DATA SHEET

 ANIT-SUIFURATIED GIIP RIESISTOAS AUTOMOTIUE ERADEAF series
5\%, I\%, 0.5\%
sizes 0IO0/020 I/0402/0603/0805/I206/I2IO/I2I8/20I0/25 I2
RoHS compliant \& Halogen free

SCOPE

This specification describes AFOIO0 to AF25I2 chip resistors with anti-sulfuration capabilities.

APPLICATIONS

- Industrial Equipment
- Power Application
- Networking Application
- High-end Computer \& Multimedia Electronics in high sulfur environment
- Automotive electronics

FEATURES

- AEC-Q200 qualified
- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- RoHS compliant
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space
- Moisture sensitivity level: MSL I
- 50ppm available

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AF XXXX X $\underline{X} \underline{\mathbf{X}} \underline{\mathbf{X X}} \underline{\mathbf{X X X X}} \underline{\mathbf{L}}$
(I) (2) (3) (4) (5)
(6) (7)
(I) SIZE

0|00/020|/0402/0603/0805/|206/|2|0/|2|8/20|0/25|2
(2) TOLERANCE
$D= \pm 0.5 \%$
$\mathrm{F}= \pm \mathrm{l} \%$
$\mathrm{J}= \pm 5 \%$ (for jumper ordering, use code of J)
(3) PACKAGING TYPE

$$
\begin{aligned}
& R=\text { Paper taping reel } \\
& K=\text { Embossed plastic tape reel }
\end{aligned}
$$

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

$$
\mathrm{E}= \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

(5) TAPING REEL

$$
\begin{aligned}
& 07=7 \text { inch dia. Reel } \\
& 13=13 \text { inch dia. Reel } \\
& 7 \mathrm{~W}=7 \text { inch dia. Reel } \& 2 \times \text { standard power }
\end{aligned}
$$

(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point.
Detailed resistance rules are displayed in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

Ordering example

The ordering code for an AF0402 chip resistor, value $100 \mathrm{~K} \Omega$ with $\pm \mathrm{I} \%$ tolerance, supplied in 7 -inch tape reel with IOKpcs quantity is: AF0402FR-07I00KL.

NOTE

I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
2. On customized label, "LFP" or specific symbol can be printed

No marking
Fig. I

AF0603 / AF0805 / AFI206 / AFI210 / AF20I0 / AF25I2

103 E-24 series: 3 digits, $\pm 5 \%, \geq 10 \Omega$
First two digits for significant figure and 3rd digit for number of zeros

240

Fig. 3 Value $=24 \Omega$

E-24 series: 3 digits, $\pm 1 \%$
One short bar under marking letter

[1]

E-96 series: 3 digits, $\pm 1 \%$
First two digits for E-96 marking rule and 3rd letter for number of zeros
Fig. 4 Value $=12.4 \mathrm{~K} \Omega$
AF0805 / AFI206 / AFI2I0 / AF20I0 / AF25I2

100 Both E-24 and E-96 series: 4 digits, $\pm 1 \%$

First three digits for significant figure and 4th digit for number of zeros

AFI218

Fig. 6 Value $=10 \mathrm{~K} \Omega$

1002

Fig. $7 \quad$ Value $=10 \mathrm{~K} \Omega$

E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3 rd digit for number of zeros

Both E-24 and E-96 series: 4 digits, $\pm \mathrm{I} \%$
First three digits for significant figure and 4 th digit for number of zeros

NOTE

For further marking information, please see special data sheet "Chip resistors marking". Marking of AF series is the same as RC series

CONSTRUCTION

The resistors are constructed on top of a high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a glass.
The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations ($\mathrm{Ni} /$ matte tin) are added. See fig. 8

DJMENSIONS

Table I For outlines see fig. 8

TYPE	$\mathrm{L}(\mathrm{mm})$	$W(\mathrm{~mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{I}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$
AFOIO0	0.40 ± 0.02	0.20 ± 0.02	0.14 ± 0.02	0.10 ± 0.03	0.10 ± 0.03
AF020I	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
AF0402	1.00 ± 0.05	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AF0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AF0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
AFI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.50 ± 0.20
AFI2I0	3.10 ± 0.10	2.60 ± 0.15	0.57 ± 0.10	0.45 ± 0.20	0.50 ± 0.20
AFI2I8	3.10 ± 0.10	4.60 ± 0.10	0.57 ± 0.10	0.45 ± 0.20	0.50 ± 0.20
AF20I0	5.00 ± 0.10	2.50 ± 0.15	0.57 ± 0.10	0.55 ± 0.20	0.55 ± 0.20
AF25I2	6.35 ± 0.10	3.20 ± 0.15	0.57 ± 0.10	0.60 ± 0.20	0.60 ± 0.20

OUTLINES

ELECTRISAL CHARACTERISTICS

Table 2

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AFOI00	1/32 W	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	15 V	30 V	30 V	$\begin{array}{r} 5 \%(\mathrm{E} 24) \\ 10 \Omega \leq \mathrm{R} \leq 1 \mathrm{M} \Omega \\ 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 10 \Omega \leq \mathrm{R} \leq 1 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 10 \Omega \leq R<100 \Omega \\ \pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 0.5A Max. Current 1.0A
AF020I	I/20 W		25 V	50 V	50V	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R \leq 10 \Omega \\ -100 /+350 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 0.5A Max. Current I.0A
AF0402	1/16 W		50 V	100 V	I OOV	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R \leq 10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current IA Max. Current 2A
	I/8W		75 V	100 V	I OOV	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF0603	1/10 W		75 V	150 V	I50V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<R \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current IA Max. Current 2A
	$1 / 5 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	75V	150 V	I50V	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF0805	$1 / 8 \mathrm{~W}$		150 V	300 V	300 V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current 5A
	$1 / 4 \mathrm{~W}$		I50V	300 V	300 V	$\begin{array}{r} 5 \%(\mathrm{E} 24) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AFI206	$1 / 4 \mathrm{~W}$		200 V	400 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current 10A
	I/2 W		200 V	400 V	500 V	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	

ELECTRJCAL CHARACTERISTICS
Table 2

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AFI2IO	1/2W		200V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current IOA
	IW		200V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\text { E24/E96) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AFI2I8	IW		200V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 2.2 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current 10A
	1.5 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	500 V	500 V	$\begin{array}{r} 5 \%(\text { E24 }) \\ 1 \Omega \leq \mathrm{R} \leq \mathrm{IM} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ \mathrm{I} \Omega \leq \mathrm{R} \leq \mathrm{IM} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF2010	$3 / 4 \mathrm{~W}$		200 V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\text { E24/E96) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current IOA
	1.25 W		200V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\text { E24/E96 }) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF25I2	I W		200 V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\text { E24/E96) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current IOA
	2 W		200V	500 V	500 V	$\begin{array}{r} 5 \%(\text { E24 }) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \% \text { (E24/E96) } \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	

FOOTPRUNT AND SOLDERING PROFUES

For recommended footprint and soldering profiles of AF-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGJNG @UANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL	AFOIO0	AFO20I	AF0402	AF0603	AFI2IO	AFI2I8
	DIMENSION				AF0805	AFI206	AF20IO
					AF25I2		
Paper taping reel (R)	$7^{\prime \prime}(178 \mathrm{~mm})$	20,000	$10,000 / 20,000$	$10,000 / 20,000$	5,000	5,000	--
	$13 "(330 \mathrm{~mm})$	--	50,000	50,000	20,000	20,000	--
Embossed taping reel (K)	$7^{\prime \prime}(178 \mathrm{~mm})$	--	--	--	--	--	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

PUNCTIONAL DESCRIPTJON

OPERATING TEMPERATURE RANGE

AFOIOO Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AFO2OI - AF25I2 Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
AFOIOO $=1 / 32 \mathrm{~W}(0.03 \mathrm{I} 25 \mathrm{~W})$
AF020I $=\mathrm{I} / 20 \mathrm{~W}(0.05 \mathrm{~W})$
AF0402= I/I6 W (0.0625W); I/8W (0.I25W)
AF0603=I/IO W (0.IW); I/5W (0.2W)
AF0805 $=\mathrm{I} / 8 \mathrm{~W}(0.125 \mathrm{~W}) ; \mathrm{I} / 4 \mathrm{~W}(0.25 \mathrm{~W})$
AFI206=I/4 W (0.25W); I/2W (0.5W)

Fig. 9 Maximum dissipation $\left(P_{\max }\right)$ in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

AFI2IO=I/2W (0.5W); IW
AFI218=1W; 1.5W
AF2010=3/4W (0.75W); 1.25W
AF25I2=IW, 2 W

Rated voltage

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$V=\sqrt{(P \times R)}$
Where

```
V = Continuous rated DC or AC (rms) working
    voltage (V)
P = Rated power (W)
R = Resistance value (\Omega)
```


TESTS AND REQUUREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature	IEC $60 I I 5-14.8$	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$	Refer to table 2
Coefficient of Resistance	MIL-STD-202 Method 304	Formula:	
(T.C.R.)		T.C.R $=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	
		Where	
	$\mathrm{t}_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature		
	$\mathrm{t}_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature		
	$\mathrm{R}_{1}=$ resistance at reference temperature in ohms		
	$\mathrm{R}_{2}=$ resistance at test temperature in ohms		

| Life/Endurance | IEC 60\|l| 1 -I 4.25
 MIL-STD-202 Method 108 | At $70 \pm 2^{\circ} \mathrm{C}$ for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still-air required | 0100: $\pm(3.0 \%+0.05 \Omega)$ |
| :---: | :---: | :---: | :---: |
| | | | Others: $\pm(1.0 \%+0.05 \Omega)$ |
| | | | $<100 \mathrm{~m} \Omega$ for Jumper |
| High
 Temperature Exposure | MIL-STD-202 Method I08 | 0100: 1,000 hours at $125^{\circ} \mathrm{C}$ | 0100: \pm (2.0\% $+0.05 \Omega$) |
| | | Others: 1,000 hours at $155 \pm 3^{\circ} \mathrm{C}$ unpowered | $<50 \mathrm{~m} \Omega$ for Jumper |
| | | | Others: $\pm(1.0 \%+0.05 \Omega)$ |
| | | | $<100 \mathrm{~m} \Omega$ for Jumper |
| Moisture
 Resistance | MIL-STD-202 Method 106 | Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for IOd. with $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps 7a \& 7b, unpowered
 Parts mounted on test-boards, without condensation on parts | O 100: \pm (2.0\%+0.05 Ω) |
| | | | $<50 \mathrm{~m} \Omega$ for Jumper |
| | | | Others: |
| | | | $\pm(0.5 \%+0.05 \Omega)$ for 0.5\%, 1% tol. |
| | | | $\pm(1.0 \%+0.05 \Omega)$ for 5% tol. |
| | | | $<100 \mathrm{~m} \Omega$ for Jumper |
| Thermal Shock | MIL-STD-202 Method 107 | $-55 /+125^{\circ} \mathrm{C}$
 Number of cycles required is 300 .
 Devices mounted
 Maximum transfer time is 20 seconds.
 Dwell time is 15 minutes | 0100: \pm (1.0\%+0.05 Ω) |
| | | | $<50 \mathrm{~m} \Omega$ for Jumper |
| | | | Others: |
| | | | $\pm(0.5 \%+0.05 \Omega)$ for 0.5\%, 1\% tol. |
| | | | $\pm(1 \%+0.05 \Omega)$ for 5\% tol. |
| | | | $<100 \mathrm{~m} \Omega$ for Jumper |
| Short Time
 Overload | IEC60\||5-1 4.13 | 2.5 times of rated voltage or maximum overload voltage whichever is less for 5 seconds at room temperature | 0100: \pm (2.0\%+0.05 Ω) |
| | | | Others: $\pm(1.0 \%+0.05 \Omega)$ |
| | | | $<50 \mathrm{~m} \Omega$ for Jumper |
| | | | No visible damage |
| Bending | IEC 60115-1 4.33 | Chips mounted on a 90 mm glass epoxy resin PCB (FR4) | $\pm(1.0 \%+0.05 \Omega)$ |
| | | | 0100 : |
| | | $\begin{gathered} \text { Bending : 0 O 00/020 I/0402: } 5 \mathrm{~mm} \\ \text { 0603/0805: } 3 \mathrm{~mm} \\ \text { I } 206 \text { \& above: } 2 \mathrm{~mm} \end{gathered}$ | $<50 \mathrm{~m} \Omega$ for Jumper |
| | | | Others: |
| | | | $<100 \mathrm{~m} \Omega$ for Jumper |
| | | Bending time: 60 ± 5 seconds | No visible damage |

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Biased Humidity	MIL-STD-202 method I03	I,000 hours; $85^{\circ} \mathrm{C} / 85 \%$ R.H., 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.	$0 \mid 00: \pm(5 \%+0.05 \Omega)$ $<50 \mathrm{~m} \Omega$ for Jumper Others: $\begin{aligned} & \mathrm{I} \Omega \leq R \leq \mathrm{IM} \Omega: \pm(3 \%+0.05 \Omega) \\ & \mathrm{I} \Omega \Omega<\mathrm{R} \leq \mathrm{I} 0 \mathrm{M} \Omega: \pm(5 \%+0.05 \Omega) \end{aligned}$ $<100 \mathrm{~m} \Omega$ for Jumper
Solderability - Resistance to Soldering Heat	IEC 60115-I 4.18 MIL-STD-202 Method 215	Condition B, no pre-heat of samples Lead-free solder, $260 \pm 5^{\circ} \mathrm{C}, 10 \pm$ I seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$0 \text { I00: } \pm(1.0 \%+0.05 \Omega)$ Others: $\pm(0.5 \%+0.05 \Omega)$ for $0.5 \%, 1 \%$ tol. $\pm(1.0 \%+0.05 \Omega)$ for 5% tol. $<50 \mathrm{~m} \Omega$ for Jumper No visible damage
- Wetting	J-STD-002	Electrical test not required Magnification IOX SMD conditions: Others: (a) Method B, aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat, lead-free solder bath at $245^{\circ} \mathrm{C}$ (b) Method B , dipping at $215^{\circ} \mathrm{C}$ for 3 seconds 0100 : Ist step: Method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat $2^{\text {nd }}$ step: Lead free solder bath at $245^{\circ} \mathrm{C}$	Well tinned ($\geq 95 \%$ covered) No visible damage
FOS	ASTM-B-809-95* * Modified	Sulfur 750 hours, $105^{\circ} \mathrm{C}$. unpowered	$\begin{aligned} & 0100: \pm(5.0 \%+0.05 \Omega) \\ & \text { Others: } \pm(4.0 \%+0.05 \Omega) \\ & <100 \mathrm{~m} \Omega \text { for Jumper } \end{aligned}$

\qquad

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Jan. 03, 2023	-	- I Oohm TCR upgrade to 100 ppm , for 0603~25I2 normal power and 0402~25 I2 double power.
Version 8	Mar. 26, 2021	-	- Add TCR 50ppm and size 01005 extend
Version 7	Nov. 1, 2019	-	- Add in AF double power
Version 6	Sep. 05, 2019	-	- Updated dimensions
Version 5	Jun. 21, 2016	-	- Update test and requirement
Version 4	Dec. 24, 2015	-	- Update Dielectric Withstanding Voltage\& Resistance value
Version 3	Apr. 01,2015	-	- Modified test and requirements
Version 2	Nov. 20, 2014	-	- Tests and requirement update
Version I	Sep. 27, 2013	-	- Size 0201/I2 $0 / 1218 / 2010 / 2512$ extend
Version 0	Jan 07, 2011	-	- First issue of this specification

" YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

单击下面可查看定价，库存，交付和生命周期等信息

＞＞Yageo（国巨）

