MOSFET - SiC Power, Single N-Channel

1200 V, 65 mΩ, 49 A

KXMW120R65T3

Features

- Typ. $R_{DS(on)} = 65 \text{ m}\Omega$
- Ultra Low Gate Charge $(Q_{G(tot)} = 46 \text{ nC})$
- Capacitance (C_{oss} = 83 pF)
- 100% UIL Tested

Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

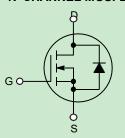
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

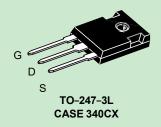
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	1200	V		
Gate-to-Source Voltage			V_{GS}	-7/23	V
Recommended turn on Gate-to- Source Voltage T _C < 175°C			V _{GS, on}	15-18	V
Recommended turn off Gate-to- Source Voltage		10 4 173 0	$V_{GS, off}$	0	٧
Continuous Drain Current Rejc	Steady State	T _C = 25°C	· I _D	49	А
		T _C = 100°C		35	А
Dawar Dissination Rays	Steady State	T _C = 25°C	P _D	251	w
Power Dissipation Rejc		T _C = 150°C	۲۵	42	"
Pulsed Drain Current (Note 2)	TA	= 25°C	I _{DM}	109	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	49	Α

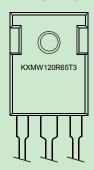
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	R _{0JC}	0.6	°C/W
Junction-to-Ambient (Note 1)	R _{0JA}	33.62	°C/W


- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


 2. Repetitive rating, limited by max junction temperature.


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
1200 V	65mΩ	49 A	

N-CHANNEL MOSFET

MARKING DIAGRAM

Publication Order Number: KXMW120R65T3

KXMW120R65T3

Static Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0 V, I _D = 100 uA		1200	1480	V	
Zoro Coto Voltago Droin Current	1	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25 °C		0.5	100	0 μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 175 °C		3	100	μΑ	
Gate-Source Leakage Current	lana	V _{GS} = -10V, V _{DS} = 0V		-0.3	-100	m A	
	I _{GSS}	V _{GS} = 25V, V _{DS} = 0V		4	100	nA	
Transconductance	g _{fs}	V _{DS} = 20V, I _D = 15 A, T _J = 25 °C		7.89	s		
Transconductance		V _{DS} = 20 V, I _D = 15 A, T _J = 175 °C		7.75		3	
Drain-Source On Resistance	D ·	V _{GS} = 20V, I _D = 15 A, T _J = 25 °C		65			
Dialii-Source Off Resistance	R _{DS(on)}	V _{GS} = 20 V, I _D = 15 A, T _J = 175 °C 103			mΩ		
Gate Threshold Voltage	V	$V_{GS} = V_{DS} = 20 \text{ V}, I_D = 5 \text{ mA}, T_J = 25 ^{\circ}\text{C}$		2.9			
	V _{GS(th)}	$V_{GS} = V_{DS} = 20 \text{ V}, I_D = 5 \text{ mA}, T_J = 175 °C$		2		V	

Dynamic Electrical Characteristics

Parameter	Symbol	Test Conditions	Тур	Unit	
Input Capacitance	C _{ISS}		1083		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, V _{DS} = 1000 V,	83	pF	
Reverse TransferCapacitance	C _{RSS}	f = 1 MHz, V _{AC} = 25 mV	3		
Coss Stored Energy	Eoss		83	μJ	
Turn-On SwitchingLoss	Eon	$V_{GS} = -4/20 \text{ V}, V_{DS} = 800 \text{ V},$ $I_D = 20A, R_G = 2 \Omega, Inductive Load$	376		
Turn on omioning 2000		T _J = 25 °C T _J = 175 °C	380	μJ	
$V_{GS} = -4/20 \text{ V}, V_{DS} = 800 \text{ V},$ $I_{D} = 20A, R_{G} = 2 \Omega, Inductive Load$	$V_{GS} = -4/20 \text{ V}, V_{DS} = 800 \text{ V},$ $I_D = 20A, R_G = 2 \Omega, Inductive Load$	408			
Turn-Off SwitchingLoss	E _{OFF}	T _J = 25 °C T _J = 175 °C	441		
Total Gate Charge	Q _{G(tot)}		46		
Gate-Source Charge	Q _{GS}	Vgs = -4/20 V, V _{DS} = 800 V, I _D = 15 A	15	nC	
Gate-Drain Charge	Q _{GD}		15		
Gate Resistance	R _G	f = 1 MHz, V _{AC} = 25 mV	3.4	Ω	
Turn-On Delay Time	t _{d(on)}		12		
Rise Time	t _r	$V_{GS} = -4/20 \text{ V}, V_{DS} = 800 \text{ V},$	8		
Turn-Off Delay Time	t _{d(off)}	I _D = 15A, R _G = 2 Ω,T _J = 175 °C Inductive Load	18	ns	
Fall Time	t _f		46		

KXMW120R65T3

Reverse Diode Characteristic

Parameter	Symbol	Test Conditions	Тур	Unit	
Continuous Drain-to-Source Diode Forward Current	I _{SD}	V _{GS} = 0 V, T _J = 25 °C	49	А	
		V _{GS} = 0 V, I _{SD} = 15 A, T _J = -55 °C	5.1		
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_{SD} = 15 \text{ A}, T_{J} = 25 ^{\circ}\text{C}$	4.2	v	
		V _{GS} = 0 V, I _{SD} = 15 A, T _J = 175 °C	4.2		
Pulsed Drain-to-Source Diode For- ward Current (Note 2)	I _{SDM}	T _J = 25 °C	508 512	Α	
Reverse Recovery Time	t _{RR}		15	ns	
Reverse Recovery Charge	Q _{RR}	V _{GS} =-4V, I _{SD} = 20A, V _{DS} = 800 V,	77	nC	
Peak Reverse Recovery Current	I _{RRM}	dls/dt = 1000 A/µs, T」 = 25 °C Qfr includes also Qc	9.5	Α	
Reverse Recovery Energy	E _{RR}		58	μJ	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

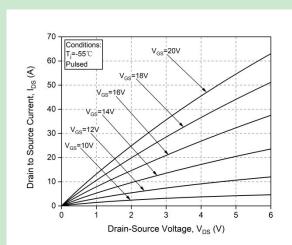


Figure 1. Output characteristics, T_J= -55°C

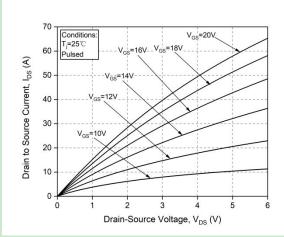


Figure 2. Output characteristics, T_J= 25°C

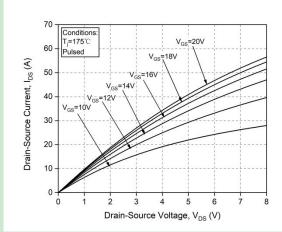


Figure 3. Output characteristics, T_J= 175°C

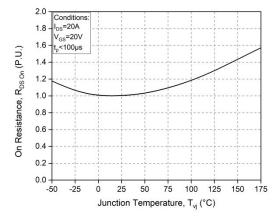


Figure 4. Normalized on-resistance vs. temperature

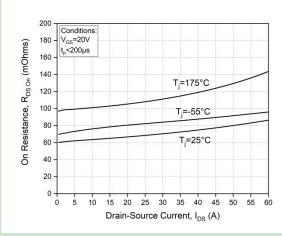


Figure 5. On-resistance vs. drain current

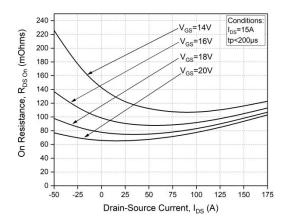
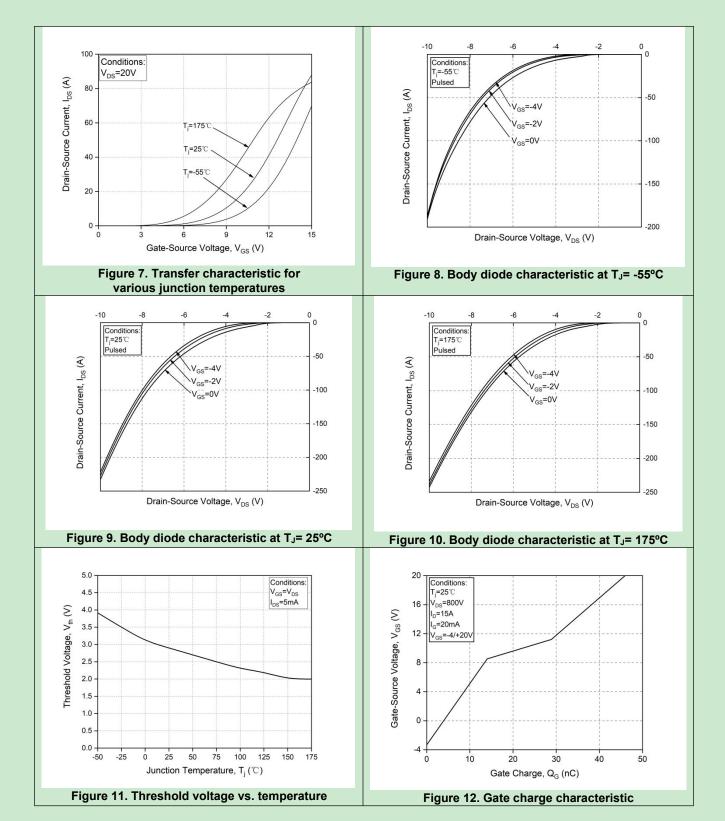
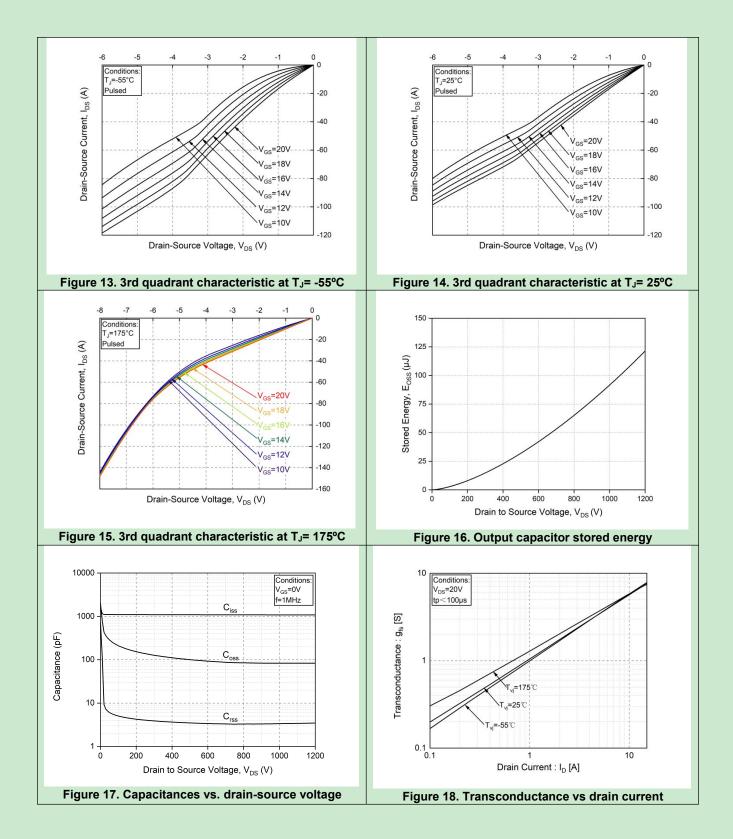




Figure 6. On-resistance vs. temperature for various gate voltage

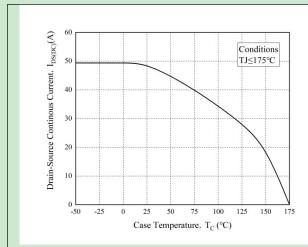


Figure 19. Continuous drain current derating vs. case temperature

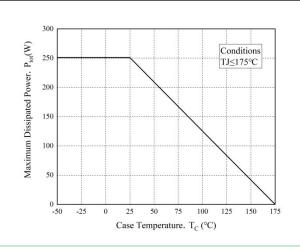


Figure 20. Maximum power dissipation derating vs. case temperature

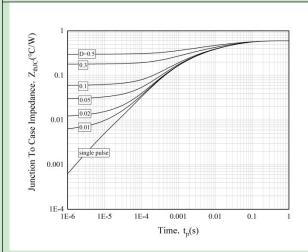


Figure 21. Transient thermal impedance (junction - case)

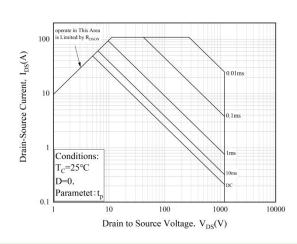


Figure 22. Safe operating area

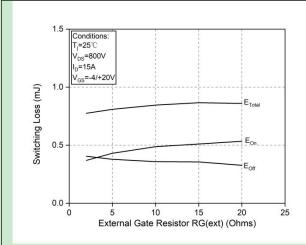


Figure 23. Clamped inductive switching energy vs. $R_{\text{G}}(\text{ext})$

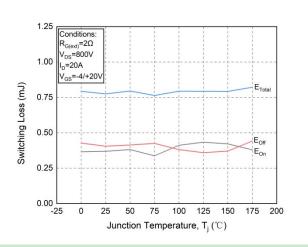
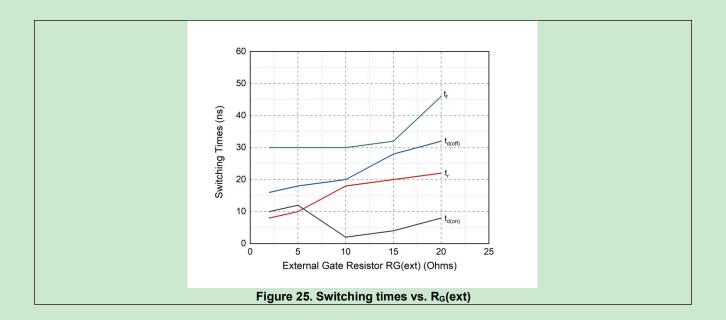
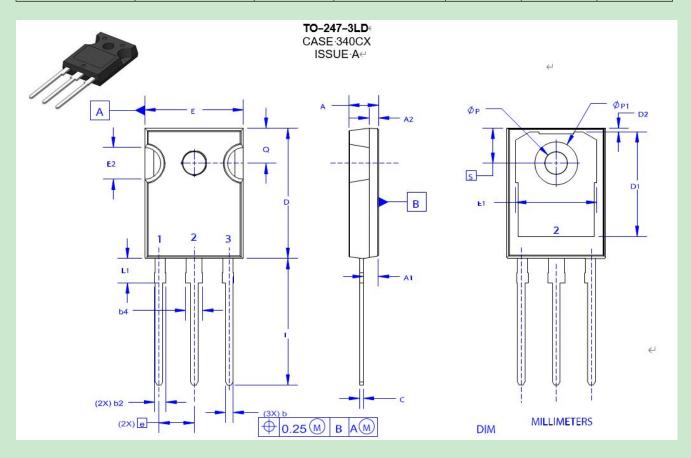
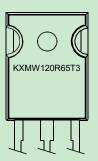




Figure 24. Clamped inductive switching energy vs. temperature


PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
KXMW120R65T3	KXMW120R65T3	TO-247 Long Lead	Tube	N/A	N/A	30 Units

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
E	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
ØP1	6.60	6.80	7.00		

单击下面可查看定价,库存,交付和生命周期等信息

>>浙江芯科