

SX1255 RF Front-End Transceiver

Low Power Digital I and Q RF Multi-PHY Mode Transceiver

GENERAL DESCRIPTION

The SX1255 is a highly integrated RF front-end to digital I and Q modulator/demodulator Multi-PHY mode transceiver capable of supporting multiple constant and non-constant envelope modulation schemes. It is designed to operate over the 400 - 510 MHz worldwide licensed and unlicensed frequency bands. Its highly integrated architecture allows for a minimum of external components whilst maintaining maximum design flexibility. All major RF communication parameters are programmable and most of them can be dynamically set. The SX1255 offers support for both narrow-band and wide-band communication modes without the need to modify external components. The SX1255 is optimized for low power consumption while offering the provision for high RF output power and channelized operation. TrueRF™ technology enables a low-cost external component count whilst still satisfying ETSI, FCC and ARIB and other regulations.

APPLICATIONS

- IEEE 802.15.4g SUN Multi-PHY Mode Smartgrid
- Cognitive / Software Defined Radio (SDR)

KEY PRODUCT FEATURES

- Fully flexible I and Q modulator and demodulator
- Half or full-duplex operation
- ◆ Bullet proof RX LNA
- Analog TX and RX pre-filtering
- Decimated I&Q signal under I^2S industry format
- Programmable tap TX FIR-DAC filter
- Linear TX amplifier for both constant and non-constant envelope modulation schemes

ORDERING INFORMATION

- ◆ Pb-free, Halogen Free
- RoHS / WEEE compliant product

TABLE OF CONTENT

 $1₁$

 $2₁$

 $1.1.$

 $1.2.$ $1.3.$

 $2.1.$

 $2.2.$

 $2.3.$ $2.4.$

 $2.4.1.$

 $2.4.2.$

 $2.4.3.$

WIRELESS & SENSING PRODUCTS

SX1255

DATASHEET

WIRELESS & SENSING PRODUCTS

DATASHEET

FIGURES

WIRELESS & SENSING PRODUCTS

TABLES

SX1255

DATASHEET

SX1255

1. General Description

The SX1255 is a single-chip Zero-IF RF-to-digital front-end transceiver integrated circuit ideally suited for today's high performance multi-PHY mode or SDR ISM band RF applications. The SX1255 has a maximum signal bandwidth of 500 kHz in both transmission and reception and is intended as a high performance, low-cost RF-to-digital converter and provides a generic RF front-end that allows several constant and non-constant envelope modulation schemes to be handled, such as the MR-FSK, MR-OFDM and MR-O-QPSK applications in the 400 - 510 MHz licensed and unlicensed frequency bands.

The SX1255's advanced features set greatly simplifies system design whilst the high level of integration reduces the external BOM to an optional RF power amplifier, and a handful of passive decoupling and matching components. A simple 4-wire 1-bit digital serial or I2S like interface are provided for the baseband I and Q data streams to the baseband processor.

The SX1255 can operate in both half and full-duplex mode and is compliant with ETSI, FCC and ARIB regulatory requirements. It is available in a MLPQ-W 5 x 5 mm 32 lead package.

1.1. Simplified Block Diagram

Figure 1. Block Diagram

1.2. Pin and Marking Diagram

The following diagrams illustrate the pin arrangement of the MLPQ-W package (top view) and the IC marking description.

Note: yyww refers to the date code xxxxxx refers to the lot number

1.3. Pin Description

Table 1 SX1255 Pinout

EMTECH

2. Electrical Characteristics

2.1. ESD Notice

The SX1255 is a high performance radio frequency device.

Class 2 of the JEDEC standard JESD22-A114-C (Human Body Model) on all pins Class III of the JEDEC standard JESD22-C101-C (Charged Device Model) on all pins

2.2. Absolute Maximum Ratings

Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Symbol Description Min Max Units

VDDmr | Maximum Supply Voltage | -0.5 | 3.9 | V Tmr Maximum Temperature -55 115 °C

Tj Maximum Junction Temperature | - 125 | °C Pmr Maximum RF Input Level | - | +6 dBm

Table 2 Absolute Maximum Ratings

Operating ranges define the limits for functional operation and parametric characteristics of the device as described in this section. Functionality outside these limits is not implied.

Symbol Description Min Max Units

VDDop Operational Supply Voltage 2.7 3.6 V

Page 9

2.4. Electrical Specifications

The table below gives the electrical specifications of the transceiver under the following conditions:

supply Voltage = 3.3 V, temperature = 25 °C, f_{XOSC} = 36 MHz, f_{RF} = 434 MHz, Output power = -5 dBm (100 ohm differential transmission), TXBWANA = 250 kHz, RXBWANA = 250 kHz, mode A, external baseband RX filter = 150 kHz, unless otherwise specified.

Note: RF performance depends on assembly. Electrical specifications listed below are obtained with the QFN package described in section 7 "Packaging Information".

2.4.1. Power Consumption

Table 4 Power Consumption Specification

2.4.2. Frequency Synthesis

Table 5 Frequency Synthesizer Specification

2.4.3. Transmitter Front-End

Table 6 TX Front-End Specifications

2.4.4. Receiver Front-End

Table 7 RX Front-End Specification

SX1255

Table 7 RX Front-End Specification

2.4.5. SPI Bus Digital Specification

Table 8 SPI Digital Specification

3. Chip Description

This section describes the architecture of the SX1255 Multi-PHY mode transceiver.

3.1. Power Supply Strategy

The SX1255 employs an advanced power distribution scheme (PDS), which provides stable operating characteristics over the full temperature and voltage range of operation.

The SX1255 can be powered from any low-noise voltage source via pins VBAT1, VBAT2 and VBAT3. Decoupling capacitors should be connected, as suggested in the reference design, on VR_PA, VR_DIG, VR_ANA1 and VR_ANA2 pins to ensure a correct operation of the built-in voltage regulators.

3.2. Low Battery Detector

A low battery detector is also included allowing the generation of an interrupt signal in response to passing a programmable threshold adjustable through the register RegLowBat. The interrupt signal can be mapped to the DIO0 pin, through the programmation of RegDioMapping.

3.3. Frequency Synthesizer

The SX1255 incorporates two separate state of the art fractional-N PLLs for the TX and RX circuit blocks

3.3.1. Reference Oscillator

The crystal oscillator is the main timing reference of the SX1255. It provides the reference source for the transmit and receive frequency synthesizers and as a clock for digital processing.

The XO startup time, TS OSC, depends on the actual XTAL being connected on pins XTA and XTB. When using the builtin sequencer, the SX1255 optimizes the startup time and automatically triggers the PLL when the XO signal is stable. To manually control the startup time, the user should monitor the signal CLK_OUT which will only be made available on the output buffer when a stable XO oscillation is achieved.

An external crystal controlled source, such as a clipped-sinewave TCXO, clock can be used to replace the crystal oscillator, This external source should be provided on XTB (pin 8) and XTA (pin 6) should be left open, as illustrated in [Figure](#page-12-5) 4, below.

Figure 4. TCXO Connection

The peak-peak amplitude of the input signal must never exceed 1.8 V. Please consult your TCXO supplier for an appropriate value of decoupling capacitor, CD. Due to the low jitter requirements required by the receiver digital block it is recommended that only a crystal controlled external frequency source is used.

3.3.2. CLK_OUT Output

For master mode operation the SX1255 provides a system clock output made available at pin CLK_OUT.

3.3.3. PLL Architecture

The SX1255 incorporates two fourth-order type fractional-N sigma-delta PLLs. The PLLs include integrated VCO and programmable bandwidth loop filter, removing the need for any external components. The PLLs are autocalibrating and are capable of fast switching and settling times.

3.3.3.1. VCO

Both TX and RX VCOs operate at twice the RF frequency, with the oscillators centered at 1.9 GHz. This reduces any LO leakage in receive mode, to improve the quadrature precision of the receiver, and to reduce the pulling effects on the VCO during transmission.

The VCO calibration is fully automated, calibration times are fully transparent to the end-user as the processing time is included in the TS_TR and TS_RE specifications.

3.3.3.2. PLL Bandwidth

The bandwidth of the PLL loop filters are independently configurable via the configuration registers TxPllBw and RxPllBw for the modulation schemes supported, as well as fast channel switching and lock times to support FHSS and frequency agile applications, such as AFA.

3.3.3.3. Carrier Frequency and Resolution

Both the TX and RX embed a 20-bit sigma-delta modulator and the frequency resolution, constant over the entire frequency range, is calculated using the following formula:

$$
F_{STEP} = \frac{F_{XOSC}}{2^{20}}
$$

The RX and RX carrier frequencies are programmed through registers RegFrfRx and RegFrfTx, split across register addresses 0x01 to 0x03 and 0x04 to 0x06, respectively, and are calculated by:

$$
F_{RF}=F_{STEP}\!\times\!Frfxx(23,0)
$$

where: Frfxx is the integer value of the RegFrfRx or RegFrfTx as defined above.

Note: As stated above, the Frfxx settings are split across 3 bytes for both the transmitter and receiver frequency synthesizers. A change in the center frequency will only be taken into account when the least significant byte FrfxxLsb in RegFrfxxLsb is written and when exiting SLEEP mode

SX1255

3.3.3.4. PLL Lock Time

RX and TX PLL lock times are a function of a number of technical factors, such as synthesized frequency, frequency step, etc. The SX1255 includes an auto-sequencer that manages the start-up sequence of the PLL.

3.3.3.5. Lock Detect Indicator

A lock indication signal for both RX and TX PLLs can be accessed via DIO pins, and is toggled high when the PLL reaches its locking range. Please refer to [Figure](#page-23-3) 11 to map this interrupt to the desired DIO pins.

3.4. Transmitter Analog Front-End Description

The analog front-end of the SX1255 transmitter stage comprises the TX frequency synthesizer, I and Q channel filters, the I / Q mixer and RF amplifier blocks.

3.4.1. Architectural Description

The block diagram of the transmitter front-end block is illustrated below.

3.4.2. TX I / Q Channel Filters

Differential analog I and Q signals input to the TX Front-End from the TX FIR DAC are filtered by I and Q channel filters. These filters smooth the reconstructed analog waveforms and remove quantization noise generated by the I and Q channel TX FIR DACs. The filters are unity gain third-order low pass Butterworth types with programmable bandwidth configured via TxAnaBw.

The 3 dB BW of the analog TX filter BW can be calculated from:

$$
BW_{3dB} = \frac{17.15}{(41 - RegTxBwAna(4,0))}
$$

EMTECH

The analog filter bandwidth should be set to greater than the signal bandwidth so as to reduce any group delay variations.

The range of programmable TX analog filter bandwidths is tabulated below in [Table](#page-15-2) 9.

TxAnaBw (Dec)	TxAnaBw (Bin)	SSB Filter BW (kHz)	TxAnaBw (Dec)	TxAnaBw (Bin)	SSB Filter BW (kHz)
$\pmb{0}$	00000	209	16	10000	343
$\mathbf{1}$	00001	214	17	10001	357
$\overline{2}$	00010	220	18	10010	373
3	00011	226	19	10011	390
4	00100	232	20	10100	408
5	00101	238	21	10101	429
6	00110	245	22	10110	451
$\overline{7}$	00111	252	23	10111	476
8	01000	260	24	11000	504
9	01001	268	25	11001	536
10	01010	277	26	11010	572
11	01011	286	27	11011	613
12	01100	296	28	11100	660
13	01101	306	29	11101	715
14	01110	318	30	11110	780
15	01111	330	31	11111	858

Table 9 TX Analog Filter Single Sideband Bandwidth

3.4.3. TX I / Q Up-Conversion Mixers

The TX I / Q mixer block mixes the baseband analog I and Q signals with that from the PLL frequency synthesizer and up converts to the RF carrier frequency. The mixer block includes a highly linear I/ Q mixer stage with programmable gain configurable via configuration register RegTxGain. The modulated RF signal is input to the TX RF amplifier stage.

3.4.4. RF Amplifier

The TX amplifier receives the input signal from the TX mixer and provides two differential outputs. The first output provides the RF_OP and RF_ON signals in TX mode. The second output is used to provide an internal differential signal to the receiver during RX gain calibration. The amplifier provides good linear performance required to meet the peak to average power level variation of OFDM.

The peak output power is +5 dBm, which allows for an average output power of greater than -5 dBm with 10 dB back-off. The Output signal is intended to be amplified through a suitable external RF power amplifier to the maximum permissible

level allowed by relevant regulatory standards. The optimum load impedance presented RF amplifier is 100 ohms differential.

3.5. Transmitter Digital Baseband Description

The transmitter digital baseband section contains separate I and Q channel digital-to-analog convertors.

3.5.1. Digital-to-Analog Converters

The TX DAC is the first block of the SX1255 transmitter. It accepts the 1-bit I and Q noise shaped 32 to 36 Msample/ second or I2S datastream from the baseand processor and converts into two analog differential signals. Each TX DAC provides 8-bits of resolution in a 500 kHz bandwidth which corresponds to maximum RF transmitted double sideband bandwidth of 1 MHz.

A programmable Finite Impulse Response (FIR) filter allows the removal of the digital modulator noise from the external baseband processor. The number of taps implemented by the FIR-DAC and subsequent single-side DAC bandwidth is controlled by the parameter TxDacBw.

TxDacBw (Dec)	TxDacBw (Bin)	No. DAC-FIR Taps	SSB Filter BW (kHz)
	000	24	
	001	32	450
$\overline{2}$	010	40	
3	011	48	
4	100	56	
5	101	64	290

Table 10 TX DAC Single Sideband Bandwidth

Examples of the FIR DAC normalized magnitude response are illustrated below.

Figure 6. FIR-DAC Normalized Magnitude Response with $f_S = 32$ *MHz and N = 32*

Figure 7. FIR-DAC Normalized Magnitude Response with $f_S = 32$ MHz and N = 64

The DAC 3dB bandwidth is proportional to the sampling frequency fs and inversely proportional to the number of taps N. In the case where f_S = 32MHz with N = 32 the 3 dB bandwidth is typically 450 kHz. Reducing the bandwidth may be useful to reduce the quantisation noise contribution when the signal bandwidth request is lower, as is illustrated in the case where N = 64, resulting in a 3 dB bandwidth of approximately 290 kHz.

3.6. Receiver Analog Front-End Description

The SX1255 Receiver Front-End is based upon a Zero-IF architecture, ideally suited to handle multiple complex modulation schemes. The RX chain incorporates a programmable gain LNA and single to differential buffer, I / Q mixer, separate I and Q channel analog low-pass filters and programmable baseband amplifiers. The amplified differential analog I and Q outputs are input to two 5th order continuous-time Sigma-Delta Analog to Digital Converters (ADC) for further signal processing in the digital domain.

3.6.1. Architectural Description

The block diagram of the receiver front-end block is illustrated below.

Figure 8. SX1255 Receiver Analog Front-End Block Diagram

3.6.2. LNA and Single to Differential Buffer

The LNA uses a common-gate topology, which allows for a flat characteristic over the whole frequency range. It is designed to have an input impedance of 50 Ohms or 200 Ohms (as selected with bit LnaZin in RegRxAnaGain). A single to differential buffer is implemented to improve the second order linearity of the receiver.

The LNA gain, including the single-to-differential buffer, is programmable over a 48 dB dynamic range, and gain control can be enabled via an external AGC function.

3.6.3. I /Q Downconversion Quadrature Mixer

The mixer is inserted between output of the RF buffer stage and the input of the I and Q channel analog low-pass filter stages.This block is designed to downconvert the spectrum of the input RF signal to base-band and offers both high IIP2 and IIP3 responses.

3.6.4. Baseband Analog Filters and Amplifiers

The differential I and Q baseband mixer signals are pre-filtered by a programmable 1st order low-pass pre-filter and input to programmable linear baseband amplifiers. The single sideband 3 dB bandwidth of the pre-filters can be programmed between 500 kHz and 1500 kHz. This additional pre-filtering improves the selectivity of the receiver for complex modulation schemes, such as OFDM.

The amplifier stage gain offers 32 dB of programmable gain, in 2 dB steps, from -24 dB to +6 dB via configuration register RegRxAnaGain while the analog filter bandwidth is programmed via the two least significant bits of configuration register RegRxBw.

3.7. Receiver Digital Baseband

The receiver digital baseband section contains separate I and Q channel continuous time Sigma-Delta analog-to-digital converters to digitize and filter the analog bit stream.

3.7.1. Architectural Block Diagram

The block diagram of the receiver digital baseband is illustrated below.

Figure 9. SX1255 Digital Receiver Baseband Block Diagram

3.7.2. Analog-to-Digital Converters

The receiver digital baseband consists of separate I and Q channel 5th order continuous-time sigma-delta modulator analog -to-digital converters which sample and digitize the analog baseband I and Q signals output at the analog baseband amplifiers.

The ADC output allows for 13-bits of resolution after decimation and filtering by the external baseband processor within a 500 kHz maximum bandwidth, corresponding to a maximum RF received double sideband bandwidth of 1 MHz.

The ADC output is one bit per channel quadrature bit stream at 32 to 36 MSamples/s or I2S data-stream.

3.7.3. Temperature Sensor

The receiver ADC can be used to perform a temperature measurement by digitizing the sensor response. The response of the sensor is -1C / Lsb. Since a CMOS temperature sensor is not accurate by nature, the sensor should be calibrated at ambient temperature for a precise reading.

It takes less than 100 us for the SX1255 to evaluate the temperature (from setting RxAdcTemp = "1"). The AdcTemp value can be read at Q_OUT. Since there is no on-chip decimation or averaging it is recommended that data on Q_OUT is externally processed, for example using a simple FFT.

The temperature measurement should be performed with the SX1255 in StandbyEnable Mode (RegMode = 0x01).

SX1255

SX1255

Figure 10. Temperature Sensor Response

3.8. Loop-Back

The SX1255 provides mechanisms to both monitor and externally calibrate both the RF transmission path and the I and Q bit streams generated by the external baseband processor.

3.8.1. Digital Loop-Back

The digital loop-back enables the connection of the input and output I and Q baseband bit streams prior to processing by the SX1255.

This loop back path enables the validation of the transmitter and receiver baseband processing paths.

3.8.2. RF Loop Back

The RF loop-back path connects the balanced RF output signal of the transmitter driver stage to the output of the differential mixer of the receiver. This path provides a mechanism for the external baseband processor to implement a calibration for the following:

- Receiver I, Q gain mismatch
- Receiver I and Q phase imbalance

EMTECH

- Transmitter I, Q gain mismatch
- Transmitter I and Q phase imbalance
- Transmitter DC offset

Figure 11. Digital and RF Loop-Back Paths

Page 22

WIRELESS & SENSING PRODUCTS DATASHEET

4. Digital Interface

4.1. General overview

The SX1255 has several operating modes, configuration parameters and internal status indicators. All these operating modes, configuration parameters and status information are stored in internal registers that may be accessed by the external micro-controller via the serial SPI interface.

4.2. Definition and operation of the SPI interface

The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL = 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.

Three access modes to the registers are provided:

- SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and a read byte is received for the read access. The NSS pin goes low at the begin of the frame and goes high after the data byte.
- BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.

Figure 12 below shows a typical SPI single access to a register.

MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.

A transfer always starts by the NSS pin going low. MISO is high impedance when NSS is high.

The first byte is the address byte. It is made of:

- wnr bit, which is 1 for write access and 0 for read access
- 7 bits of address, MSB first

The second byte is a data byte, either sent on MOSI by the master in case of a write access, or received by the master on MISO in case of read access. The data byte is transmitted MSB first.

Succeeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without rising NSS and re-sending the address. The address is then automatically incremented at each new byte received (BURST mode).

The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is actually a special case of BURST mode with only 1 data byte transferred.

During the write accesses, the byte transferred from the slave to the master on the MISO line is the value of the written register before the write operation.

4.3. Digital IO Pin Mapping

Four general purpose IO pins are available on the SX1255 and their configuration is controlled through the RegDioMapping configuration register.

Table 11 DIO Mapping

4.4. I and Q interface

4.4.1. General description

There are two main ways of transferring the I and Q signals between the SX1255 and the external digital circuit.

In mode A, the I and Q signals are directly the outputs of the sigma-delta modulator in Rx, and the inputs of the FIR-DAC in Tx. This mode is the one which is implemented in the SX1255 circuit.

In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. In Rx the I and Q signals are decimated inside the chip and in Tx the I and Q signals are interpolated and ΣΔ modulated internally. In this mode the signals are transferred via an I2S-like protocol working in two possible configurations.

> Pins | Mode A | Mode B1 | Mode B2 10) CLK_OUT CLK_OUT CLK_OUT CLK_OUT 11) CLK IN CLK IN Not used Not used $12)$ Q IN \qquad Q IN \qquad Not used 13) I_IN | I_IN | I_IN | IQ_IN 14) Q OUT Q OUT Q OUT Not used 15) I OUT I I OUT I OUT IQ OUT 23) DIO2 Not used WS WS

The table below gives the mapping of the pins as a function of the selected mode.

Table 12 . Mapping of IO pins related to the I and Q transfer

4.4.2. Mode A

The convention of the I and Q interface for the Rx link in mode A is that the data is delivered on a rising edge of the internal clock, available on CLK_OUT.

For the Tx link, the Tx DACs can be used either with the internal clock, available on CLK_OUT for data synchronization (SX1255 master) or with an input clock CLK_IN (SX1255 slave).

The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is master:

Figure 13. Tx timing diagram of I and Q interface in mode A (SX1255 master)

To relax the constraints on the setup and hold time, when SX1255 is used as master, it is recommended to use the **falling edge** of the clock (CLK, OUT) to provide the I&Q bitstreems to the chip. The circuit will sample the data on the next falling edge of the clock.

tsetup $min = 14$ ns thold $min = 0$ ns

The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is slave:

Figure 14. Tx timing diagram of I and Q interface in mode A (SX1255 slave)

In the case SX1255 is slave, CLK_IN is provided externally. The I/Q bitstreems should be provided on the **rising edge** of the CLK_IN clock and the circuit will sample the data on the falling edge of the clock.

tsetup $min = 0$ ns

thold $min = 6$ ns

4.4.3. Mode B

4.4.3.1. Introduction

In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. An I2S based interface provides an easy way to transfer parallel I/Q data between the SX1255 and an external baseband chip.

In Rx mode, the serial I/Q data coming from the RF front-end (I_RX/Q_RX) is decimated in the digital bridge to generate parallel I/Q signals at a sampling rate depending on the programmed decimator factor. The I2S interface block is able then to convert this parallel I/Q data (buses i_in_bridge[31:0] / q_in_bridge[31:0]) into one or two I2S serial bitstream(s) and send it to an external baseband signal along with the other I2S signals as defined by the standard.

Similarly, in Tx mode the FIR-DACs are fed by two serial I/Q bitstreems coming from the digital bridge (I_TX/Q_TX). The I2S interface is able to convert the I2S serial data coming from an external baseband chip into parallel I/Q signals (buses

SX1255 - Rev. 3.0

October 2013 ©2013 Semtech Corporation

i_out_bridge[31:0]/q_out_bridge[31:0]). Then these parallels signals are interpolated and ΣΔ modulated before being fed to the FIR_DACs. The figure below shows the I2S interface in its context in mode B:

Figure 15. The I2S interface block in its context (mux cells are included in PAD_CTL block)

In B mode, the I2S interface is master of the I2S bus. The block generates the usual I2S signal, the clock CLK_OUT, the word select WS (available on DIO2 pin) and one or two serial data. It also samples the serial data coming from the external chip.

Mode B1 is an extension of the I2S format, where the I and Q serial data are not multiplexed on the same line but put or accepted on 2 pins I_OUT/Q_OUT or I_IN/Q_IN respectively in I2S transmitter mode or in I2S receiver mode. In mode B1, the WS frequency corresponds to half of the sampling rate of the parallel I/Q signals.

Page 27

SX1255

The figure below shows the timing diagram in B1 mode for samples of 8 bits wide, as an example, actually the number of bits is variable, as explained later on in this document.

Figure 16. Timing diagram of I and Q interfaces in mode B1

Mode B2 is purely I2S compatible and the I/Q serial data is multiplexed on the I_OUT pin (Tx mode) or pin I_IN (Rx mode). Serial data with WS polarity set to "0" corresponds to I signal while WS polarity set to "1" corresponds to Q signal.

The figure below shows an example of timing diagram in B2 mode:

Figure 17. Timing diagram of I and Q interfaces in mode B2

In B mode the WS is one CLK_OUT clock period ahead of time.

The digital bridge and the I2S interface are automatically started in Tx and Rx mode as soon as the corresponding modes are activated. Disabled control bits are available in test mode.

The full duplex run is possible, but the user must be aware that in this case input and output I2S frames have the same format, hence the decimator and interpolation factors must be identical.

4.4.3.2. Parameters

Two main parameters are programmable:

- the decimation/interpolation factor
- the frequency of the output clock CLK_OUT.

The decimation/interpolation factor is programmable on 2 sets of 14 values.The ratios are defined as follows:

$$
R = MANT \cdot 3^m \cdot 2^n
$$

where MANT is 8 for the 1st set and 9 for the 2nd set, m can be 0 or 1, and n is an integer between 0 and 6.

SX1255

The ratios available and the corresponding sampling rates are given in the tables below for 32MHz, 36.864MHz and

Table 13 Sampling rates 1st set

36MHz crystals.

Table 14 Sampling rates 2nd set

Other frequencies between 32 and 36.9 MHz can be used with any decimation factor.

The frequency of the output clock CLK OUT is equal to the crystal frequency divided by a ratio programmable on several values which are 1, 2, 4, 8, 12, 16, 24, 32 and 48. In IISM test mode, any integer between 1 and 64 can be selected.

The number of bits per sample depends on the decimation/interpolation factor (2 sets of 14 values) as well as the frequency of the CLK_OUT clock (9 possibilities) and the type of B mode. The allowed number of bits is between 8 and 32. In IISM test mode, any number of bits between 4 and 32 can be selected. Less than 4 bits is not possible for implementation reason

In B2 mode, there is a new I/Q sample every period of WS. In B1 mode, there are two I/Q samples every WS period, and the WS frequency is reduced by a factor of 2. This mode allows to allocate twice more bits per I/Q sample.

Only a limited number of parameters combination generate valid I2S frames. Therefore the valid combination are clearly documented and the other ones aborts the I2S interface. The tables below illustrate this statement. Depending on the XTAL/CLK_OUT divider and the decimation/interpolation factor, the number of bits per samples are computed for the 2 predefined sets. Combination with a number of bits higher than 32 and lower than 8 are disabled in functional mode ("NA") and an error bit is set.

CLK_OUT/XTAL					12	16	24	32	48
Decimation/ interpolation factor									
8		NA							
16	16	8	NA						

Table 15 Number of bits per sample for the 1st set and B1 mode

512 | NA | NA | NA | NA | <mark>32 |</mark> NA | 16 | NA 768 | NA | NA | NA | NA | NA | 32 | 24 | 16 1536 | NA | 32

CLK_OUT/XTAL	1	$\overline{2}$	4	8	12	16	24	32	48
Decimation/ interpolation factor									
9	9	NA	NA	NA	NA	NA	NA	NA	NA
18	18	9	NA	NA	NA	NA	NA	NA	NA
27	27	NA	NA	NA	NA	NA	NA	NA	NA
36	NA	18	9	NA	NA	NA	NA	NA	NA
54	NA	27	NA	NA	NA	NA	NA	NA	NA
72	NA	NA	18	9 [°]	NA	NA	NA	NA	NA
108	NA	NA	27	NA	9 [°]	NA	NA	NA	NA
144	NA	NA	NA	18	12 [°]	9	NA	NA	NA
216	NA	NA	NA	27	18	NA	9 [°]	NA	NA
288	NA	NA	NA	NA	24	18	12 ₂	9	NA
432	NA	NA	NA	NA	NA	27	18	NA	9 [°]
576	NA	NA	NA	NA	NA	NA	24	18	12 ₁
864	NA	NA	NA	NA	NA	NA	NA	27	18
1728	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 16 Number of bits per sample for the 2nd set and B1 mode

WIRELESS & SENSING PRODUCTS

SX1255

Table 17 Number of bits per sample for the 1st set and B2 mode

Table 18 Number of bits per sample for the 2nd set and B2 mode

The parallel I/Q data bus is expected to be 32-bits wide. Hence, if the number of bits per frame is lower, the I/Q data is truncated, either MSBs or the LSBs are taken, according to a configuration bit, iism_trunc_mode.

5. Configuration and Status Registers

5.1. General Description

Notes - Reset values are automatically refreshed at Power on Reset

 - DEFAULT values are the Semtech recommended register values, optimizing the device operation

 *- Registers for which the DEFAULT value differs from the RESET values are denoted by a * in the tables of this section*

SX1255

SX1255 - Rev. 3.0

SX1255

6. Application Information

6.1. Crystal Resonator Specification

The specification for the crystal resonator of the reference oscillator circuit block is tabulated below in [Table](#page-36-5) 19.

Table 19 Crystal Resonator Specification

Symbol	Description	Conditions	Min	Typ	Max	Units
FXOSC	XTAL Frequency		32		36.864	MHz
RS	XTAL Series Resistance			30	140	Ω
CO	XTAL Shunt Capacitance			2.8		pF
CLOAD	External Foot Capacitance	On each pin XTA and XTB	8	16	22	pF

Notes - The initial frequency tolerance, temperature stability and aging performance should be chosen in accordance with the target operating temperature range and the receiver bandwidth selected

 - The loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL

6.2. Reset of the Chip

A power-on reset of the SX1255 is automatically triggered at power up. Additionally, a manual reset can be issued by controlling the RESET pin (pin 9).

6.2.1. POR

If the application requires the disconnection of VDD from the SX1255, despite the extremely low Sleep Mode current, the user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI bus. Pin 9 (RESET) should be left floating during the POR sequence.

Figure 18. POR Timing Diagram

Please note that xosc ready on DIO2 can be used to detect that the chip is ready.

6.2.2. Manual Reset

chip.

A manual reset of the SX1255 is possible even for applications in which VDD cannot be physically disconnected. Pin 9 should be pulled high for a hundred microseconds, and then released. The user should then wait for 5 ms before using the

Figure 19. Manual Reset Timing Diagram

Please note that whilst pin 9 is driven high, an over current consumption of 10 mA may be observed on VDD

6.3. TX Noise Shaper

In order to generate a single TX bit-stream, th 8-bit I and Q signal should be processed by an external third order sigmadelta modulator (implemented within the baseband processor). The noise shaper should be stable for input signals lower than -3dBFS and compatible with SX1255 noise requirements. It is advised that the integrator outputs are saturated to avoid any wraparound of the 2's-complement digital word.

A representative block diagram of a single-bit feed-forward modulator is illustrated below.

www.semtech.com

SX1255

VDD

SX1255

6.4. Reference Design

Please contact your Semtech representative for evaluation tools, reference designs and design assistance. Note that all schematics shown in this section are full schematics, listing ALL required components, including those required for power supply decoupling.

Figure 21. SX1255 Application Schematic

SX1255

7. Packaging Information

7.1. Package Outline Drawing

Figure 22. Package Outline Drawing

7.2. Recommended Land Pattern

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. 2. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
- FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. 3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.
- 4. SQUARE PACKAGE-DIMENSIONS APPLY IN BOTH X AND Y DIRECTIONS.

7.3. Thermal Impedance

The thermal impedance of this package is: **Theta ja = 23.8° C/W typ**., calculated from a package in still air, on a 4-layer FR4 PCB, as per the Jedec standard.

7.4. Tape and Reel Specification

Figure 24. Tape and Reel Specification

Note Single sprocket holes

SX1255

8. Revision History

Table 20 Datasheet Revision History

© Semtech 2013

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Contact information

Semtech Corporation Wireless & Sensing Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804 E-mail: sales@semtech.com support_rf@semtech.com Internet: http://www.semtech.com

单击下面可查看定价,库存,交付和生命周期等信息

[>>SEMTECH](https://www.oneyac.com/brand/1649.html)