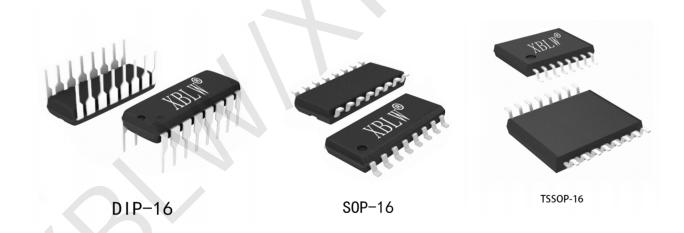


Product Specification

XBLW SN74LS238

3-to-8 Line Decoder/Demultiplexer



Description

The SN74LS238 decodes three binary weighted address inputs (A0, A1_and A2) to eight mutually exclusive outputs (Y0 to Y7). The device features three enable inputs (E1 and E2 and E3). Every output will be LOW unless E1 and $\overline{E}2$ are LOW and E3 is HIGH.This multiple enable function allows easy parallel expansion to a 1-of-32 (5 to 32 lines)decoder with just four SN74LS238ICs and one inverter. The SN74LS238can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

Features

- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- > Active HIGH mutually exclusive outputs
- > Specified from:-20°C to +85°C
- Packaging information: DIP-16/SOP-16/TSSOP-16

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW SN74LS238N	DIP-16	74LS238N	Tube	1000Pcs/Box
XBLW SN74LS238DTR	SOP-16	74LS238	Tape	2500Pcs/Reel
XBLW SN74LS238TDTR	TSSOP-16	74LS238	Tape	3000Pcs/Reel

Block Diagram

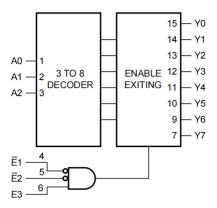


Figure 1. Logic symbol

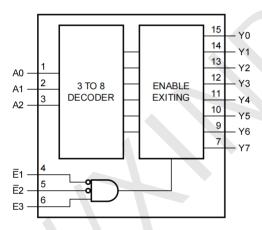


Figure 2. Functional diagram

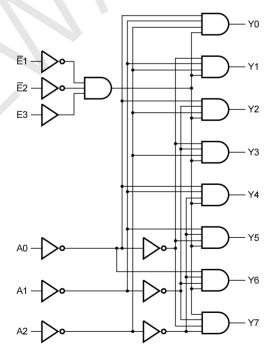
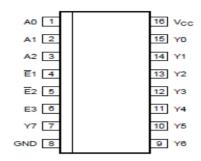



Figure 3. Logic diagram

Pin Configurations

Pin Description

Pin No.	Pin Name	Description				
1	A0	address input				
2	A1	address input				
3	A2	address input				
4	Ē1	enable input (active LOW)				
5	Ē2	enable input (active LOW)				
6	E3	enable input (active HIGH)				
7	Y7	output (active HIGH)				
8	GND	ground (0V)				
9	Y6	output (active HIGH)				
10	Y5	output (active HIGH)				
11	Y4	output (active HIGH)				
12	Y3	output (active HIGH)				
13	Y2	output (active HIGH)				
14	Y1	output (active HIGH)				
15	Y0	output (active HIGH)				
16	Vcc	supply voltage				

Function Table

	Input								Out	put			
Ē1	Ē2	E3	A0	A1	A2	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Н	X	X	X	X	X	L	L	L	L	L	L	L	L
X	Н	X	X	X	X	L	L	L	L	L	L	L	L
X	X	L	X	X	X	L	L	L	L	L	L	L	L
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L
L	L	Н	Н	Н	L	L	L	L	Н	L	L	L	L
L	L	Н	L	L	Н	L	L	L	L	Н	L	L	L
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L
L	L	Н	L	Н	Н	L	L	L	L	L	L	Н	L
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н

Note: H=HIGH voltage level; L=LOW voltage level; X=don't care.

Electrical Parameter

Absolute Maximum Ratings

(Voltages are referenced to GND(ground=0V), unless otherwise specified.)

Parameter	Symbol		Min.	Max.	Unit	
supply voltage	V _{CC}		-0.5	+7.0	٧	
input clamping current	\mathbf{I}_{IK}	$V_{\rm I} <$ -0.5V or $V_{\rm I} >$ $V_{\rm CC}$ +0.5V			±20	mA
output clamping current	I _{OK}	$V_0 < -0.5V \text{ or } V_0 > V_{CC} + 0.5V$			±20	mA
output current	Io	$-0.5V < V_0 < V_{CC} + 0.5V$			±25	mA
supply current	\mathbf{I}_{CC}	-			+50	mA
ground current	\mathbf{I}_{GND}	-			-	mA
storage temperature	T _{stg}	-			+150	°C
total power dissipation	P _{tot}			_	500	mW
Soldering temperature	T∟	10s	DIP	2	45	°C
Soldering temperature		105	SOP	2	50	°

Note:

- [1] For DIP16 packages: above 70° C the value of P_{tot} derates linearly with $12 \, \text{mW/K}$.
- [2] For SOP16 packages: above 70° C the value of P_{tot} derates linearly with $8\,\text{mW/K}$.
- [3] For (T)SSOP16 packages: above 60° C the value of P_{tot} derates linearly with 5.5 mW/K.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
supply voltage	Vcc	-	2.0	5.0	6.0	V
input voltage	VI	-	0	-	Vcc	V
output voltage	Vo	-	0	-	Vcc	V
		V _{CC} =2.0V	-	-	625	ns/V
input transition rise and fall rate	Δt/ΔV	V _{CC} =4.5V	-	1.67	139	ns/V
	Δι/Δν	V _{CC} =6.0V	-	-	83	ns/V
ambient temperature	T _{amb}	-	-20	_	+85	°C

XBLW Version 2.0 Downloaded From Oneyac.com www.xinboleic.com

Electrical Characteristics

DC Characteristics 1

 $(T_{amb}=25\,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	Condition	ons	Min.	Тур.	Max.	Unit
		SN74LS238					
LITCH I I I		V _{CC} =2.0)V	1.5	1.2	-	٧
HIGH-level input voltage	V _{IH}	V _{CC} =4.5	V _{CC} =4.5V			-	V
Voltage	V IH	V _{CC} =6.0)V	4.2	3.2	-	٧
1014/1		V _{CC} =2.0)V	-	0.8	0.5	V
LOW-level input voltage	VIL	V _{CC} =4.5	5V	-	2.1	1.35	٧
Voltage	V IL	V _{CC} =6.0)V	-	2.8	1.8	V
			$I_o=-20uA;$ $V_{cc}=2.0V$	1.9	2.0	-	V
HIGH-level output voltage	Vон	$V_{I} = V_{IH} \text{ or } V_{IL}$	I_0 =-20uA; V_{CC} =4.5V	4.4	4.5		V
			I_0 =-20uA; V_{CC} =6.0V	5.9	6.0	-	V
			I _o =-4.0mA; V _{cc} =4.5V	3.98	4.32	-	V
			I_0 =-5.2mA; V_{CC} =6.0V	5.48	5.81	-	V
			$I_o=20uA;$ $V_{cc}=2.0V$	-	0	0. 1	٧
			$I_o=20uA;$ $V_{cc}=4.5V$	-	0	0. 1	٧
LOW-level output voltage	V _{OL}	$V_{\rm I} = V_{\rm IH} \text{ or } V_{\rm IL}$	I_o =20uA; V_{cc} =6.0V	-	0	0. 1	V
			I ₀ =4.0mA; V _{CC} =4.5V	-	0.15	0.26	V
			I _o =5.2mA; V _{cc} =6.0V	-	0.16	0.26	V
input leakage current	II	V _I =V _{CC} or GND;	-	_	±1	uA	
supply current	\mathbf{I}_{CC}	$V_I = V_{CC}$ or GND; $I_O =$	0A; V _{CC} =6.0V	-	-	8.0	uA
Input capacitance	Cı	-		_	3.5	_	pF

DC Characteristics 2

 $(T_{amb}=-20^{\circ}C \text{ to } +85^{\circ}C, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	С	onditions	Min.	Тур.	Max.	Unit
		V _{CC} =2.0V		1.5	-	-	٧
HIGH-level input voltage	V _{IH}	V _{cc} =4.5V		3.15	-	-	V
voitage	VIH	,	V _{CC} =6.0V	4.2	-	-	٧
10041		,	V _{CC} =2.0V	-	-	0.5	V
LOW-level input voltage	VIL	,	V _{CC} =4.5V	-	-	1.35	V
voitage	V IL	•	V _{CC} =6.0V	-	-	1.8	V
		$V_{I} = V_{IH} \text{ or } V_{IL}$	Io=-20uA; Vcc=2.0V	1.9	_	-	V
HIGH-level output voltage			Io=-20uA; Vcc=4.5V	4.4	-	-	V
	V _{OH}		I_{O} =-20uA; V_{CC} =6.0V	5.9		-	V
output voltage			I ₀ =-4.0mA; V _{CC} =4.5V	3.84	-	-	V
			I ₀ =-5.2mA; V _{CC} =6.0V	5.34	-	_	V
			I _O =20uA; V _{CC} =2.0V	-	-	0. 1	V
10111			Io=20uA; Vcc=4.5V	-		0. 1	V
LOW-level output voltage	V _{OL}	$V_{\rm I} = V_{\rm IH} \text{ or } V_{\rm IL}$	I _O =20uA; V _{CC} =6.0V	-	-	0. 1	V
voltage			I_0 =4.0mA; V_{CC} =4.5V		-	0.33	V
			$I_0=5.2$ mA; $V_{CC}=6.0$ V	-	-	0.33	V
input leakage current	II	V _I =V _{CC} or GND; V _{CC} =6.0V		-	-	±1.0	uA
supply current	\mathbf{I}_{CC}	$V_I = V_{CC}$ or GN	D; $I_0=0A$; $V_{CC}=6.0V$	-	-	80	uA

AC Characteristics 1

(Tamb=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
			Vcc=2.0V	-	47	150	ns
		A	Vcc=4.5V	-	17	30	ns
		An to Yn; see Figure 5	Vcc=5.0V; CL= 15pF	-	14	-	ns
Propagation delay			V _{CC} =6.0V	-	14	26	ns
			Vcc=2.0V	-	52	160	ns
		E3 to Yn; see Figure 5	Vcc=4.5V	-	19	32	ns
	t _{pd}		Vcc=5.0V; CL= 15pF	-	16	-	ns
			V _{CC} =6.0V	-	15	27	ns
		En to Yn;	Vcc=2.0V	-	50	155	ns
			V _{CC} =4.5V	-	18	31	ns
			Vcc=5.0V; CL= 15pF	-	17	-	ns
		See rigare o	Vcc=6.0V	-	14	26	ns
			Vcc=2.0V	-	19	75	ns
transition time	t t	see Figure 5, 6	V _{cc} =4.5V		7	15	ns
			V _{CC} =6.0V	(-)/	6	13	ns
Power dissipation capacitance	C _{PD}	per packag	e; V _I =GND to V _{CC}	-	72	-	pF

Note:

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] t_t is the same as t_{THL} and t_{TLH} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i=input frequency in MHz;

f_o=output frequency in MHz;

C_L=output load capacitance in pF;

V_{CC}=supply voltage in V;

N=number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

AC Characteristics 2

 $(T_{amb}=-20\,^{\circ}\text{C} \text{ to } +85\,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	Condit	Conditions		Тур.	Max.	Unit
		A 1 1/	V _{CC} =2.0V	-	-	190	ns
		An to Yn; see Figure 5	V _{CC} =4.5V	-	-	38	ns
propagation delay		see rigure 5	$V_{CC}=6.0V$	-	-	33	ns
		E3 to Yn; see Figure 5	$V_{CC}=2.0V$	-	-	200	ns
propagation delay	t _{pd}		$V_{CC}=4.5V$	-	-	40	ns
			$V_{CC}=6.0V$	-	-	34	ns
		En to Yn;	$V_{CC}=2.0V$	-	-	195	ns
			$V_{CC}=4.5V$	-	-	39	ns
		see Figure 6	$V_{CC}=6.0V$	-	_	33	ns
			$V_{CC}=2.0V$	-	-	95	ns
transition time	t _t	see Figure 5, 6	$V_{CC}=4.5V$	-	-	19	ns
transition time	Lt	see rigure 3, 0	$V_{CC}=6.0V$	-	-	16	ns

Note:

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [2] $t_t \, \text{is the same as} \, t_{\text{THL}} \, \text{and} \, t_{\text{TLH}}$.

Testing Circuit

AC Testing Circuit 1

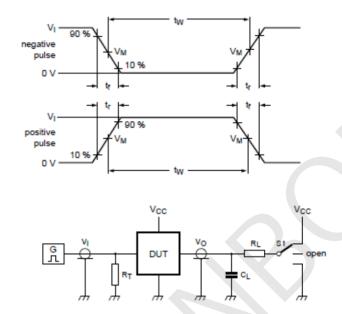


Figure 4. Test circuit for measuring switching times

Definitions for test circuit:

 C_L =Load capacitance including jig and probe capacitance.

 R_T =Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

R_L=Load resistance.

S1=Test selection switch.

AC Testing Waveform

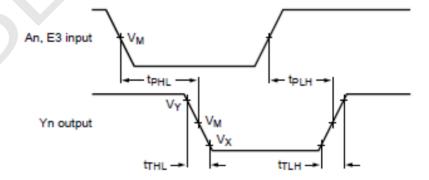


Figure 5. Input (An, E3) to output (Yn) propagation delays and output transition times

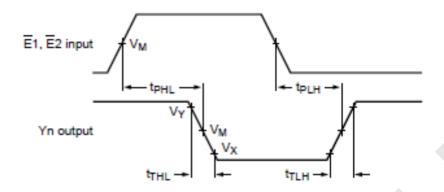
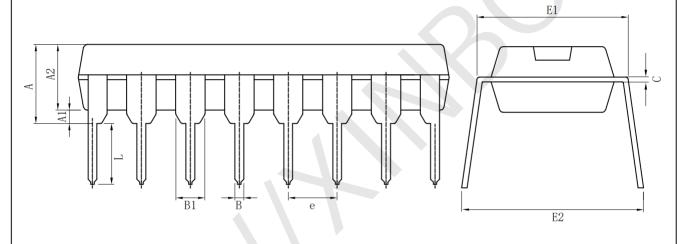


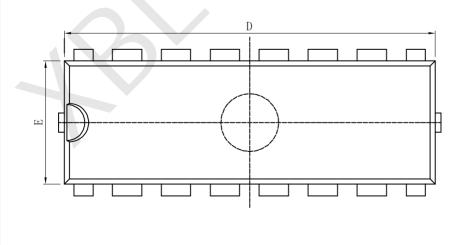
Figure 6. Input $(\bar{E} \ 1, \ \bar{E2})$ to output (Yn) propagation delays and output transition times

Measurement Points

Tyrno	Input	Output					
Туре	V _M	V _M V _X					
SN74LS238	0.5×V _{CC}	0.5×V _{cc}	0. 1×Vcc	0.9×Vcc			

Test Data


Tymo	Inj	out	Lo	S1 position	
Туре	V I	tr, tr	CL	RL	t _{PHL} , t _{PLH}
SN74LS238	Vcc	6ns	15pF, 50pF	1kΩ	open



PackageInformation

· DIP-16

Size	Dimensions I	n Millimeters	Size	Dimension	s In Inches		
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)		
A	3.710	4.310	A	0. 146	0.170		
A1	0.510		A1	0.020			
A2	3. 200	3.600	A2	0.126	0.142		
В	0.380	0.570	В	0.015	0.022		
B1	1.524 (BSC)		B1	0.06	60 (BSC)		
С	0.204	0.360	С	0.008	0.014		
D	18.80	19. 20	D	0.740	0. 756		
Е	6. 200	6.600	Е	0. 244	0. 260		
E1	7. 320	7. 920	E1	0.288	0.312		
е	2. 540 (BSC)		е	0.10	100 (BSC)		
L	3.000	3.600	L	0.118	0.142		
E2	8. 400	9.000	E2	0. 331	0. 354		

· SOP-16

Size	Dimensi	ons In Milli	meters	Size	Dimer	sions In Inc	ches
ymbol Size	Min(mm)	Nom (mm)	Max (mm)	Symbol	Min(in)	Nom(in)	Max(in)
	1.500	1.600	1.700	7	0.059	0.063	0.067
A			0. 250	A		0.006	0.010
A1	0.100	0.150		A1	0.004		
A2	1.400	1. 450	1.500	A2	0.055	0.057	0.059
A3	0.600	0.650	0.700	A3	0.024	0.026	0.028
b	0.300	0.400	0.500	b	0.012	0.016	0.020
С	0.150	0.200	0. 250	С	0.006	0.008	0.010
D	9.800	9.900	10.00	D	0.386	0.390	0. 394
Е	5.800	6.000	6.200	Е	0.228	0. 236	0. 244
E1	3.850	3 . 900	3.950	E1	0.152	0.154	0. 156
е		1. 27 (BSC)		е		0.050 (BSC)	
L	0.500	0.600	0.700	L	0.020 0.024 0.028		
L1		1. 05 (BSC)	•	L1		0. 041 (BSC)	
θ	0°	4°	8°	θ	0°	4°	8°
	0.4			1 F			
	le e	φ1. 0	- b -	<i>,</i>			
	C C					0. 254	

· TSS0P-16

Size	Dimensions I	n Millimeters	Size	Dimensions	In Inches
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)
A	Mari (mm)	1. 200	A		0.047
A1	0.050	0. 150	A1	0.002	0.006
A2	0.800	1. 050	A2	0.031	0.041
b	0.190	0.300	b	0.007	0.012
c	0.090	0. 200	c	0.004	0.0089
D	4.900	5. 100	D	0. 193	0. 201
E	6. 200	6. 600	E	0. 244	0. 260
E1	4. 300	4. 480	E1	0. 169	0.200
		5 (BSC)		0.109	0.170
e	0° 0°	8°	e	0. 0.	256 (BSC) 8°
K L	0.450	0.750	K L	0.018	0.030
E1	- b e	D			<u>C</u>
				K	
A	A1		A2		

Statement

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW product has not been licensed for life support, military and aerospace applications, and therefore XBLW is not responsible for any consequences arising from its use in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.

单击下面可查看定价,库存,交付和生命周期等信息

>>XBLW(芯伯乐)