

DATA SHEET

CHIP RESISTORS WITH NI/AU TERMINATIONS

AR series

5%, 1% sizes 0402/0603/0805/1206

RoHS compliant

YAGEO

Downloaded From Oneyac.com

Chip Resistor Surface Mount

AR SERIES

0402/0603/0805/1206 (RoHS Compliant)

SCOPE

This specification describes AR0402 to AR1206 chip resistors with Ni/Au-terminations made by thick film process.

<u>APPLICATIONS</u>

- Power supply in small equipment
- Digital multi-meter
- Telecommunication
- Computer
- Industry

FEATURES

- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

AR XXXX X X X XX XXXX

(1) (2) (3) (4) (5) (6)

(I) SIZE
0402
0603
0805
1206

(2) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

(6) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

(7) OPTIONAL CODE

L = optional symbol (Note)

Resistance rule of global part

Resistance code rul	le Example
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	IOR = IO Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (I to 9.76 KΩ)	IK = 1,000 Ω 9K76 = 9760 Ω
XMXX (I to 9.76 M Ω)	$IM = 1,000,000 \Omega$ $9M76 = 9,760,000 \Omega$

ORDERING EXAMPLE

The ordering code of a AR0603 chip resistor with gold terminations, value 56 X with $\pm 1\%$ tolerance, supplied in 7-inch tape reel is: AR0603FR-0756R(L).

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER

3 9

Chip Resistor Surface Mount

AR SERIES 0402/0603/0805/1206 (RoHS Compliant)

AR0402

No marking

AR0603

E-96 series: 3 digits for 0603 ±1% EIA-96 marking method

For 0603 $\pm 1\%$ E-24 series, one short bar under marking letter

Fig. 3 E-24 1% Value = 56 K Ω

AR0603/0805/1206

E-24 series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros

AR0805/1206

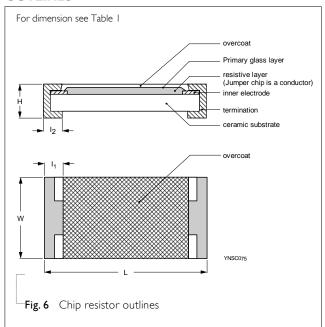
Both E-24 and E-96 series: 4 digits

First three digits for significant figure and 4th digit for number of zeros

For further marking information, please see special data sheet "Chip resistors marking".

Chip Resistor Surface Mount

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (Gold) are added. See fig. 6.

DIMENSIONS

Table I For outlines see fig. 6

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	l ₂ (mm)
AR0402	1.00 ±0.05	0.50 ±0.05	0.35 ±0.05	0.20 ±0.10	0.25 ±0.10
AR0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AR0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AR1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20

OUTLINES

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS						
TYPE RESISTAN	RESISTANCE RANGE	Operating	Max.	Max.	Dielectric	Temperature	Jumper	Criteria
	112515 17 11 402 10 11 402	Temperature	Working	Overload	3	Coefficient	Rated	Max.
		Range	Voltage	Voltage	Voltage	of Resistance	Current	Current
AR0402			50 V	100 V	100 V	10 Ω< R ≤10 MΩ:	1.0 A	2.0 A
AR0603	$1 \Omega \le R \le 10 M\Omega$	−55 °C	50 V	100 V	100 V	±100 ppm/°C	1.0 A	2.0 A
AR0805	Zero ohm Jumper < 0.05 Ω	to +155 °C	150 V	300 V	300 V	I Ω≤ R ≤ I0 Ω:	2.0 A	5.0 A
AR1206			200 V	500 V	500 V	±200 ppm/°C	2.0 A	10.0A

Chip Resistor Surface Mount

AR SERIES

0402/0003/0003/1200 (ROH3 COMpilam)

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AR0402	AR0603	AR0805	AR1206
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	5,000

NOTE

1. For Paper/PE tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

AR0402 to AR1206: -55 °C to +155 °C

POWER RATING

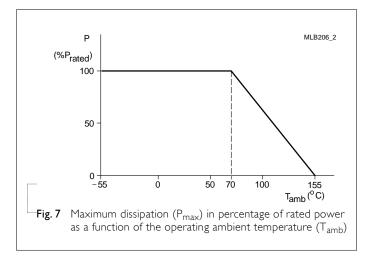
Each type rated power at 70°C:

AR0402=1/16 W; AR0603=1/10 W; AR0805=1/8 W; AR1206=1/4 W.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = v(P \times R)$$


or max. working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

TESTS AND REQUIREMENTS

YAGEO

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of	MIL-STD-202 Method 304	At +25/–55°C and +25/+125°C	Refer to table 2
Resistance		Formula:	
(T.C.R.)		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t ₁ =+25 °C or specified room temperature	
		t ₂ =-55 °C or +125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Life/ Endurance	MIL-STD-202 Method 108	At 70±2°C for 1,000 hours; RCWV applied for	0075: ±(5%+100mΩ)
	IEC 60115-1 7.1	1.5 hours on and 0.5 hour off, still air required	<100m Ω for jumper 01005: \pm (3% +50m Ω) <100m Ω for jumper
			Others:
			$\pm (1\%+50 \text{m}\Omega)$ for B/D/F tol $\pm (3\%+50 \text{m}\Omega)$ for J tol
			<100mR for jumper
			<u> </u>
High Temperature -	MIL-STD-202 Method 108	I,000 hours at maximum operating temperature depending on specification, unpowered.	0075: \pm (5%+100mΩ) <100mΩ for jumper 01005: \pm (1% +50mΩ)
Exposure			$< 50 \text{m}\Omega$ for jumper
			Others:
			$\pm (1\% + 50 m\Omega)$ for B/D/F tol
			$\pm (2\% + 50 \text{m}\Omega)$ for J tol
			<50mR for jumper
Moisture	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at	0075: ±(2%+100mΩ)
Resistance		8 hours, 3 cycles / 24 hours for	<100m Ω for jumper 01005: $\pm(2\% + 50m\Omega)$
		10d with 25°C / 65°C 95% R.H, without steps	$< 100 \text{m}\Omega$ for jumper
		7a & 7b, unpowered	Others:
		Parts mounted on test-boards, without	$\pm (0.5\% + 50 m\Omega)$ for B/ D/F tol
		condensation on parts	$\pm (2\% + 50 \text{m}\Omega)$ for J tol
			<100mR for jumper
Humidity	IEC 60115-1 10.4	Steady state for 1000 hours at 40°C / 95% R.H.	0075: ±(5%+100mΩ)
. rumary		RCWV applied for 1.5 hours on and 0.5 hour off	no visible damage 01005 : $\pm(3\% + 50 \text{m}\Omega)$ $< 100 \text{m}\Omega$ for jumper
			Others:
			$\pm (1\% + 50 m\Omega)$ for B/D/F tol
			$\pm (2\% + 50 m\Omega)$ for J tol
			<100mR for jumper

Chip Resistor Surface Mount | AR | SERIES | 0402/0603/0805/1206 (RoHS Compliant)

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Thermal Shock	MIL-STD-202 Method 107	-55/+125°C Note Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air	$0075/01005: \pm (1\% + 50 \text{m}\Omega) \\ < 50 \text{m}\Omega \text{ for jumper} \\ \text{Others:} \\ \pm (0.5\% + 50 \text{m}\Omega) \text{ for B/D/F tol} \\ \pm (1\% + 50 \text{m}\Omega) \text{ for J tol} \\ < 50 \text{mR for jumper} \\$
Short Time Overload	IEC 60115-1 8.1	2.5 times RCWV or maximum overload voltage which is less for 5 seconds at room temperature	0075/01005: $\pm (2\% + 50 \text{m}\Omega)$ $< 50 \text{m}\Omega$ for jumper Others: $\pm (1\% + 50 \text{m}\Omega)$ for B/D/F tol $\pm (2\% + 50 \text{m}\Omega)$ for J tol < 50 mR for jumper No visible damage
Board Flex/ Bending	IEC 60115-1 9.8	Device mounted or as described only I board bending required bending time: 60±5 seconds 0075/0100/0201/0402:5mm; 0603/0805:3mm; 1206 and above:2mm	0075/01005: \pm (1% +50m Ω) < 50m Ω for jumper Others: \pm (1%+50m Ω) for B/D/F/J tol <50mR for jumper No visible damage
Solderability - Wetting	J-STD-002 test BI	Electrical Test not required Magnification 50X SMD conditions: Ist step: aging 4 hours at 155°C dry heat 2nd step: method BI, leadfree solder bath at 245±3°C Dipping time: 3±0.5 seconds	Well tinned (>95% covered) No visible damage
-Leaching	J-STD-002 test D	Leadfree solder ,260°C, 30 seconds immersion time	No visible damage
-Resistance to Soldering Heat	MIL-STD-202 Method 210	Condition B, no pre-heat of samples Leadfree solder, $260^{\circ}\text{C}\pm5^{\circ}\text{C}$, 10 ± 1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	0075: \pm (3%+50m Ω) <50m Ω for jumper 01005: \pm (1%+50m Ω) < 50m Ω for jumper Others: \pm (0.5%+50m Ω) for B/D/F tol. \pm (1%+50m Ω) for J tol. <50mR for jumper No visible damage

Chip Resistor Surface Mount | AR | SERIES | 0402/0603/0805/1206 (RoHS Compliant)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 7	Dec. 23, 2008	-	 Change to dual brand datasheet that describes AR0402 to AR1206 with RoHS compliant Description of "Halogen Free Epoxy" added Define global part number
Version 6	Sep. 26, 2005	-	- Sizes of 0402/0805 1% and 5% extended - Replace the 0603and 1206 parts of pdf files: RC01_02H_21_22H_51_5 Test method and procedure updated - PE tape added (paper tape will be replaced by PE tape)
Version 5	Jul. 07, 2003	-	- Updated company logo - Table 1: RC01, RC02H, RC22H ordering code revised - Marking code revised
Version 4	Oct. 14, 2001	-	- Table 3: 'length' and 'width' changed; Table 4: 'bending' changed
Version 3	Apr. 27, 2001	=	- Converted to Phycomp brand

AR SE

SERIES

0402/0603/0805/1206 (RoHS Compliant)

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

单击下面可查看定价,库存,交付和生命周期等信息

>>Yageo(国巨)