

DATA SHEET ANTI SURGE AND ANTI SULFURATION AUTOMOTIVE GRADE CHIP RESISTORS

AS series 0.5%, 1%, 5%, 10%, 20% sizes 0603/0805/1206

RoHS compliant & Halogen free

Product specification – August 3, 2022 V.2

YAGEO

<u>SCOPE</u>

This specification describes AS0603 to AS1206 chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- Telecommunications
- Power supplies
 Car electronics

FEATURES

- AEC-Q200 qualified
- Superior to AF series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AS XXXX X X X XX XXXX L

(1)	(2) (3) (4)	(5)	(6)	(7)	
(I) SIZE					
0603 / 08	805 / 1206				

(2) TOLERANCE

$D = \pm 0.5\%$
$F = \pm 1\%$
$J = \pm 5\%$
$K = \pm 10\%$
$M = \pm 20\%$

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

```
07 = 7 inch dia. Reel 7W = 7 inch dia. Reel & 2 x standard power
```

7T = 7 inch dia. Reel & 3 × standard power

47 = 7 inch dia. Reel & 4 × standard power

(6) RESISTANCE VALUE

$\mid \Omega \leq R \leq \mid M \mid \Omega$

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. IK2, not IK20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. ^(Note)

Resistance rule of global part				
Resistance coding rule	Example			
XRXX	$IR = I \Omega$ $IR5 = 1.5 \Omega$			
(I to 9.76 Ω)	$9R76 = 9.76 \Omega$			
XXRX	10R = 10 Ω			
(10 to 97.6 Ω)	97R6 = 97.6 Ω			
XXXR (100 to 976 Ω)	100R = 100 Ω			
XKXX	IK = 1,000 Ω			
(Ι to 9.76 K Ω)	9K76 = 9760 Ω			
XXKX	$10K = 10,000 \Omega$			
(10 to 97.6 K Ω)	97K6= 976,000 Ω			
XXXK (100 KΩ)	100K = 100,000 Ω			

ORDERING EXAMPLE

The ordering code for an AS0805 chip resistor, value 10 K Ω with ±5% tolerance, supplied in 7-inch tape reel is: AS0805JR-0710KL.

YAGEO

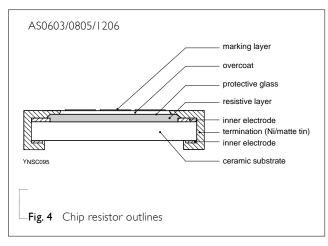
MARKING	
AS0603	
Fig. I Value = 24 Ω	1%, 0.5%,E24 exception values 10/11/13/15/20/75 of E24 series
Fig. 2 Value = 806 Ω	1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series
AS0805 / 1206	
Fig. 3 Value = 10 K Ω	Both E-24 and E-96 series: 4 digits, \pm 0.5% & \pm 1% First three digits for significant figure and 4th digit for number of zeros

ΝΟΤΕ

For further marking information, please refer to data sheet "Chip resistors marking".

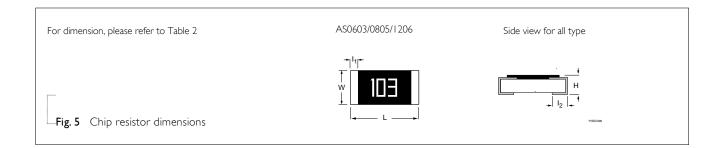
TAPING REEL & POWER

Table I


		F	POWER, W (P70)		
TYPE			CODING		
	07	7W	7T	47	
0603	1/10	1/5	1/4	-	
0805	1/8	1/4	1/3	1/2	
1206	1/4	1/2	3/4	-	

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.4.


OUTLINES

DIMENSIONS

Table 2

ТҮРЕ	L (mm)	W (mm)	H (mm)	I⊤ (mm)	l ₂ (mm)
AS0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
AS0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
AS1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.45±0.20

ELECTRICAL CHARACTERISTICS

Table 3

				C		RISTICS	
TYPE	POWER	RESISTANCE RANGE	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
	1/10W						
AS0603	1/5W			75V	150V	150V	
	1/4W		_				
	1/8W	E24 5%, 10%, 20%					$ \Omega \le R \le 0\Omega $
AS0805	1/4W	$ \Omega \leq R \leq M\Omega $	–55 ℃ to +155 ℃		2001/	2001/	± 200 ppm°C
A30003	1/3W	E24/E96 0.5%, 1%	-55 C 10 (155 C	150V	300V	300V	$10\Omega < R \le 1M\Omega$
	1/2W	$ \Omega \leq R \leq M\Omega $					± 100 ppm°C
	1/4W						
AS1206	1/2W			200 V	400 V	500V	
	3/4W						

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 4	Packing style and pack	aging quantity
---------	------------------------	----------------

PACKING STYLE	REEL DIMENSION	AS0603/0805/1206
Paper taping reel (R)	7" (178 mm)	5,000

ΝΟΤΕ

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

YAGEO

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: –55 °C to +155 °C

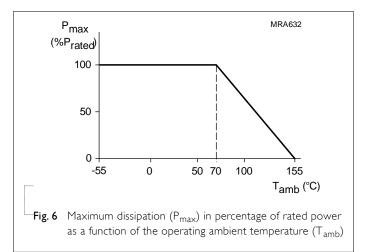
POWER RATING

Each type rated power at 70 °C: AS0603: I/10W, I/5W, I/4W AS0805: I/8W, I/4W, I/3W, I/2W AS1206: I/4W, I/2W, 3/4W

RATED VOLTAGE

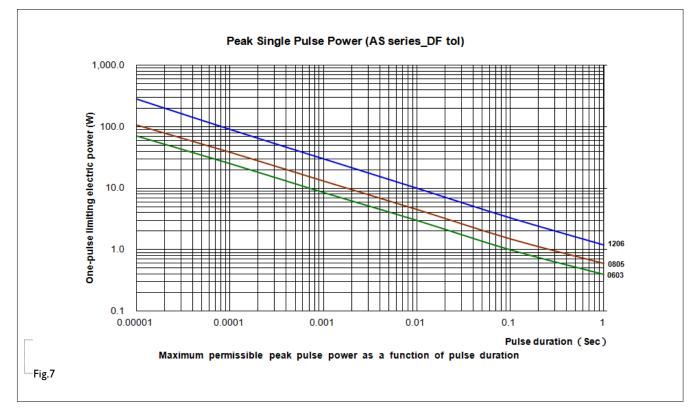
The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

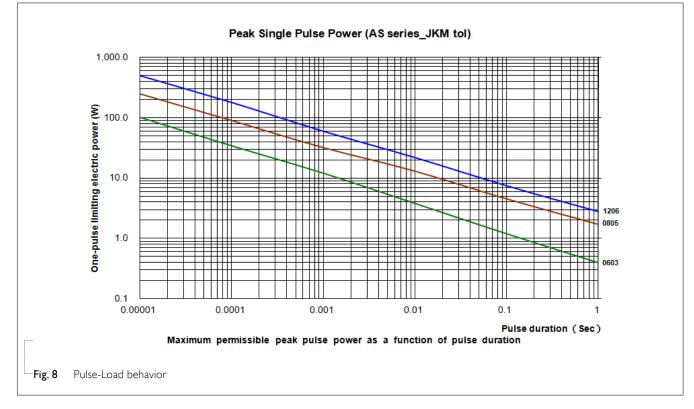
$$V = \sqrt{(P \times R)}$$


Aug. 3, 2022 V.2

or max. working voltage whichever is less Where

V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)


 $R = Resistance value (\Omega)$

PULSE LOAD BEHAVIOR

YAGEO

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure			$\pm(1.0\%+0.05\Omega)$ for D/F tol $\pm(2.0\%+0.05\Omega)$ for J tol
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(0.5%+0.05Ω) for D/F tol ±(2.0%+0.05Ω) for J tol
Biased AEC-Q200 Test 7 I,000 hours; 85 °C / 85% RH Humidity MIL-STD-202 Method 103 I0% of operating power Measurement at 24±4 hours after test concl			$\pm(1.0\%+0.05\Omega)$ for D/F tol $\pm(3.0\%+0.05\Omega)$ for J tol
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	±(1.0%+0.05Ω) for D/F tol ±(3.0%+0.05Ω) for J tol
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	\pm (0.5%+0.05Ω) for D/F tol \pm (1.0%+0.05Ω) for J tol No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	±(0.5%+0.05Ω) for D/F tol ±(1.0%+0.05Ω) for J tol
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I _{pos.} + I _{neg.} discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05Ω)

Product specification 9 11

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions:	Well tinned (≥95% covered) No visible damage
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.	0
		(b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds.	
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 100mm × 40mm glass epoxy resin PCB (FR4)	±(1.0%+0.05Ω)
		Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	
		Holding time: minimum 60 seconds	
Temperature Coefficient of	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 3
Resistance (T.C.R.)		Formula:	
		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where	
		t_1 =+25 °C or specified room temperature	
		$t_2 = -55$ °C or +125 °C test temperature	
		R_{I} =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Short Time	IEC60115-18.1	2.5 times of rated voltage or maximum	\pm (1.0%+0.05 Ω) for D/F tol
Overload		overload voltage whichever is less for 5 sec at room temperature	$\pm(2.0\%{+}0.05\Omega)$ for J tol
FOS	ASTM-B-809-95*	Sulfur 750 hours, 105 °C, unpowered	± (4.0%+0.05Ω)
	* Modified		

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 2	Aug. 03, 2022	-	- 12 dimension updated, for size I 206.
Version I	Apr. 08, 2021	-	- Upgrade to Automotive Grade
Version 0	Nov. 30, 2020	-	- New product datasheet

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

单击下面可查看定价,库存,交付和生命周期等信息

>>Yageo(国巨)