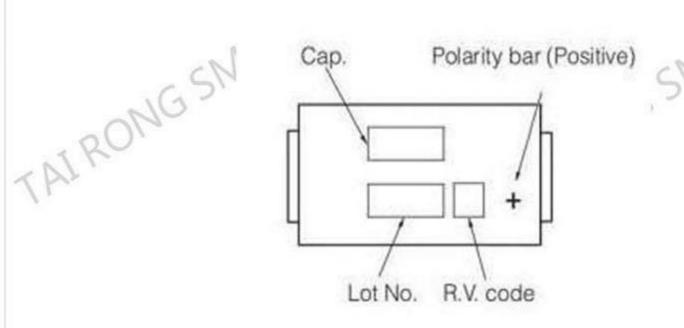
台容积电

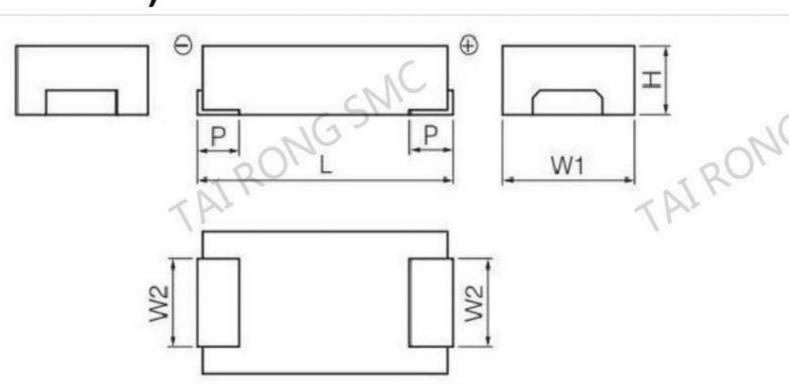
tai rong smc www.trsmc.com.cn

Surface Mount Type Rong Sinc Series: Care

Series: CX


Features

- High voltage (35 V.DC max.)
- Low profile (Height 1.0 mm max.)
- High ripple current (5600 mAr.m.s. max.)
- RoHS compliance, Halogen free


Specifications	71.	71-	710	710				
Series	CS		CT	CX				
Category temp.range	-55°C to+105 °C							
Rated voltage range			2 V. DC to 35 V. DC					
Nominal cap.range	10 μF to 120 μF	15	μF to 180 μF	15 μF to 560 μF				
Capacitance tolerance	-MC	±20%(120 Hz/+20C)						
DC leakage current	I≤0.1 CV(μA)[2 V.DC to 6.3 V.DC, 2 minutes], I≤0.3 CV(μA)[10 V.DC to 35 V.DC, 2 minutes]							
Dissipation factor (tan δ)	NIRO.	<0.06(120 Hz/+20℃)						
Surge voltage (V.DC)	Rated voltage×1.25 [2 V.DC to 16 V.DC], ×1.15[20 V.DC to 35 V.DC](15℃ to 35℃)							
	+105℃,2000 h,rated voltage applied							
	Capacitance change Within±20%of theinitial value							
Endurance	tan δ	\leqslant 2 times of the initial limit						
	DC leakage current 2 V.DC to 6.3 VDC :≤3 times of the initial limit 10 V.DC to 35 V.DC :Within the initial limit							
and ship	+60℃, 90%, 500 h, No-applied	voltage	IG SM	SMC				
ROMO	Capacitance change	2 V. DC to 2.5 V. DC	4 V. DC, 10 V. DC to 3	6. 3 V. DC				
Damp heat	of initial measurd value	+70%, -20%	+60%, -20%	+50%, -20%				
(Steady state)	tan δ	tan δ \leqslant 2 times of the initial limit						
	DC leakage current	2 V.DC to 6.3 V.DC :Within the initial limit 10 V.DC to 35V DC:≤3 times of the initial limit						

Marking

Dimensions(not to scale)

												Unit:mm
							Series	$L \pm 0.2$	$W1 \pm 0.2$	$W2 \pm 0.1$	$H \pm 0.1$	$P\pm0.3$
Rate	ed voltage mar	k	- NC			10-	CS	7.3	4.3	2.4	1.1	1.3
d	2 V. DC	j	6.3 V.DC	D	20 V.DC	-NG SIN	CT	7.3	4.3	2.4	1.4	(1.3)
eRO	2.5 V.DC	A	10 V. DC	Е	25 V. DC	, O/, ,	CX	7. 3. R.C	4. 3	2.4	1.9 8	1.3
g	4 V. DC	C \(\)	16 V. DC	V	35 V. DC		*Externals of	figure are th	e reference.		THE	

Design and specifications are each subject to change wihout notice. Ask factory for the curent technical specifications before purchase and/or use

Reflow*3	<pre>Standard></pre>		SMC			SMC		SMC	SMC
RONG		RONG	Case	size	(mm) 000	0	Specification	10	Min. *4
TAI,	Rated	Capacitance			TAI	Pinnla	*2	Part number	Packaging
Series	voltage	$(\pm 20\%)$ (μ F)	L	W	Н	Ripple current	ESR	rare mamber	Q'ty
	(V. DC)	(μΓ)				(mAr. m. s.)	(mQ max.)		(pcs)
		220	7.3	4.3	1.9	5100	15	EEFCXOD221R	3500
		270	7.3	4.3	1.9	5600	12	EEFCXOD271XR	3500
	. (220	7.3	4.3	1.9	5100	15	EEFCXOD331R	3500
, (,)	2	330	57.3	4.3	1.9	5600	12	EEFCXOD331XR	3500
TAIRONG	<u> </u>	390	7.3	4.3	1.9	5100	15 00	EEFCXOD391R	3500
TAIL		470	7.3	4.3	(1.9	5100	15	EEFCXOD471R	3500
		560	7.3	4.3	1.9	5100	15	EEFCXOD561R	3500
		220	7.3	4.3	1.9	5100	15	EEFCX0E221R	3500
	2.5	330	7.3	4.3	1.9	5100	15	EEFCX0E331R	3500
	2.0	390	7.3	4.3	1.9	5100	15	EEFCX0E391R	3500
		470	7.3	4.3	1.9	5100	15	EEFCX0E471R	3500
	MC	150	7.3	4.3	1.9	5100	15	EEFCX0G151R	3500
TAIRONG	, ,	180, ONG	7.3	4.3	1.9	5100	15	EEFCX0G181R	3500
AIRO.		1000	7.3	4.3	1.9	5600	121RO	EEFCX0G181XR	3500
11.	4	220	7.3	4.3	1. 9	5100	15	EEFCX0G221R	3500
		220	7.3	4.3	1.9	5600	12	EEFCX0G221XR	3500
		270	7.3	4.3	1.9	5100	15	EEFCXOG271R	3500
		330	7.3	4.3	1.9	5100	15	EEFCXOG331R	3500
		100	7.3	4.3	1.9	5100	15	EEFCX0J101R	3500
	. (120	7.3	4.3	1.9	5100	15	EEFCX0J121R	3500
CX	6. 3	150	57.3	4.3	1.9	5100	15	EEFCX0J151R	3500
TAIRONG	0.5	150	7.3	4.3	1.9	5600	12 00	EEFCX0J151XR	3500
TAIL		180	7.3	4.3	1.9	5100	15	EEFCXOJ181R	3500
		220	7.3	4.3	1.9	5100	15	EEFCX0J221R	3500
		47	7.3	4.3	1.9	3200	40	EEFCX1A470R	3500
	10	68	7.3	4.3	1.9	3200	40	EEFCX1A680R	3500
		100	7.3	4.3	1.9	3200	40	EEFCX1A101R	3500
		15	7.3	4.3	1.9	3200	40	EEFCX1C150R	3500
100	16	22	7.3	4.3	1.9	3200	40	EEFCX1C220R	3500
aNG.		33	7.3	4.3	1.9	3200	40	EEFCX1C330R	3500
TAIRONG		47RO	7.3	4.3	1.9	3200	40, RO	EEFCX1C470R	3500
71-		68	7.3	4.3	1.9	3200	40	EEFCX1C680R	3500
		22	7.3	4.3	1.9	3200	40	EEFCX1D220R	3500
	20	33	7.3	4.3	1.9	3200	40	EEFCX1D330R	3500
		47	7.3	4.3	1.9	3200	40	EEFCX1D470R	3500
		56	7.3	4.3	1.9	3200	40	EEFCX1D560R	3500
	. (15	7.3	4.3	1.9	3200	40	EEFCX1E150R	3500
TAIRONGSM	N ^C 25	22	57.3	4.3	1.9	3200	40	SEFCX1E220R	3500
		33 ONG	7.3	4.3	1.9	3200	40 0	EEFCX1E330R	3500
TAIR	O.E.	< 15	7.3	4.3	(P1.9	3200	40	EEFCX1V150R	3500
	35	22	7.3	4.3	1.9	3200	40	EEFCX1V220R	3500
*1:Ripple currer	t(100 kHz/+45°C	C),*2:ESR(100kHz/+2	20℃)						

^{*1:}Ripple current(100 kHz/+45°C),*2:ESR(100kHz/+20°C)

Characteristics list

Temperature compensation multipliers for ripple current

Temperature compensation mo	urcipiters for rippi	e current		
, NC	Temp.	T≤45°C	45°C <t≤85°c< td=""><td>85°C<t≤105°°c< td=""></t≤105°°c<></td></t≤85°c<>	85°C <t≤105°°c< td=""></t≤105°°c<>
2 V. DC to 6.3 V. DC	alas:	1.0 GSW	0.7 SN	0. 25
010 V.DC to 35 V.DC	Coefficient	1.00	0.8	0.5
EV. D. S. C.	The state of the s	£ 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 6	_ N

^{*3:}Please refer to the page of "Mounting Specifications".

^{*4:}Please contact us when 500 pcs packingis necessary.

电路设计 • 基板设计

- ■请勿在高阻抗电压保持电路,耦合电路,时间常数电路,漏电流影响大的电路,或2个以上串联的电路中使用本产品。
- ■若施加上超过规格书中规定的额定电压的过电压/逆电压,则会导致漏电流增加或短路故障。

|施加电压是指包括过渡的瞬时电压峰值和纹波电压峰值的电压值,并不只表示稳态线电压值。请进行电路设计, |使得峰值电压不超过规定电压。

在冲击电压电路,短时间施加超高电压的过渡现象及施加脉冲高电压等情况下,请在额定电压以下使用。

- ■使用温度应在规格书中规定的范围内。设计时不仅要考虑设备所处的周围温度,设备内的温度,还要考虑本产品的温度,包括设备内发热元件(功率晶体管、电阻等)的辐射热,由纹波电流引起的自发热等。
- ■纹波电流应在规格书中规定的额定范围内使用。如有过大的纹波电流流过,则会因自发热而导致漏电流增加或短路 故障。即使在额定纹波电流内,也不要对过电压或逆电压施加纹波电压。
- ■ESR 标准值是工厂出货时的值。根据客户的使用条件可能会发生变化。
- ■在高温无负载/高温高湿/温度突变等无负载状态下,即使使用环境在规定范围内,漏电流在回流焊后也可能会增加, 而在大多数情况下,即使漏电流暂时增加,当施加电压时,由于其自修复作用,具有漏电流减小的特性。
- ■请勿对紧靠本产品贴装部下的基板表面进行绝缘处理。焊盘尺寸要参考规格书中规定的贴装规格进行设计。 实际设计电路的尺寸应设计为可根据基板/零部件/回流焊等条件进行最佳贴装的尺寸。

贴装条件 • 保管条件

- ■请在确认本产品的额定值(静电电容,额定电压),极性,焊盘尺寸后将其安装到基板上。在利用贴装机进行贴装时,若贴装(mount) 时施加的压力大则可能会导致漏电流增大或短路,断线,从基板脱落等。
- ■请勿使用流焊和浸焊。回流焊可在下述方式下使用。气体介质热传导方式的推荐条件请参照贴装规格。 VPS 方式的推荐条件请向本公司咨询。
- (1) 气体介质热传导方式(红外线/热风方式)
- (2) VPS 方式(对象系列: CX, SX, GX, LX, HX)
- ■电烙铁作业应在烙铁头温度255°C以下进行,作业时间在10秒钟以内,并且不要对本产品施加强力。 此外,请勿拆下一度安装的本产品再使用。在规定条件外锡焊时,会导致短路故障和ESR 增加等。
- ■请在温度5°C~30°C,湿度70%以下的环境下使用防湿袋保管本产品。防湿袋开封前的保管期限为制造后2年, 开封后的保管期限为7天。超过该条件时,由于包装吸湿,在贴装过程中可能会由于热应力而导致外壳装受损。

开封后应在保管期限内田完

使用环境 · 清洗条件

- ■本产品旨在用于电子设备中的通用标准用途,设计时并未考虑在以下特殊环境下的使用。因此,在下述特殊环境的使用及条件下,本产品的性能恐会受到影响,请贵公司在使用时充分进行性能/可靠性等的确认。
- (1) 在水,油,药液,有机溶剂等液体中使用
- (2)在直射阳光,户外曝露,尘埃环境下使用
- (3)在水分(电阻体结露,漏水等),海风,Cl2,H2S,NH3,SO2,NOx 等腐蚀性气体多的场所使用
- (4) 在静电或电磁波强的环境下使用
- (5) 在靠近发热零部件安装时以及靠近本产品配置乙烯配线等可燃物时
- (6) 用树脂等材料封装本产品而使用时
- (7) 在锡焊后的助焊剂清洗中使用溶剂,水及水溶性洗涤剂时(特别要注意水溶性助焊剂。)
- (8) 在有酸性或碱性气体的环境下使用
- (9) 在有过度的振动或冲击的环境下使用
- (10) 在低气压,减压的环境下使用
- |■锡焊后的基板清洗请在60°C以下,5分钟以内实施。但是,请务必实施充分的漂洗/干燥(100°C, 20分钟以内)。 |对象溶剂如下所示。

Pine Alpha ST-100S, Clean-thru 750H/750L/710M, Aqua Cleaner 210SEP, Sunelec B-12

DK be-clear CW-5790,Techno Cleaner 219,Cold Cleaner P3-375,Terpene Cleaner EC-7R Techno Care FRW-17/FRW-1/FRV-1,AXREL32,IPA(isopropyl alcohol)

- (1) 使用上述洗涤剂及纯水以外时,请事先向我们咨询。
- (2) 请避免使用臭氧层破坏物质作为洗涤剂,以保护地球环境。
- (3) 进行超声波清洗时,可能会造成端子断开,所以要事先进行评估。
- ■请勿对本产品施加强力。电极端子变形等可能会对贴装产生不利影响。
- 它还可能导致短路,断线,漏电流增大,外壳破损。安装到基板上之后,也不要握住本体或向其施力。
- ■在冲击电压电路,短时间施加高电压的过渡现象及施加脉冲高电压等情况下,请务必在额定电压以下使用。

异常应对 · 处理条件

若本产品异常发热,可能会有烟气从外壳装树脂冒出。这种情况下应立即切断设备的主电源并停止使用。 此外,本产品可能会成为高温并导致烫伤,请勿将脸或手靠近本产品。

可靠性 · 产品寿命

- ■大多数的故障模式是"短路"或"漏电流的增加"。故障的主要原因是回流焊和使用温度环境等导致的热应力,电气应力,机械应力。即使在规定范围内,通过减缓温度/电压等使用条件也有可能降低故障率,所以要进行具有余量的设计。
- ■推算故障率,作为本公司可靠性试验的数据在8.2 Fit以下(105°C,额定电压施加时的推算),作为推算市场故障率在0.13 Fit以 下(c=0, 置信水平60%时的推算)。

产品规格 · 产品用途

- ■本产品及产品规格为了进行改良,可能会未经预告而予以变更,敬请谅解。因此,在最终设计,购买或使用本产品之前,无论何种用途,请提前索取并确认详细说明本产品规格的最新交货规格书。此外,请勿偏离本公司交货规格书的记载内容而使用本产品。
- ■除非本产品目录或交货规格书中另有规定,本产品旨在一般电子设备(AV 设备,家电产品,商用设备,办公设备,信息,通信设备等)中用于标准的用途。

在将本产品用于要求特殊的品质和可靠性,其故障或误动作恐会直接威胁到生命安全,或危害人体的用途

(例: 航空/航天设备,运输/交通设备,燃烧设备,医疗设备,防灾/防盗设备,安全装置等)中的情况下,请另行与本公司交换适合用途的交货规格书。

安全设计 · 产品评估

- ■为了防止由于本公司产品的故障而导致人身伤害及其他重大损害的发生,请在客户方的系统设计中通过保护电路和冗余电路等确保安全性。
- ■本产品目录表示单个零部件的品质/性能。耐久性会因使用环境,使用条件而有所差异,所以用户在使用时, 请务必在贴装于贵公司产品的状态及实际使用环境下实施评估,确认。

在对本产品的安全性有疑义时,请速与本公司联系,同时请贵公司务必进行技术研究,其中包括上述保护电路和冗余电路等。

此外,在使用库存品时弄不清是否需要应对RoHS 指令/REACH 法规的情况下,请从咨询表格选择"营业咨询"。

■要使用的部件材料制造工序以及本产品的制造工序中,没有有意使用蒙特利尔议定书中予以规定的臭氧层破坏

物质和诸如PBBs(Poly-Brominated Biphenyls)/PBDEs(Poly-Brominated Diphenyl Ethers)的特定溴系阻燃剂。此外,本产品的使用材料,是根据"关于化学物质的审查及制造等限制的法律",全都作为现有的化学物质予以记载的材料。

■我们可能会在不事先通知客户的情况下对涉及我们拥有的技术知识的设计,材料和工艺等进行更改。

在脱离本产品目录的记载内容或没有遵守注意事项使用本公司产品的情况下,本公司概不负责。敬请谅解。

单击下面可查看定价,库存,交付和生命周期等信息

>>TAI RONG SMC(台容积电)