
ESD Protection - ESDULC5V0D8

Description

The ESDULC5V0D8 is designed to protect voltage sensitive components that require ultra—low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications..

1 SOD882

Schematic & PIN Configuration

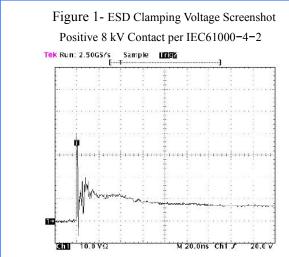
Feature

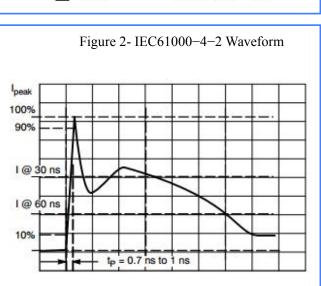
- Case: SOD882 package
- Ultra Low Capacitance 0.9 pF
- Low clamping voltage
- Low Leakage current
- Response Time is Typically < 1.0 ns
- This is a Pb-Free Device

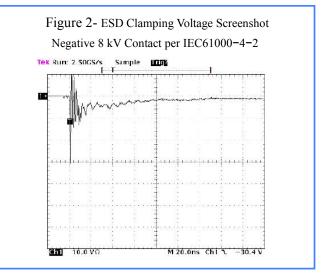
Applications

- Cellular phones
- Portable devices
- Digital cameras
- Power supplies

Absolute Maximum Ratings

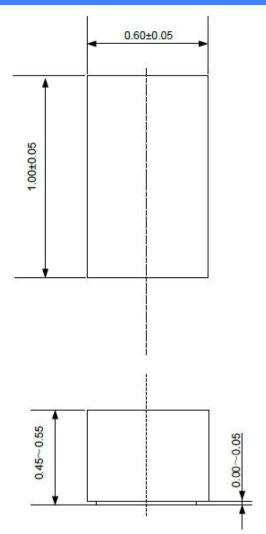

Parameter	Symbol	Value	Units
IEC61000-4-2 (Contact)	$ m V_{ESD}$	8	kV
IEC61000-4-2 (Air)	$ m V_{ESD}$	15	kV
Peak pulse Current	I _{PP} (8/20us)	5	A
P P eak Pulse Power (tp = 8/20μs)	P_{PK}	120	W
Lead Soldering Temperature	$T_{ m L}$	260 (10 sec)	° C
Operating Temperature	$T_{\mathtt{J}}$	-55 to 125	° C
Storage Temperature Range	T_{STG}	-55 to 150	° C

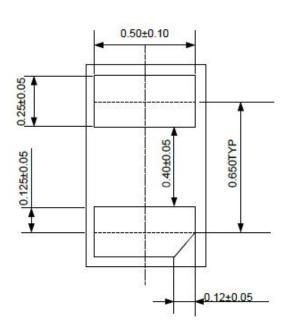



Electrical Characteristics (T = 25° C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Reverse Stand-off Voltage	V_{RWM}				5	V
Reverse Breakdown Voltage	V_{BR}	I _t = 1mA	6		9	V
Reverse Leakage Current	$I_{ m R}$	V _R =V _{RWM}			1	μ Α
Clamping Voltage	$V_{\rm C}$	I_{PP} =1A, t_P = 8/20 μ s		8.5	12	V
Forward Clamping Voltage	V_{F}	I _{PP} =1Α,t _P = 8/20μs		1.8		V
Junction Capacitance	C_{J}	V _R =0V, f = 1MHz		0.5	0.9	pF

Rating & Characteristic Curves





PACKAGE OUTLINE DIMENSIONS in millimeters: SOD882

Disclaimer

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.

Users should verify actual device performance in their specific applications.

单击下面可查看定价,库存,交付和生命周期等信息

>>Yint(音特电子)