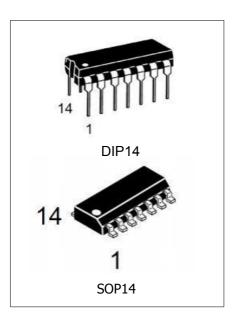


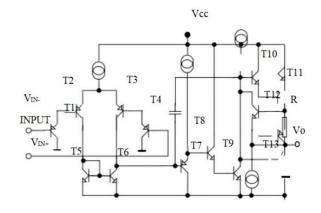
Product Specification

XBLW LM2902

Four Amplifier Integrated Circuit



Description


This circuit is high performance, with four independent operational amplifiers, including phase compensation circuit, suitable for receivers and tone systems as tone equalization network, but also for other applications. Using DIP-14 package, power consumption 720mW, and SOP-14 package, power consumption 400mW.

Features

- No external phase compensation circuit required
- Wide power supply voltage range: single power supply,Vcc=3~32V, dual power supply, Vcc=± 1.5V~16V
- ► Low power consumption current: Icc=0.6mA (typical) (RL= ∞)
- > The input voltage range can be close to the ground level

Internal circuit diagram

Brief introduction of principle

The LM2902 is composed of four identical operational amplifiers. The unit circuit is shown in the figure. Its working principle is briefly described as follows: the input signal is added to the T1 and T4 bases, and the difference is enlarged; T8, T9 in the compound amplification form the intermediate stage; The output stage consists of T10 to T13. T12 is a protective tube. When the output current is too large, the voltage drop on R will increase, resulting in T12 saturation conduction and T12 collector potential decrease.

Close to 1/2Vcc, the push-pull tubes T10, T11 and T13 are cut off, thus providing protection. Capacitor C is the phase compensation capacitor.

Ordering Information

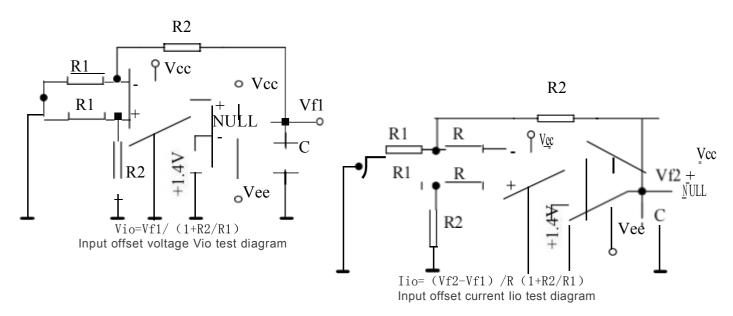
Product Model	Package Type	Marking	Packing	Packing Qty
XBLW LM2902N	DIP-14	LM2902N	Tube	1000Pcs/Box
XBLW LM2902DTR	SOP-14	LM2902	Tape	2500Pcs/Reel

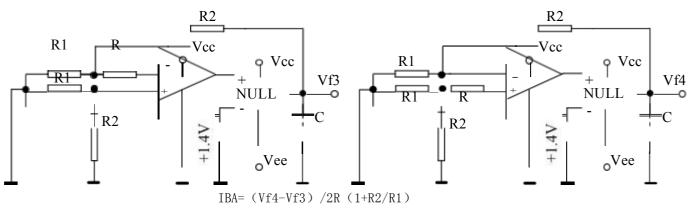
Pin end function symbol

Export end serial number	Function	Symbol	Export end serial number	Function	Symbol
1	Output 1	OUT1	8	Output 3	OUT3
2	Inverting input 1	IN- (1)	9	Inverting input3	IN- (3)
3	Positive input1	IN+ (1)	10	Positive input3	IN+ (3)
4	Power source	Vcc	11	Earthing	GND
5	Positive input2	IN+ (2)	12	Positive input4	IN+ (4)
6	Invertinginput 2	IN- (2)	13	Inverting inpu4	IN- (4)
7	Output 2	OUT2	14	Output 4	OUT4

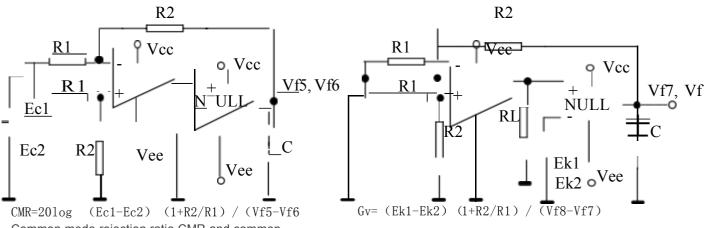
Limit parameter (absolute maximum rating, Tamb=25 $^{\circ}$ C if no other provisions are made)

Parameter	Symbol	Test condition	Valuation	Unit
Supply voltage	Vcc		32	V
Differential input voltage	VID		32	V
Maximum input voltage	VIN		-0.3~32	V
Allowable power consumption	Pb	DIP SOP	720 400	mW
Operating temperature	Topr		-20~+85	$^{\circ}$
Storage temperature	Tstg		-55~+125	$^{\circ}$

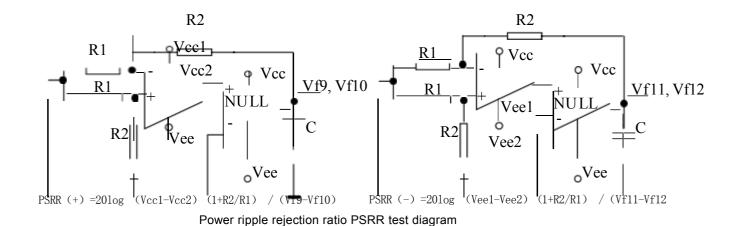


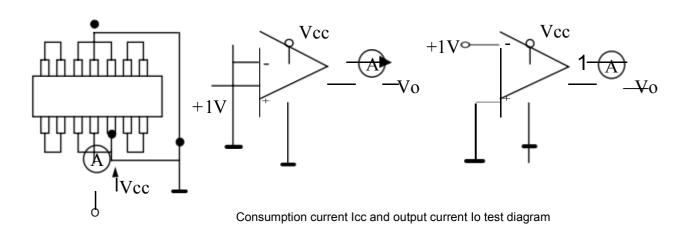

Electrical characteristics (if not otherwise specified, Vcc=5V, Tamb=25 $^{\circ}$ C)

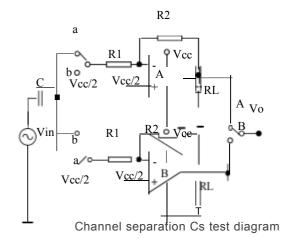
Parameter	Symbol	Test condition	MIN	TYP	MAX	Unit
Offset input voltage	Vio			±2	±5	mV
Input offset current	Iıo	lin(+)/lin(-)		±5	±50	nA
Input bias current	IBA	Iin(+)/Iin(-)		45	250	nA
Common-mode input voltage range	VICM		0		Vcc-1.5	V
Common mode rejection ratio	K CMR		65	80		dB
Strong signal voltage gain	Gv	Vcc=15V,RL ≥2 kΩ	25	100		V/mV
Output voltage range	Vo		0		Vcc-1.5	V
Power ripple rejection ratio	PSRR		65	100		dB
Channel separation	Cs	f=1kHz~20kHz		120		dB
Static current consumption (1)	Icc	Vcc=5V		0.6	2	mA
Static current consumption (2)	Icc	Vcc=30V		1.5	3	mA
Output pull current	Io	Vin+=1V,Vin ⁻ =0V	20	35		mA
Output filling current	Io	Vin+=0V,Vin ⁻ =1V	10	13		mA



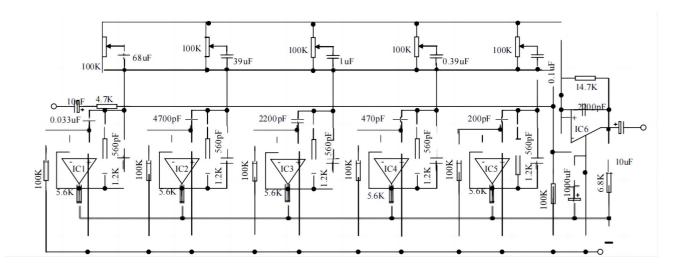
Test schematic diagram (note: NULL refers to zero amplifier)


Input bias current IBA test diagram

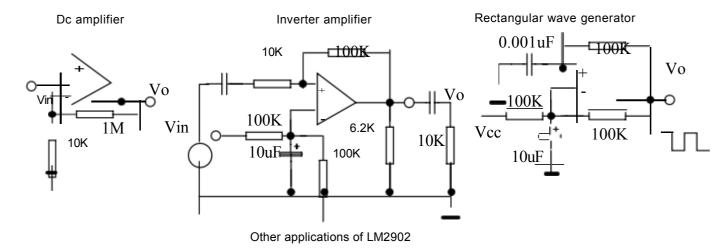


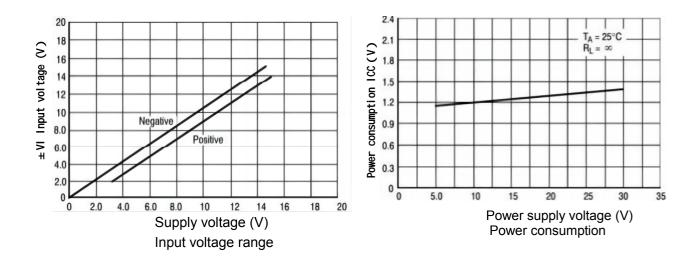

Common mode rejection ratio CMR and common mode input voltage range VICMtest diagram

Voltage gain Gv test diagram

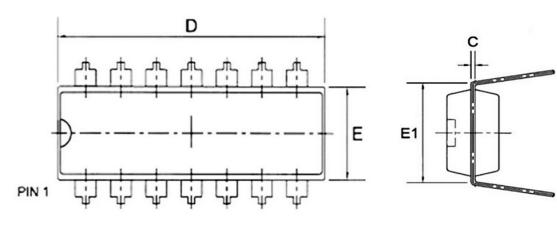


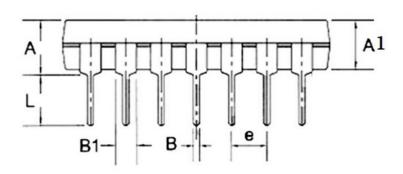
SW: A Cs (A B) =201og (R2*VOA) / (R1*VOB)


SW: B Cs (B A) =20log (R2*V0B) / (R1*V0A)


Application drawing

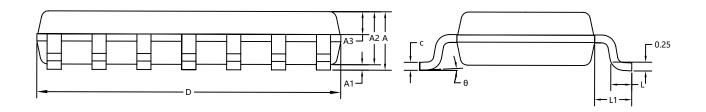
The LM2902 is used in five-frequency tone control circuits

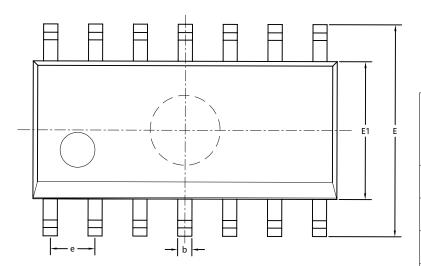

Characteristic Curve



Package information:

DIP14





	Dimensions in Millimeters			
Symbol	Min	Nom	Max	
A			4.31	
A1	3.15	3.30	3.65	
В		0.46		
B1		1.60		
С		0.25		
D	19.00	19.30	19.60	
Е	6.20	6.40	6.60	
E1		7.60		
e		2.54		
L	3.00	3.35	3.60	

SOP14

SYMBOL	MILLIMETER				
STIVIDOL	MIN	NOM	MAX		
А	1.50	1.60	1.70		
A1	0.10	0.15	0.25		
A2	1.40	1.45	1.50		
A3	0.60	0.65	0.70		
b	0.35	0.40	0.45		
С	0.15	0.20	0.25		
D	8.50	8.60	8.70		
E	5.80	6.00	6.20		
E1	3.85	3.90	3.95		
e	1.27BSC				
L	0.50	0.60	0.70		
L1	1.05REF				
θ	0°	4°	8°		

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products are not licensed for life support, military, aerospace and other applications, and XBLW will not be responsible for the consequences of the use of products in these fields.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)