leakage current	I _{off}	V_1 or $V_0=5.5V$; $V_{cc}=0V$		-	-	±2	uA			
supply current	I _{cc}	V_1 =5.5V or GND; I_0 =0A; V_{CC} =1.65V to 5.5V		-	-	4	uA			
additional supply current	ΔI_{CC}	per pin; $V_1=V_{CC}=0.6V$; $I_0=0A$; $V_{CC}=2.3V$ to 5.5V		-	-	500	uA			

AC Characteristics 1

(T_{amb}=-40 °C to +85 °C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Typ. ^[1]	Max.	Unit	
			V_{CC} =1.65V to 1.95V	-	12.5	18.8	ns	
A, B to Y			$V_{CC}=2.3V$ to 2.7V	-	10.5	15.8	ns	
propagation	t _{PHL}	see Figure 5	$V_{CC}=2.7V$	-	10	15	ns	
delay			V_{CC} =3.0V to 3.6V	-	9.5	14.3	ns	
			V_{CC} =4.5V to 5.5V	-	9	13.5	ns	
	t _{PLH}			V_{CC} =1.65V to 1.95V	-	14	21	ns
A, B to Y		t _{PLH} see Figure 5	$V_{CC}=2.3V$ to 2.7V	-	10	15	ns	
propagation			$V_{CC}=2.7V$	-	9.5	14.3	ns	
delay			$V_{CC}=3.0V$ to $3.6V$	-	8.5	12.8	ns	
			$V_{CC}=4.5V$ to 5.5V	-	7.5	11.3	ns	

Note:

[1] Typical values are measured at $T_{amb}=25$ °C and $V_{CC}=1.8V$, 2.5V, 2.7V, 3.3V and 5.0V respectively.

[2]Typical values are measured at Vcc=3.3Vor 5V.

[3]CPD is used to determine the dynamic power dissipation (PD in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

fi=input frequency in MHz;

fo=output frequency in MHz;

CL=output loadcapacitance in pF;

Vcc=supply voltage in V;

N=number of inputs switching;

 Σ (CL×Vcc²×f₀)=sum of outputs.

AC Characteristics 2

 $(T_{amb}=-40^{\circ}C \text{ to } +125^{\circ}C, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	C	Conditions		Тур.	Max.	Unit
			V_{CC} =1.65V to 1.95V	-	-	20.8	ns
A, B to Y propagation delay			$V_{\rm CC}$ =2.3V to 2.7V	-	-	17.8	ns
	t _{PHL}	see Figure 5	$V_{CC}=2.7V$	-	-	17	ns
			$V_{CC}=3.0V$ to 3.6V	-	-	16.3	ns
			V_{CC} =4.5V to 5.5V	-	-	15.5	ns
	t _{PLH}		V_{CC} =1.65V to 1.95V	-	-	23	ns
A, B to Y			$V_{CC}=2.3V$ to 2.7V	-	-	17	ns
propagation		see Figure 5	$V_{CC}=2.7V$	-	-	16.3	ns
delay			$V_{CC}=3.0V$ to 3.6V	-	-	14.8	ns
			$V_{CC}=4.5V$ to 5.5V	-	-	13.3	ns

Note:

[1] Typical values are measured at Tamb=25°C and VCC=1.8V, 2.5V, 2.7V, 3.3V and 5.0V respectively.

[2] Typical values are measured at Vcc=3.3V or 5V.

Testing Circuit

AC Testing	Circuit
------------	---------

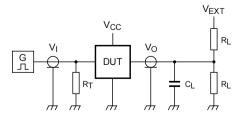
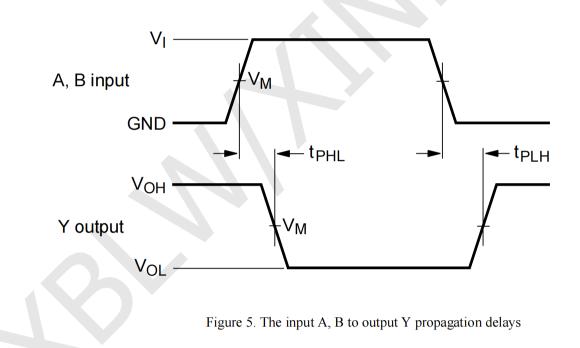


Figure 4. Test circuit for measuring switching times


Definitions for test circuit:

R_L=Load resistance.

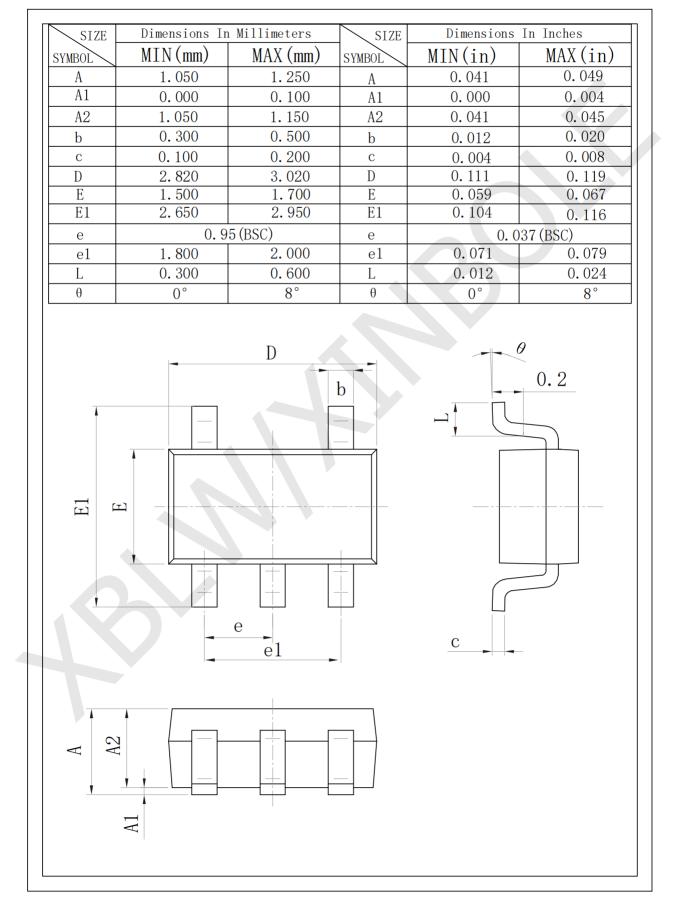
C_L=Load capacitance including jig and probe capacitance.

 R_T =Termination resistance; should be equal to the output impedance Z_o of the pulse generator. V_{EXT} =External voltage for measuring switching times.

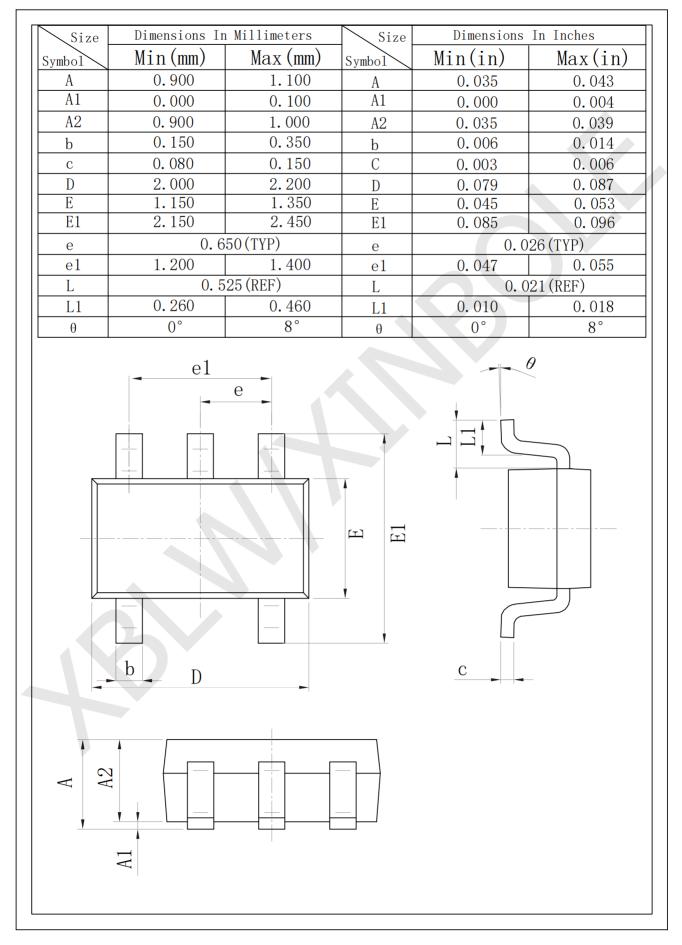
AC Testing Waveforms

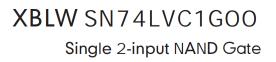
Measurement Points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
1.65V to 1.95V	$0.5 \times V_{CC}$	$0.5 imes V_{CC}$
2.3V to 2.7V	$0.5 \times V_{CC}$	$0.5 imes V_{CC}$
2.7V	1.5V	1.5V
3.0V to 3.6V	1.5V	1.5V
4.5V to 5.5V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$


Test Data

Supply voltage	Input		Load		V _{EXT}
V _{CC}	VI	$\mathbf{t}_{\mathbf{r}} = \mathbf{t}_{\mathbf{f}}$	CL	RL	t _{PLH} , t _{PHL}
1.65V to 1.95V	V _{CC}	≤ 3 ns	30pF	1kΩ	open
2.3V to 2.7V	V _{CC}	≤ 3 ns	30pF	500Ω	open
2.7V	2.7V	≤ 3 ns	50pF	500Ω	open
3.0V to 3.6V	2.7V	≤ 3 ns	50pF	500Ω	open
4.5V to 5.5V	V _{CC}	≤ 3 ns	50pF	500Ω	open


Package Information


• SOT23-5

• SOT-353

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)