

XTSD01G/XTSD02G/XTSD04G/XTSD08G

Datasheet

Oct 23, 2018

CONTENTS

1.	Introd	Juction	3
2.	Produ	ict List	3
3.	Featu	res	3
4.	Physic	cal Characteristic Temperature	3
5.	Pin As	ssignments	4
6.	Usage		5
	6.1.	SD Bus Mode protocol	5
	6.2.	Card Initialize	ŝ
	6.3.	DC Characteristics	3
7.	Interr	nal Information	9
	7.1.	Registers	Э
	7.2.	OCR Register	9
	7.3.	CID Register)
	7.4.	CSD Register	1
	7.5.	RCA Register	1
	7.6.	DSR Register	1
8.	Packa	ge Dimensions	2
9.	Order	ing Information	3
10.	Revisi	on History14	1

1. Introduction

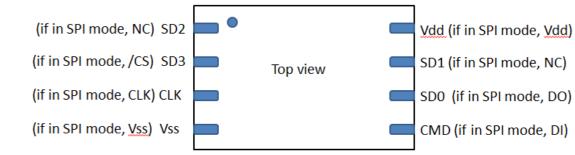
XTX SD NAND is an embedded storage solution designed in a LGA8 package form. The operation of SD NAND is similar to an SD card which is an industry standard.

SD NAND consists of NAND flash and a high performance controller. 3.3V supply voltage is required for the NAND area (VCC). SD NAND is fully compliant with SD2.0 interface, which allows most of general CPU to utilize. SD NAND has high performance at a competitive cost, high quality and low power consumption.

2. Product List

Capacity	Part number	Package	Size
	XTSD01GLGEAG	LGA8 (Land Grid Array)	8x6mm
104	XTSD01GDLGEGA	LGA8 (Land Grid Array)	8x6mm
1Gb	XTSD01GCLGEGA	LGA8 (Land Grid Array)	8x6mm
	XTSD01GBLGEGA	LGA8 (Land Grid Array)	8x6mm
2Gb	XTSD02GLGEAG	LGA8 (Land Grid Array)	8x6mm
ACh	XTSD04GLGEAG	LGA8 (Land Grid Array)	8x6mm
4Gb	XTSD04GCLGEGA	LGA8 (Land Grid Array)	8x6mm
9Ch	XTSD08GLGEAG	LGA8 (Land Grid Array)	8x6mm
8Gb	XTSD08GCLGEAG	LGA8 (Land Grid Array)	8x6mm

3. Features


- Support up to 50Mhz clock frequency
- Support 1/4 bit mode
- Built-in HW ECC Engine and highly reliable NAND management mechanism
- Write speed up to class 8
- Smaller package LGA8 (Land Grid Array)

4. Physical Characteristic Temperature

- Operation Conditions Temperature Range: Ta = -30 to +85 degrees centigrade
- Storage Conditions Temperature Range: Tstg = -40 to +85 degrees centigrade

5. Pin Assignments

Pin name (SD mode)

1	SD2, I/O pin				
2	SD3, I/O pin				
3	CLK, SD NAND clock signal				
4	Vss, Ground				
5	CMD, SD NAND command signal				
6	SD0, I/O pin				
7	SD1, I/O pin				
8	Vdd, Power supply				

Pin name (SPI mode)

1	NC, no connection				
2	/CS, chip select				
3	CLK, SD NAND clock signal				
4	Vss, Ground				
5	DI, data in				
6	DO, data out				
7	NC, no connecction				
8	Vdd, Power supply				

6. Usage

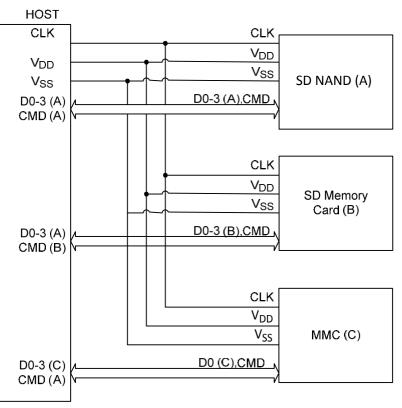
6.1. SD Bus Mode protocol

The SD bus allows the dynamic configuration of the number of data line from 1 to 4 Bi-directional data signal. After power up by default, the SD card will use only DATO. After initialization, host can change the bus width. Multiplied SD cards connections are available to the host.Common VDD, VSS and CLK signal connections are available in the multiple connections. However, Command, Respond and Data lined (DATO-DAT3) shall be divided for each device from host.

This feature allows easy trade off between hardware cost and system performance. Communication over the SD bus is based on command and data bit stream initiated by a start bit and terminated by stop bit.

Command:

Commands are transferred serially on the CMD line. A command is a token to start an operation from host to the device. Commands are sent to an addressed single card (addressed Command) or to all connected cards (Broad cast command).


Response:

Responses are transferred serially on the CMD line.

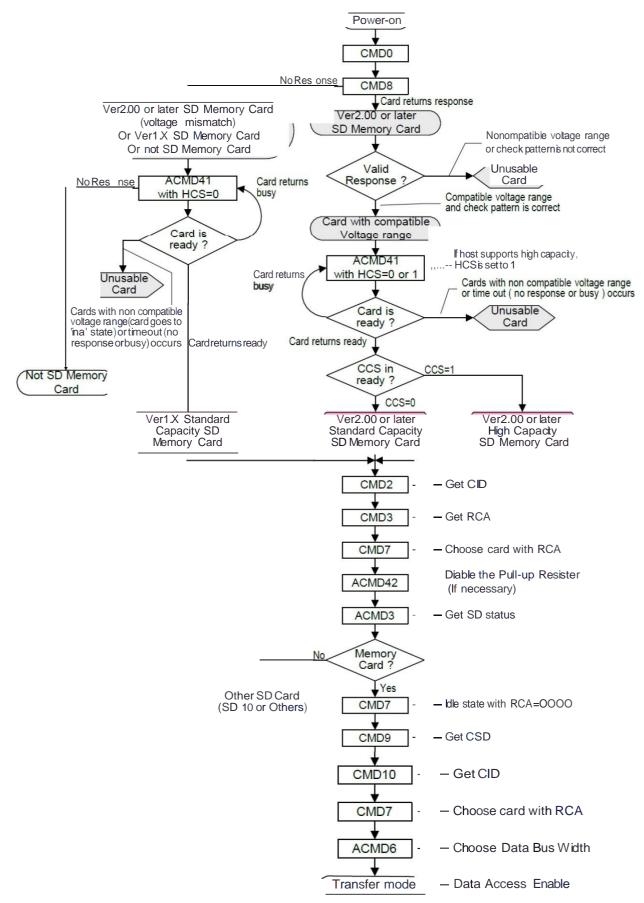
A response is a token to answer to a previous received command. Responses are sent from an addressed single card or from all connected cards.

Data:

Data can be transfer from the card to the host or vice versa. Data is transferred via the data lines .

CLK: Host card Clock signal CMD: Bi-directional Command/ Response Signal DATO - DAT3: 4 Bi-directional data signal VDD: Power supply VSS: GND

6.2. Card Initialize


To initialize the SD NAND, follow the following procedure is recommended example.

- Supply Voltage for initialization.
 Host System can apply the Operating Voltage from initialization to the card. Apply more than 74 cycles of Dummy-clock to the SD card.
- 2) Select operation mode (SD mode or SPI mode) In case of SPI mode operation, host should drive 1 pin (CD/DAT3) of SD Card I/F to "Low" level. Then, issue CMD0. In case of SD mode operation, host should drive or detect 1 pin of SD Card I/F (Pull up register of 1 pin is pull up to "High" normally). Card maintains the selected operation mode except re-issue of CMD0 or power on below is SD mode initialization procedure.
- 3) Send the ACMD41 with Arg = 0 and identify the operating voltage range of the Card.
- 4) Apply the indicated operating voltage to the card.Reissue ACMD41 with apply voltage storing and repeat ACMD41 until the busy bit is cleared. (Bit 31 Busy = 1) If response time out occurred, host can recognize not SD Card.
- 5) Issue the CMD2 and get the Card ID (CID).Issue the CMD3 and get the RCA. (RCA value is randomly changed by access, not equal zero)
- 6) Issue the CMD7 and move to the transfer state.If necessary, Host may issue the ACMD42 and disabled the pull up resistor for Card detect.
- 7) Issue the ACMD13 and poll the Card status as SD Memory Card. Check SD_CARD_TYPE value. If significant 8 bits are "all zero", that means SD Card. If it is not, stop initialization.
- Issue CMD7 and move to standby state. Issue CMD9 and get CSD.
 Issue CMD10 and get CID.
- Back to the Transfer state with CMD7.
 Issue ACMD6 and choose the appropriate bus-width.

Then the Host can access the Data between the SD card as a storage device.

6.3. DC Characteristics

ltem		Symbo	MIN	MAX.	Unit	Note
Supply Voltage		V _{DD}	2.7	3.6	V	
Input Voltage	High Level	VIH	V _{DD} × 0.625	V _{DD} +0.3	V	
	Low Level	VIL	V _{SS} -0.3	V _{DD} × 0.25	V	
Output Voltage	High Level	V _{OH}	V _{DD} × 0.75	—	V	IOH = -2mA, VDD=VDD min
e ap at i enage	Low Level	VoL	_	V _{DD} × 0.125	V	IOL=2mA, VDD=VDD min
			—	20*		VDD = 3.6V , Clock 25MHz
Stanby Current		ICC1	—	0.2	mA	VDD = 3.0V, Clock STOP, Ta=25°C
Operation Current (*) Write	<u> </u>	_	30		
,	Read			30	mA	3.6V / 25MHz, 50MHz
Input Voltage Setup	Time	Vrs	—	250	ms	

Note: Standby current max 20mA with CLOCK 25Mhz only based on 100 pcs samples

Peak Voltage and Leak Current

ltem	Symbol	Min.	Max.	Unit	Note
Peak voltage on all lines		-0.3	V _{DD} +0.3	V	
Input Leakage Current for all pins		-10	10	μA	
Output Leakage Current for all outputs		-10	10	μA	

Signal Capacitance

Item	Symbol	Min.	Max.	Unit	Note
Pull up Resistance	R _{CMD} R _{DAT}	10	100	k	
Total bus capacitance for each signal line	CL		40	pF	1 card C _{HOST} +C _{BUS} ≦30pF
Card capacitance for signal pin	C _{CARD}		10	pF	
Pull up Resistance inside card (pin1)	R _{DAT3}	10	90	k	
Capacity Conneted to Power line	C _C		5	pF	

Note: WP pull-up (Rwp) Value is depend on the Host Interface drive circuit.

7. Internal Information

7.1. Registers

The SD NAND has six registers and SD Status information: OCR, CID, CSD, RCA, DSR, SCR and SD Status. DSR IS NOT SUPPORTED in this card.

There are two types of register groups.

MMC compatible registers: OCR, CID, CSD, RCA, DSR, and SCR SD card Specific: SD Status

Resister Name	BitWidth	Description
OCR	32	Operation Conditions (VDU Voltage Profile and Busy Status Information)
CID	128	Card Identification information
CSD	128	Card specific information
RCA	16	Relative Card Address
DSR	16	Not Implemented (Programmable Card Driver): Driver Stage Register
SCR	64	SD Memory Card"s special features
SD Status	512	Status bits and Card features

SD card Registers

7.2. OCR Register

This 32-bit register describes operating voltage range and status bit in the power

supply. OCR register definition.

OCR bit			Initial	Value	
position	VDD voltage window	1Gb	2Gb	4Gb	8Gb
position					
04			"0"=	busy	
31	Card power up status bit(busy)			ready	
		"	"0"= SD Me	emoryCar	d .
30	Card Capacity Status	.,	I"= SDHC N	vlemory Ca	ard
29-25	reserved		ΔΙ	I"O"	
20 20	Switching to 1.8V Accepted(S18A)			0	
23	3.6 - 3.5			<u> </u>	
22	3.5 - 3.4			<u>.</u> 1	
21	3.4 - 3.3			1	
20	3.3 - 3.2			1	
19	3.2 - 3.1			1	
18	3.1 - 3.0			1	
17	3.0 - 2.9			1	
16	2.9 - 2.8			1	
15	2.8 - 2.7			1	
14	Reserved			0	
13	Reserved			0	
12	Reserved			0	
11	Reserved			0	
10	Reserved			0	
9	Reserved			0	
8	Reserved			0	
7	Reserved for Low Voltage Range			0	
6	Reserved			0	
5	Reserved			0	
4	Reserved			0	
3-0	reserved		Al	l"0"	

bit 23-4: Describes the SD Card Voltage; bit 31 indicates the card power up status. Value "1" is set after power up and initialization procedure has been completed.

7.3. CID Register

The CID (Card Identification) register is 128-bit width. It contains the card identification information. (Refer Appendix 3. for the detail) The Value of CID Register is vender specific.

Table 11: CID Register										
Field	\\/idth			Initial Value						
Field	Width	CID-slice	1Gb	2GB	4GB	8Gb				
MID	8	[127:120]		TBD						
OID	16	[119:104]		Т	BD					
PNM	40	[103:64]	TBD	-						
PRV	8	[63:56]		Т	BD					
PSN	32	[55:24]		(a) (Product s	serial number)					
-	4	[23:20]		All	"0b"					
MDT	12	[19:8]		(a) (Manuf	acture date)					
CRC	7	[7:1]	(b) (CRC)							
-	1	[0:0]			1b					

(a): Depends on the SD Card. Controlled by Production Lot.

(b) Depends on the CID Register

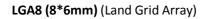
7.4. CSD Register

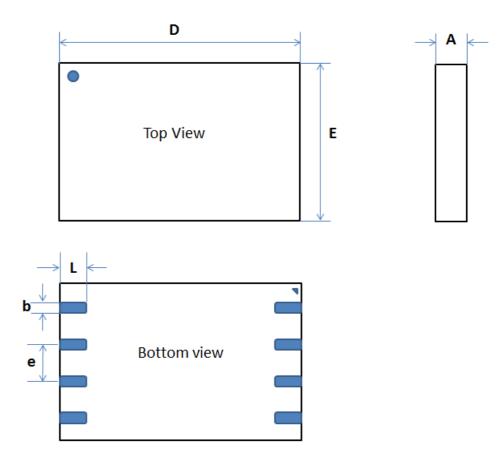
CSD is Card-Specific Data register provides information on 128bit width. Some field of this register can writable by PROGRAM_CSD (CMD27).

			CSE	Register				
		Cell	CSD		Initial	Value		
Field	Width	Туре	Slice	1Gb	2Gb	4Gb	8Gb	
CSD_STRUCTURE	2	R	[127:126]					
-	6	R	[125:120]		All	"0b"		
TAAC	8	R	[119:112]		0_0001_1	10b (1ms)		
NSAC	8	R	[111:104]		0000	0000b		
TRAN_SPEED	8	R	[103:96]		0_0110_010	Ob		
CCC	12	R	[95:84]		0101_10	11_0101b		
READ_BL_LEN	4	R	[83:80]		10	01b		
READ_BL_PARTIAL	1	R	[79:79]		C)b		
WRITE_BLK_MISALIGN	1	R	[78:78]		C)b		
READ_BLK_MISALIGN	1	R	[77:77]		C)b		
DSR_IMP	1	R	[76:76]	Ob				
-	6	R	[75:70]	All "Ob"				
C_SIZE	22	R	[69:48]	TBD	TBD	TBD	TBD	
-	1	R	[47:47]	0b				
ERASE_BLK_EN	1	R	[46:46]	1b				
SECTOR_SIZE	7	R	[45:39]		11_11	l11_1b		
WP_GRP_SIZE	7	R	[38:32]		000_	0000b		
WP_GRP_ENABLE	1	R	[31:31]		C)b		
-	2	R	[30:29]		0	0b		
R2W_FACTOR	3	R	[28:26]		01	10b		
WRITE_BL_LEN	4	R	[25:22]		10	01b		
WRITE_BL_PARTIAL	1	R	[21:21]			Db		
-	2	R	[20:16]		All	"0b"		
FILE_FORMAT_GRP	1	R	[15:15]		(Db		
COPY	1	R/W ⁽¹⁾	[14:14])b		
PERM_WRITE_PROTECT	1	R/W ⁽¹⁾	[13:13]		(Db		
TMP_WRITE_PROTECT	1	R/W	[12:12]		(Db		
FILE_FORMAT	2	R	[11:10]			0b		
-	2	R	[9:8]		All	"0b"		
CRC	7	R/W	[7:1]		(C	RC)		
-	1	-	[0:0]		1	1b		

Cell Type: R: Read Only, R/W: Writable and Readable, R/W(1): One-time Writable / Readable Note: Erase of one data block is not allowed in this card. This information is indicated by "ERASE_BLK_EN". Host System should refer this value before one data block size erase.

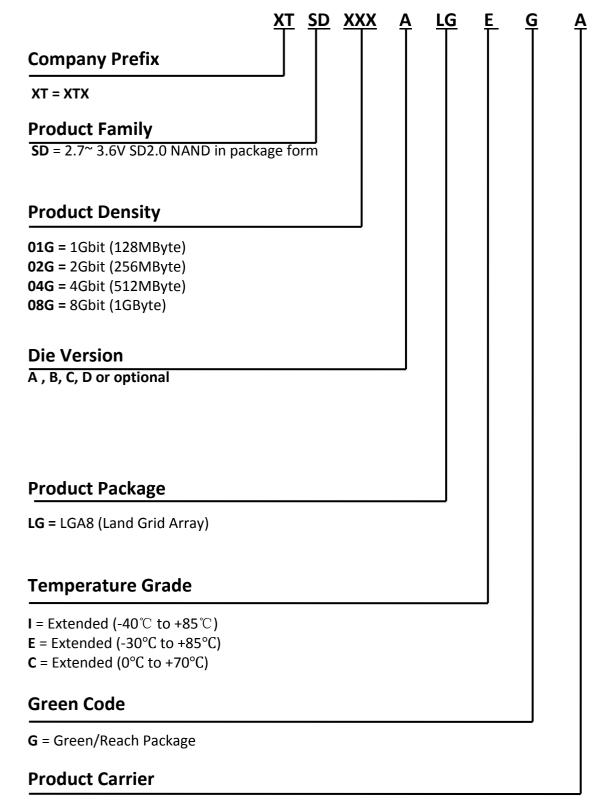
7.5. RCA Register


The writable 16bit relative card address register carries the card address in SD Card mode.


7.6. DSR Register

This register is not implemented on this card.

8. Package Dimensions


Dimensions

Symbol Unit		Α		b	D	E	e	L
	Min	0.85		0.55	7.95	5.95		0.75
mm	Nom	0.90		0.60	8.00	6.00	1.27	0.80
	Max	0.95		0.65	8.05	6.05		0.85

9. Ordering Information

The ordering part number is formed by a valid combination of the following

U = Tube; T = Tape & Reel; A = Tray

10. Revision History

Version No.	Change Description	Date
V1.0	Initial release, part number is based on extended temperature, WSON 8*6mm package, tape & reel packing , 1Gb/2Gb/4Gb density were included .	2017/1/10
V1.1	Add 8Gb density , and correct some typos ;	2017/1/10
V2.1	Part number change from PNSDxxGWS to PNSDxxGLG; Package change from WSON8 to LGA8 ; Package dimension b change from 0.7mm to 0.6mm ; Package dimension picture updated without the dissipating pad ; Add a page for part number description ;	2017/1/22
V2.2	Modify part number description; Page head re-layout ;	2017/1/23
V2.3	Add SPI mode pin description	2017/2/1
V2.4	Set default Part number and PNSDxxGLGEAG (tray packing)	2017/2/14
V2.5	Part number update from PNSDxxxx to XTSDxxxx	2017/3/3
V2.6	Rename company name to XTX	2017/3/23
V2.7	Revise page #8,9 & 10 register table to include 8Gb, add cover page & page	2018/4/2
V2.8	Revise page #7 leakage unit error correction to uA.	2018/4/25
V2.9	Revise OPN to new ordering format & add new OPN, include manual content option	2018/10/23

深圳市芯天下技术有限公司 XTX Technology Limited

深圳龙岗区龙岗大道 8288 号大运软件小镇 10 栋 1 楼 10# Building, E-Town, 8288# Long Gang Avenue, Long Gang District, Shenzhen, China Tel: (86 755) 28229862 Fax: (86 755) 28229847

Web Site: http://www.xtxtech.com/ Technical Contact: fae@xtxtech.com

* Information furnished is believed to be accurate and reliable. However, XTX Technology Limited assumes no responsibility for the consequences of use of such information or for any infringement of patents of other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of XTX Technology Limited. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. XTX Technology Limited for use as critical components in life support devices or systems without express written approval of XTX Technology Limited. The XTX logo is a registered trademark of XTX Technology Limited. All other names are the property of their respective own.

单击下面可查看定价,库存,交付和生命周期等信息

>>XTX