MOSFET - SiC Power, Single N-Channel

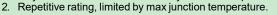
1200 V, **32** m Ω , **68** A

KXMT120R32T8

Features

- Typ. $R_{DS(on)} = 32 \text{ m}\Omega$
- Ultra Low Gate Charge $(Q_{G(tot)} = 97 \text{ nC})$
- Capacitance ($C_{oss} = 154 \text{ pF}$)
- 100% UIL Tested
- **Typical Applications**
- UPS
- DC/DC Converter
- Boost Inverter

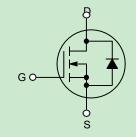
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Parame	Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage			V _{GS}	-7/23	V
Recommended turn on Gate-to- Source Voltage			V _{GS, on}	15-18	V
Recommended turn off Ga Source Voltage	∙ T _C < 175°C	$V_{GS, off}$	0	V	
Continuous Drain Current R _{θJC}	Steady State	T _C = 25°C	I _D	68	А
		T _C = 100°C		54	А
	Steady State	T _C = 25°C		519	147
Power Dissipation R _{0JC}		T _C = 150°C	PD	86	W
Pulsed Drain Current (Note 2)	T _A =	25°C V _{ES}	I _{DM}	229	А
Operating Junction and S Range	T _J , T _{stg}	-55 to +175	°C		
Source Current (Body Dio	Is	68	А		

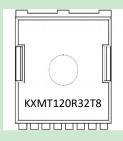
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Max	Unit
Junction-to-Case (Note 1)	R _{θJC}	0.29	0.63	°C/W
Junction-to-Ambient (Note 1)	R _{θJA}	32.36	-	°C/W


1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
1200 V	32mΩ	68 A


N-CHANNEL MOSFET

TOLL-8L

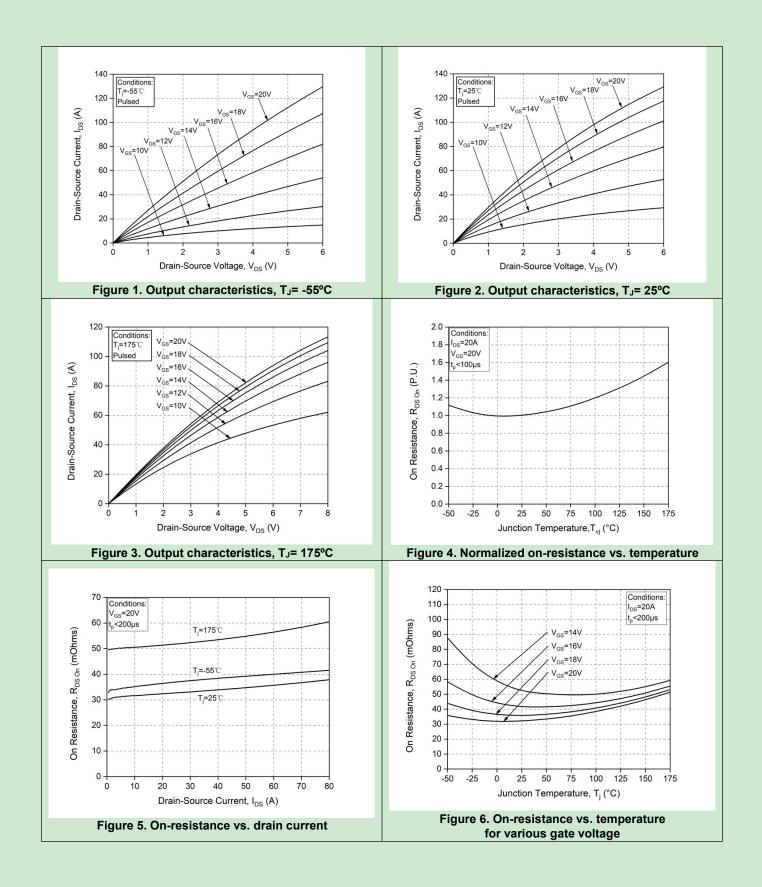
MARKING DIAGRAM

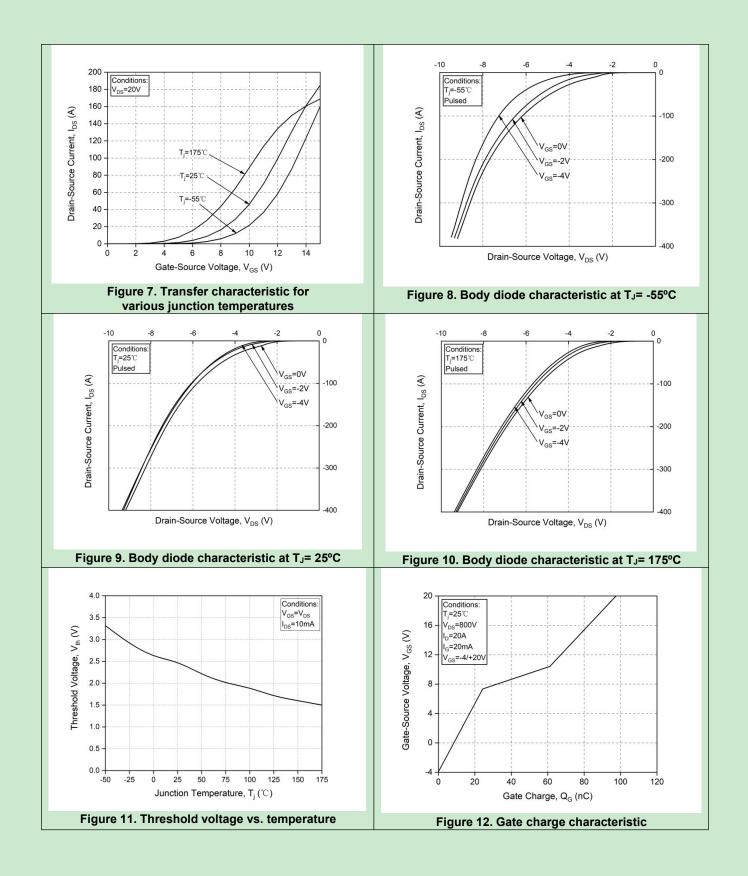
Publication Order Number: KXMT120R32T8

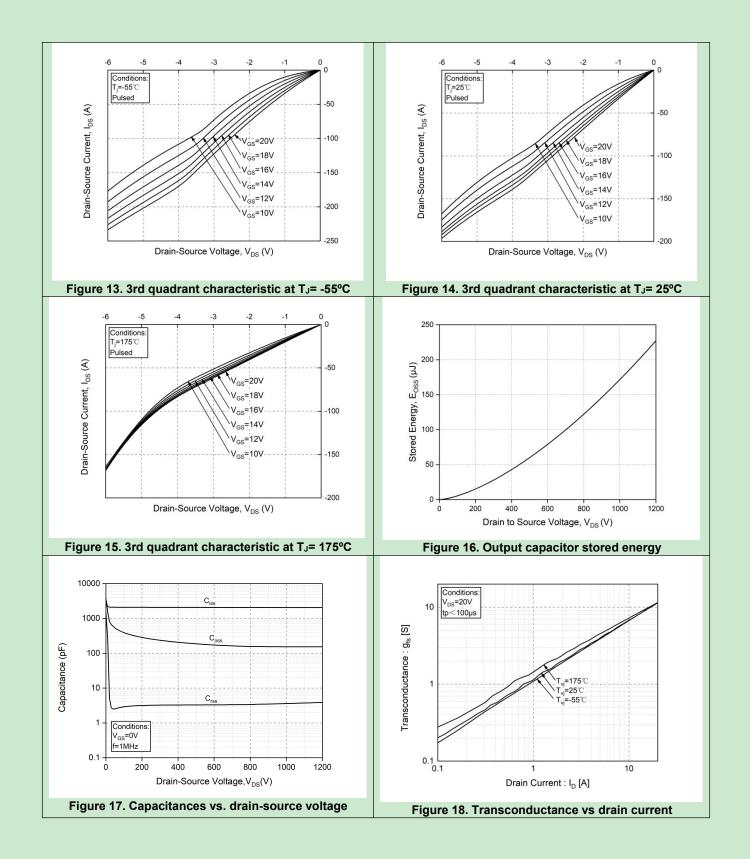
1-trial version

Static Electrical Characteristics

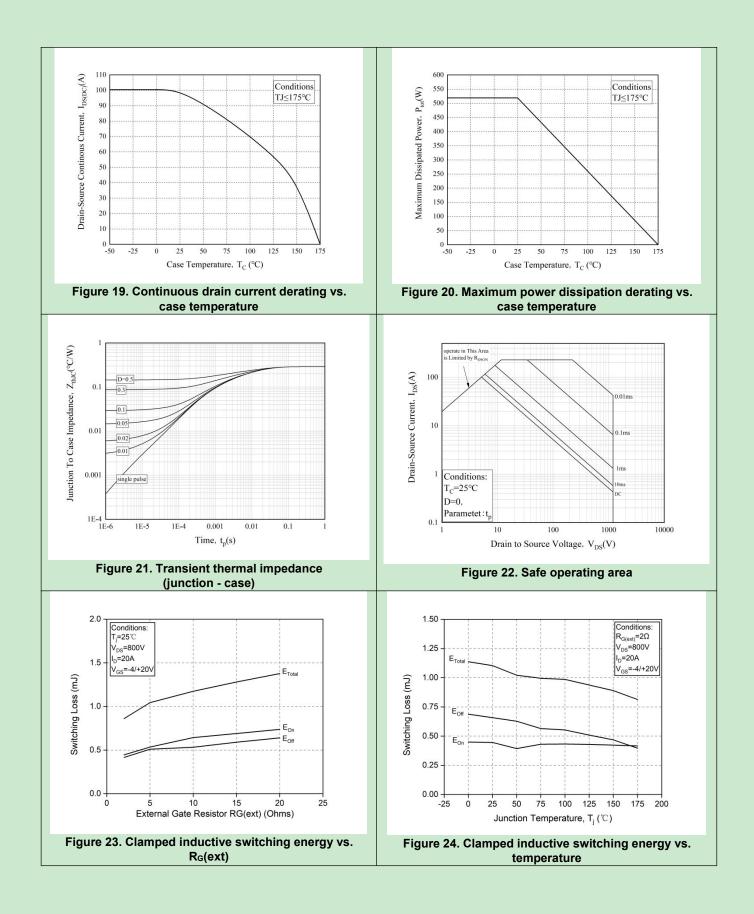
Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0 V, I _D = 100 uA		1200	1360	V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 1200 V, T_{J} = 25 °C		1.24	100	μΑ	
		V_{GS} = 0 V, V_{DS} = 1200 V, T_{J} = 175 °C		9.60	100		
Gate-Source Leakage Current	I _{GSS}	V_{GS} = -10V, V_{DS} = 0V	-0.3	-5	-100		
		V_{GS} = 25V, V_{DS} = 0V	0.8	7	100	nA	
Transconductance	g fs	V_{DS} = 20V, I_D = 20 A, T_J = 25 °C		11.34		6	
		V_{DS} = 20 V, I_{D} = 20 A, T_{J} = 175 °C		11.32		S	
Drain-Source On Resistance	R _{DS(on)}	V_{GS} = 20V, I_D = 20 A, T_J = 25 °C		32			
		V_{GS} = 20 V, I_{D} = 20 A, T_{J} = 175 °C		51		mΩ	
Gate Threshold Voltage	VGS(th)	V_{GS} = V_{DS} , I_D = 10 mA, T_J = 25 °C	25 °C 2.4				
		V _{GS} = V _{DS} , I _D = 10 mA, T _J = 175 °C		1.5			

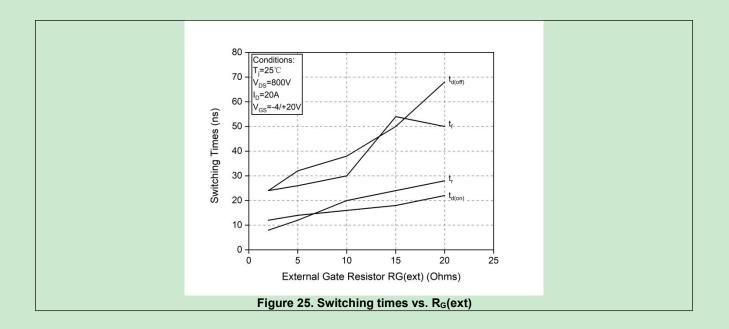

Dynamic Electrical Characteristics


Parameter	Symbol	Test Conditions	Тур	Unit	
Input Capacitance	C _{ISS}		2062	pF	
Output Capacitance	C _{OSS}	V _{GS} = 0 V, V _{DS} = 1000 V,	154		
Reverse Transfer Capacitance	C _{RSS}	$f = 1 \text{ MHz}, V_{AC} = 25 \text{ mV}$	3		
Coss Stored Energy	Eoss		171	μJ	
Turn-On SwitchingLoss	E _{ON}	$V_{GS} = -4/20 \text{ V}, V_{DS} = 800 \text{ V},$ $I_D = 20\text{A}, R_G = 2 \Omega, \text{ Inductive Load}$	446		
	LON	T _J = 25 °C T _J = 175 °C	416		
Turn-Off SwitchingLoss	_	$V_{GS} = -4/20 \text{ V}, V_{DS} = 800 \text{ V},$ $I_D = 20\text{A}, R_G = 2 \Omega, \text{ Inductive Load}$	658	μJ	
	E _{OFF}	T」= 25 °C T」= 175 °C	397		
Total Gate Charge	Q _{G(tot)}		97	nC	
Gate-Source Charge	Q _{GS}	V_{GS} = -4/20 V, V_{DS} = 800 V, I_D = 20 A	24		
Gate-Drain Charge	Q _{GD}		37		
Internal Gate Resistance	R _G	f = 1 MHz, V _{AC} = 25 mV	1.8	Ω	
Turn-On Delay Time	t _{d(on)}		10		
Rise Time	tr	$V_{GS} = -4/20 V, V_{DS} = 800 V,$	8		
Turn-Off Delay Time	t _{d(off)}	$I_D = 20A, R_G = 2 \Omega, T_J = 175 °C$ Inductive Load	24	ns	
Fall Time	t _f		26		

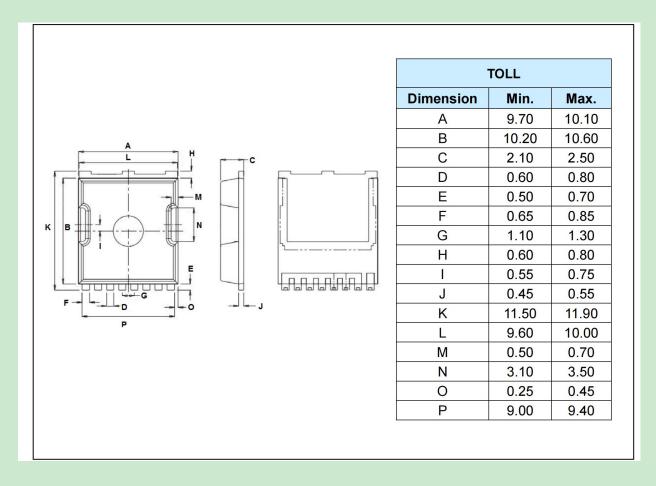

Reverse Diode Characteristic

Parameter	Symbol	Test Conditions	Тур	Unit
Continuous Drain-to-Source Diode Forward Current	I _{SD}	I _{SD} V _{GS} ≖ 0 V, T _J = 25 °C		A
Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I_{SD} = 20 A, T_{J} = -55 °C	3.6	V
		V_{GS} = 0 V, I _{SD} = 20 A, T _J = 25 °C	3.3	
		V_{GS} = 0 V, I_{SD} = 20 A, T_{J} = 175 °C	3.2	
Pulsed Drain-to-Source Diode For- ward Current (Note 2)	I _{SDM}	T _J = 25 °C	767	A
Reverse Recovery Time	t _{RR}		13.7	ns
Reverse Recovery Charge	Q _{RR}	V_{GS} =-4V, I_{SD} = 20A, V_{DS} = 800 V,	89	nC
Peak Reverse Recovery Current	I _{RRM}	dl _s /dt = 1000 A/µs, T _J = 25 °C Qfr includes also QC	16	A
Reverse Recovery Energy	E _{RR}		88	

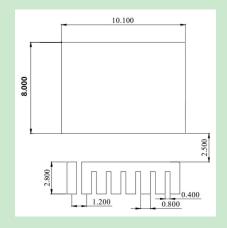

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



Downloaded From Oneyac.com



Downloaded From Oneyac.com



PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
KXMT120R32T8	KXMT120R32T8	TOLL-8L	Tube-on-Lead	N/A	N/A	30 Units

SOLDERING FOOTPRINT

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

单击下面可查看定价,库存,交付和生命周期等信息

>>浙江芯科