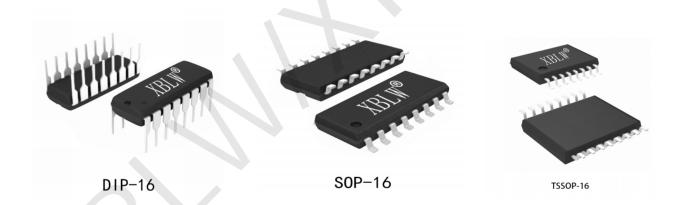


Product Specification

XBLW SN74LS175

Quad D-type flip-flop with reset



Description

The SN74LS175 is a quad positive- edge triggered D-type flip-flop with individual data inputs (Dn) and complementary outputs (Qn and $\overline{\text{Qn}}$).

Features

- > Four edge-triggered D-type flip-flops
- > Asynchronous master reset
- > Specified from -20°C to +85°C
- Packaging information:DIP-16/SOP-16/TSSOP-16

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SN74LS175N	DIP-16	74LS175N	Tube	1000Pcs/Box
XBLW SN74LS175DTR	SOP-16	74LS175	Tape	2500Pcs/Reel
XBLW SN74LS175TDTR	TSSOP-16	74LS175	Tape	3000Pcs/Reel

Block Diagram

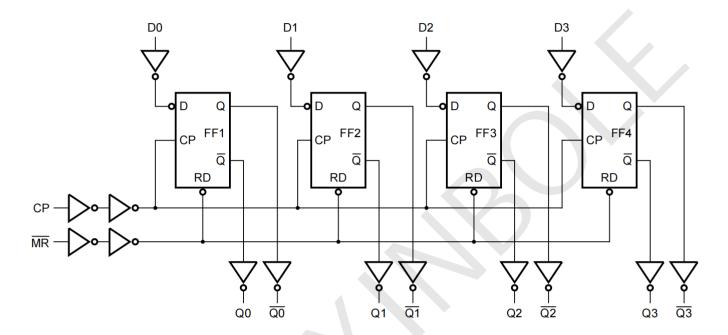
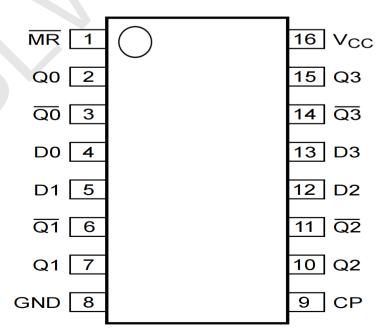



Figure 1. Logic diagram

Pin Configurations

Pin Description

Pin No.	Pin Name	Description		
1	MR	asynchronous master reset input (active LOW)		
2	Q0	flip-flop output		
3	$\overline{\mathbb{Q}}0$	complementary flip-flop output		
4	D0	data input		
5	D1	data input		
6	Q1	complementary flip-flop output		
7	Q1	flip-flop output		
8	GND	ground (0V)		
9	СР	clock input (LOW-to-HIGH edge-triggered)		
10	Q2	flip-flop output		
11	Q2	complementary flip-flop output		
12	D2	data input		
13	D3	data input		
14	Q3	complementary flip-flop output		
15	Q3	flip-flop output		
16	V cc	positive supply voltage		

Function table

One wating woods		Inputs		Outputs	
Operating mode	MR	СР	Dn	Qn	Qn
reset (clear)	L	X	X	L	Н
load " 1"	Н	1	h	Н	L
load " 0"	Н	1	I	L	Н

Note:

H=HIGH voltage level; L=LOW voltage level; X=don't care; ↑=LOW-to-HIGH clock transition;

h=HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition; I=LOW voltage level one set-up time prior to the LOW-to-

HIGH clock transition.

Electrical Parameter

Absolute Maximum Ratings

(T_{amb}=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified)

(g. saile sty) and saile state of the control of th						
Characteristic	Symbol		Conditions Min.			Unit
supply voltage	V cc		-	-0.5	+7.0	V
input clamping current	Iıĸ	VI<-0.5	5V or VI>Vcc+0.5V	-	+20	mA
output clamping current	Іок	Vo<-0.5	V or Vo>Vcc+0.5V	-	±20	mA
output current	Io	Vo=-0.	Vo=-0.5V to (Vcc+0.5V)			mA
supply current	I cc		-		+50	mA
ground current	I GND		-	-50	-	mA
storage temperature	Tstg		-	-65	+150	°C
total power dissipation	Ptot		-		500	mW
coldering townsuctive	т.	100	DIP		245	°C
soldering temperature	T∟	10s	SOP/TSSOF	,	260	°C

Recommended Operating Conditions

(Voltages are referenced to GND (ground=0V), unless otherwise specified.)

<u>`</u>						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
supply voltage	V cc	-	2.0	5.0	6.0	V
input voltage	VI	- (0	-	V cc	V
output voltage	Vo	-	0	-	V cc	V
ambient temperature	Tamb	-	-20	-	+85	°C

DC Characteristics 1

(Tamb=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		V	/cc=2.0V	1.5	1.2	-	V
HIGH-level input voltage	VIH	V	/cc=4.5V	3.15	2.4	-	V
voltage	A IU	V	/cc=6.0V	4.2	3.2	-	V
		V	/cc=2.0V	-	0.8	0.5	V
LOW-level input voltage	VIL	V	/cc=4.5V	-	2.1	1.35	V
Voltage	VIL	V	/cc=6.0V	-	2.8	1.8	V
			Io=-20uA; Vcc=2.0V	1.9	2.0	-	V
			Io=-20uA; Vcc=4.5V	4.4	4.5	-	V
HIGH-level			I _O =-20uA; V _{CC} =6.0V	5.9	6.0	-	V
output voltage	Vон	VI=VIH OR VIL	Io=-4mA; Vcc=4.5V	3.98	4.32	-	V
			Io=-5.2mA; Vcc=6.0V	5. 4 8	5.81	-	V
			Io=20uA; Vcc=2.0V	-	0	0.1	V
			Io=20uA; Vcc=4.5V	-	0	0.1	V
LOW-level			I _O =20uA; V _{CC} =6.0V	-	0	0.1	V
output voltage	Vol	VI=VIH OR VIL	I _O =4mA; V _{CC} =4.5V	-	0.15	0.26	V
			Io=5.2mA; Vcc=6.0V	-	0.16	0.26	V
input leakage current	Iī	V₁=V∞ or GND; V∞=6.0V		-	_	± 1	uA
supply current	I cc	VI=Vcc or GN	D; Io=0A; Vcc=6.0V	-	-	1	uA

DC Characteristics 2

(T_{amb}=-20°C to +85°C, voltages are referenced to GND (ground=0V), unless otherwise specified)

Parameter	Symbol	С	onditions	Min.	Тур.	Max.	Unit
		,	√cc=2.0V	1.5	-	-	V
HIGH-level input voltage	VIH	,	√cc=4.5V	3.15	-	-	V
voltage	V IH	Vcc=6.0V		4.2	-	-	V
		,	√cc=2.0V	-	-	0.5	V
LOW-level input voltage	VIL	,	√cc=4.5V	-	-	1.35	V
voltage	VIL	,	Vcc=6.0V	-	-	1.8	V
			Io=-20uA; Vcc=2.0V	1.9	-	-	V
			Io=-20uA; Vcc=4.5V	4.4	-	-	V
HIGH-level			I _O =-20uA; V _{CC} =6.0V	5.9	-	-	V
output voltage	Vон	VI=VIH OF VIL	Io=-4mA; Vcc=4.5V	3.84	-	-	V
			I _O =-5.2mA; V _{CC} =6.0V	5.34	-	-	V
			Io=20uA; Vcc=2.0V	-	-	0.1	V
			Io=20uA; Vcc=4.5V	-	-	0.1	V
LOW-level			Io=20uA; Vcc=6.0V		-	0.1	V
output voltage	Vol	VI=VIH OF VIL	Io=4mA; Vcc=4.5V	-)	-	0.33	V
			I ₀ =5.2mA; V _{CC} =6.0V	-	-	0.33	V
input leakage current	Iı	V _I =V _{CC} or GND; V _{CC} =6.0V		_	_	±2	uA
supply current	I cc	VI=Vcc or GN	ND; Io=0A; Vcc=6.0V	-	-	2	uA

AC Characteristics 1

(Tamb=25°C, GND=0V, CL=50pF, unless otherwise specified)

Parameter	Symbol	Conditions			Тур.	Max.	Unit
			Vcc=2.0V	-	55	175	ns
nuonaastion dalau	+/+	GD 4 G 5	Vcc=4.5V	-	50	35	ns
propagation delay	t PLH /t PHL	CP to Qn, Qn; see Figure 4	Vcc=5.0V CL= 15pF	-	17	-	ns
			Vcc=6.0V	-	16	30	ns
			Vcc=2.0V	-	50	150	ns
HIGH to LOW	.	MR to Qn, Qn;	Vcc=4.5V	-	18	30	ns
propagation delay	t PHL	see Figure 6	Vcc=5.0V CL= 15pF	-	15	-	ns
uciay		_	Vcc=6.0V	-	14	26	ns
			Vcc=2.0V	-	19	75	ns
transition time	t t	Qn output; see Figure 4	Vcc=4.5V	-	7	15	ns
	See Figure 4	Vcc=6.0V	-	6	13	ns	
	CP input	CP input HIGH	Vcc=2.0V	80	22	-	ns
		or LOW;	Vcc=4.5V	16	8	-	ns
nulco width	tw	see Figure 4	Vcc=6.0V	14	6	-	ns
pulse width		MR input LOW;	Vcc=2.0V	80	19	-	ns
			Vcc=4.5V	16	7	-	ns
		see Figure 6	Vcc=6.0V	14	6	-	ns
			Vcc=2.0V	5	-33	-	ns
recovery time	t rec	MR to CP; see Figure 6	Vcc=4.5V	5	-12	-	ns
		see rigure o	Vcc=6.0V	5	-10	-	ns
			Vcc=2.0V	80	3	-	ns
set-up time	tsu	Dn to CP; see Figure 4	Vcc=4.5V	16	1	-	ns
	CSU	See rigare r	Vcc=6.0V	14	1	-	ns
			Vcc=2.0V	25	2	-	ns
hold time	t h	Dn to CP; see Figure 4	Vcc=4.5V	5	0	-	ns
		See Figure 1	Vcc=6.0V	4	0	-	ns
			Vcc=2.0V	6	25	-	ns
maximum frequency	f	CD in much	Vcc=4.5V	30	75	-	ns
naximum frequency	f _{max}	CP input; see Figure 4	Vcc=5.0V CL= 15pF	-	83	-	ns
	see rigure 4	Vcc=6.0V	35	89	_	ns	

AC Characteristics 2

(T_{amb}=-20°C to +85°C GND=0V CL=50pF unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit	
			Vcc=2.0V	-	-	220	ns	
propagation delay	t PLH /t PHL	CP to Qn, \overline{Qn} ;	Vcc=4.5V	-	-	44	ns	
	see Figure 4		Vcc=6.0V	-	-	37	ns	
HIGH to LOW			Vcc=2.0V	-	-	190	ns	
propagation	t PHL	MR to Qn, Qn; see Figure6	Vcc=4.5V	-	-	38	ns	
delay		see rigureo	Vcc=6.0V	-	-	33	ns	
		_	Vcc=2.0V	-	<u> </u>	95	ns	
transition time	t t	Qn output; see Figure 4	Vcc=4.5V	-	-	19	ns	
		see rigure 4	Vcc=6.0V	-		16	ns	
		CP input HIGH	Vcc=2.0V	100	-	-	ns	
	tw -		or LOW;	Vcc=4.5V	20	-	-	ns
والملاء والمراد		see Figure 4	Vcc=6.0V	17	-	-	ns	
pulse width		 .	Vcc=2.0V	100	-	-	ns	
		MR input LOW; see Figure 6	Vcc=4.5V	20	-	-	ns	
		see Figure 6	Vcc=6.0V	17	-	-	ns	
			Vcc=2.0V	5	-	-	ns	
recovery time	t rec	MR to CP;	Vcc=4.5V	5	-	-	ns	
		see Figure 6	Vcc=6.0V	5	-	-	ns	
			Vcc=2.0V	100	-	-	ns	
set-up time	t su	Dn to CP; see Figure 4	Vcc=4.5V	20	-	-	ns	
		see rigure 4	Vcc=6.0V	17	-	-	ns	
			Vcc=2.0V	30	-	-	ns	
hold time	th	Dn to CP; see Figure 4	Vcc=4.5V	6	-	-	ns	
		See Figure 7	Vcc=6.0V	5	-	-	ns	
_			Vcc=2.0V	4.8	-	-	ns	
maximum frequency	f _{max}	CP input; see Figure 4	Vcc=4.5V	24	-	-	ns	
пециенсу		See Figure 4	Vcc=6.0V	28	-	-	ns	

Testing Circuit

AC Testing Circuit

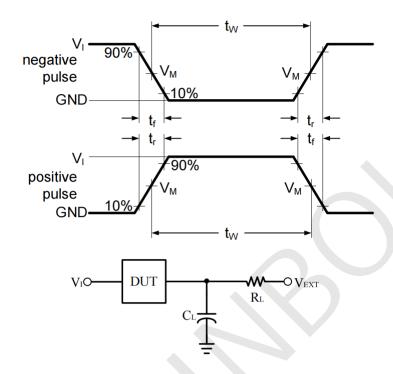


Figure 3. Test circuit for measuring switching times

Definitions for test circuit: C₁ includes probe and jig capacitance

AC Testing Waveforms

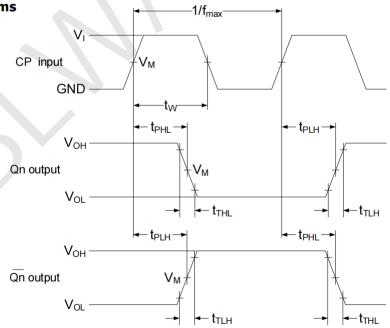


Figure 4. Input to output propagation delay, output transition time, clock input pulse width and maximum frequency

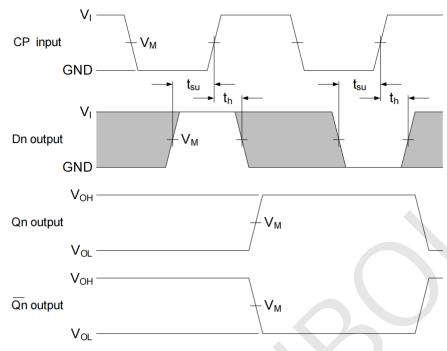


Figure 5. Data set-up and hold times for data input

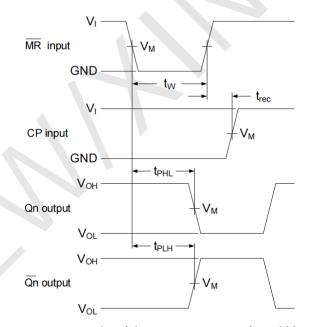


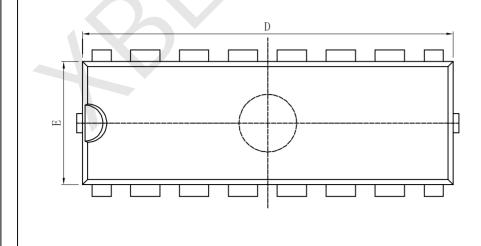
Figure 6. Master reset to output propagation delays, master reset pulse width and master reset to clock recovery time

Measurement Points

Tuno	In	put	Output
Туре	Vı	VM	Vm
SN74LS175	V cc	0.5 ×Vcc	0.5 ×V _{CC}

Test Data


Time	Input		Load		Test	
Туре	Vı	tr ,tf	CL RL		rest	
SN74LS175	Vcc	3.0ns	15pF, 50pF	1kΩ	tplh, tphl	



PackageInformatio

· DIP-16

Size	Dimensions I	n Millimeters	Size	Dimensions In Inches		
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)	
A	3.710	4.310	A	0.146	0.170	
A1	0.510		A1	0.020		
A2	3. 200	3.600	A2	0. 126	0. 142	
В	0.380	0.570	В	0.015	0.022	
B1	1.52	4 (BSC)	B1	0.0	60 (BSC)	
С	0. 204	0.360	С	0.008	0.014	
D	18.80	19. 20	D	0. 740	0. 756	
Е	6. 200	6.600	Е	0. 244	0. 260	
E1	7. 320	7.920	E1	0. 288	0.312	
е	2.54	0 (BSC)	е	0. 1	00 (BSC)	
L	3.000	3.600	L	0. 118	0.142	
E2	8. 400	9.000	E2	0.331	0.354	

· SOP-16

Size _		ions In Milli	meters	Size	Dimer	nsions In Inc	hes
	Min(mm)	Nom(mm)	Max(mm)	Symbol	Min(in)	Nom(in)	Max(in)
A	1.500	1.600	1.700	A	0.059	0.063	0.067
A1	0.100	0.150	0.250	A1	0.004	0.006	0.010
A2	1.400	1.450	1.500	A2	0.055	0.057	0.059
A3	0.600	0.650	0.700	A3	0.024	0.026	0.028
b	0.300	0.400	0.500	b	0.012	0.016	0, 020
С	0.150	0.200	0. 250	С	0.006	0.008	0.010
D	9.800	9. 900	10.00	D	0.386	0.390	0.394
Е	5.800	6.000	6.200	Е	0.228	0. 236	0. 244
E1	3.850	3. 900	3. 950	E1	0. 152	0.154	0.156
е		1. 27 (BSC)		е		0.050 (BSC)	
L	0.500	0.600	0.700	L	0.020	0.024	0.028
L1		1. 05 (BSC)		L1		0. 041 (BSC)	
θ	0°	4°	8°	θ	0°	4°	8°
		A A	A, F			<u> </u>	
	0.	4 φ1.0	- b -))		E1 E	

· TSS0P-16

Size	Dimensions I	n Millimeters	Size	Dimensions	In Inches
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)
A		1.200	A		0.047
A1	0.050	0.150	A1	0.002	0.006
A2	0.800	1.050	A2	0.031	0.041
b	0. 190	0.300	b	0.007	0.012
С	0.090	0. 200	c	0.004	0.0089
D	4. 900	5. 100	D	0. 193	0. 201
E	6. 200	6.600	E	0. 244	0. 260
E1	4. 300	4. 480	E1	0.169	0.176
e		5 (BSC)	e		256 (BSC)
K	0°	8°	K	0°	8°
L	0. 450	0.750	L	0.018	0.030
E1					<u>C</u>
A	AI		A2	K	

Statement

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW product has not been licensed for life support, military and aerospace applications, and therefore XBLW is not responsible for any consequences arising from its use in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)