

RoHS Compliant

Features

 Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications.

- We have a network worldwide in order to supply our global customer bases quickly and efficiently.
- All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes.
- By combining superior manufacturing technology and materials with high dielectric constants, we produce extremely compact components with exceptional specifications.
- •Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and superior quality.
- Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements.

(Example)	
①Series	: CM Series(General)
2Size	: 0201
③Dielectric	: X5R
④Capacitance	: 2.2µF
5 Tolerance	: ±20%
©Voltage	: 6.3Vdc
⑦Termination	: Sn
8 Packaging	: Cavity pitch 2mm / Reel Size

φ180

1 SERIES	CODE
-----------------	------

(2)

1

K

CM General CT Low Profile CU High-Q CNH Three Terminal Capacitors
CU High-Q
Three Terminal
(NH Three Terminal Capacitors
oupuontoro

28

CM 03 X5R 225 M 06

(4)

KYOCERA PART NUMBER

3

2 SIZE CODE				
CODE	EIA	JIS		
02	01005	0402		
03	0201	0603		
05	0402	1005		
105	0603	1608		
21	0805	2012		
316	1206	3216		
32	1210	3225		

③DIELECTRIC CODE

OPTION :

Α

(7) (8)

5 6

Н

©					
Temperature Compensation Type					
CODE	Temperature Range (℃)	ppm	ı∕°C		
CG	-55 to 125	0	±30		
CH	-55 10 125	0	±60		
• All parts of COG will be marked as "CG" but will					

specification or thickness.

Above digits are used to track individual

conform to the above table.

- Temperature coefficients are determined by calculation based on measurement at $20^\circ\!C$ and $85^\circ\!C$.

High Dielectric Constant Type					
CODE Temperature AC		∆C max. (%)	Standard Temperature (℃)		
X5R	-55 to 85	±15			
X6S	-55 to 105	±22	1		
X6T	-55 10 105	+22/-33	25		
X7R		±15	20		
X7S	-55 to 125	±22			
X7T		+22/-33			

(4)CAPACITANCE CODE

Capacitance expressed in pF. Two significant digits plus number of zeros. For Values < 10pF, Letter R denotes decimal point, <1,000pF = 1nF, 1,000nF = 1 μ F> (Example)

(Example)

Capacitance		E STANDARD NUMBER				
0.5pF		E3	E6	E12	Eź	24
1pF			1.0	1.0	1.0	1.1
10pF		10	1.0	1.2	1.2	1.3
100pF		1.0	1 5	1.5	1.5	1.6
1nF			1.5	1.8	1.8	2.0
10nF			0 0	2.2	2.2	2.4
100nF	0.0	2.2	2.7	2.7	3.0	
1µF		2.2	22	3.3	3.3	3.6
10µF			0.0	3.9	3.9	4.3
			47	4.7	4.7	5.1
			4./	5.6	5.6	6.2
			6 0	6.8	6.8	7.5
			0.0	8.2	8.2	9.1
	0.5pF 1pF 10pF 100pF 1nF 10nF 100nF 1μF	0.5pF 1pF 10pF 100pF 1nF 10nF 100nF 1µF	0.5pF E3 1pF 10pF 100pF 1.0 1nF 10nF 100nF 2.2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

⑤TOLERANCE CODE

Temperature Compensation Type (COG)			
CODE	Tolerance		
A*	±0.05pF		
В	±0.1pF		
С	±0.25pF		
D	±0.5pF		
G* ±2%			
J ±5%			
K ±10%			
*: Option			

High Dielectric Constant Type(X5R/X6S/X6T/X7R/X7S/X7T)		
CODE	Tolerance	
J*	±5%	
K	±10%	
М	±20%	

*: Option

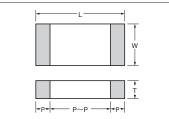
6VOLTAGE CODE

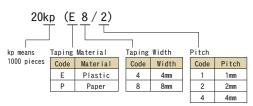
Rated Voltage	
4Vdc	
6.3Vdc	
10Vdc	
16Vdc	
25Vdc	
35Vdc	
50Vdc	
100Vdc	
	4Vdc 6.3Vdc 10Vdc 16Vdc 25Vdc 35Vdc 50Vdc

⑦TERMINATION CODE

2 ·				
CODE	Termination			
Α	A Nickel Barrier/ Tin			
Please is need	contact us if Au termination led.			

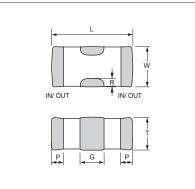
(8)PACKAGING CODE


CODE	Size Code	Cavity pitch	Reel size		
Т	105 to 32	4mm			
Η	02 to 05	2mm	φ180		
Q	03/05	1mm	φιου		
Р	02	1mm			
L	105 to 32	4mm			
Ν	02 to 05	2mm	φ330		
W	03/05	1mm			



Dimension

■CM/CT/CU Series

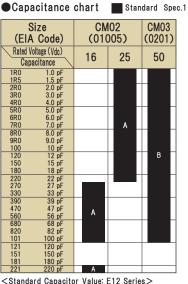


■Packaging Code

0	Co	de	Dimension			Dimension (mm)				Quantity	/ per reel
Size	EIA	JIS	Code	L	W	Т	P min.	P max.	P to P min.	φ180 Reel	φ 330 Reel
02	01005	0402	A	0.4±0.02	0.2±0.02	0.2±0.02	0.07	0.14	0.13	40kp(E4/1) 20kp(P8/2)	— 80kp(P8/2)
			A B	0.6±0.03	0.3±0.03	0.22 max. 0.3±0.03	0.10	0.20	0.20	30kp(P8/1) 15kp(P8/2)	150kp(P8/1) 50kp(P8/2)
03	0201	0603	C	0.6 ± 0.05	0.3±0.05	0.3±0.05	0.13	0.23	0.19	13KP(F0/2)	JUKP(F0/2)
03	0201	0003	D E	0.6±0.09	0.3±0.09	0.25 max. 0.3±0.09	0.13	0.23	0.19	15kp(P8/2)	_
			F	0.6±0.09	0.3±0.09	0.5±0.05	0.13	0.23	0.19	10kp(P8/2)	_
			Α			0.22 max.				001 (D0 /1)	1001
			В	1.0 ± 0.05	0.5 ± 0.05	0.33 max.	0.15	0.35	0.30	20kp(P8/1) 10kp(P8/2)	100kp(P8/1) 50kp(P8/2)
			C			0.5±0.05]			TUKP(F0/2)	JUKP(F0/2)
05	0402	1005	D	1.0±0.15	0.5±0.15	0.5±0.15	0.15	0.35	0.30	10kp(P8/2)	40kp(P8/2)
00	0402	1005	E			0.33 max.					
			F	1.0±0.20	0.5 ± 0.20	0.55 max.	0.15	0.35	0.30	10kp(P8/2)	_
			G	110 0120	010 0120	0.5±0.20					
			H			0.80 max.					
			A	1.6 ± 0.10	0.8±0.10	0.55 max.	-				
105	0000	1000	B	101015	0.01.015	0.8±0.10	0.00	0.00	0.50	41 (D0 (4))	10kp(P8/4)
105	0603	1608	C	1.6±0.15	0.8±0.15	0.8±0.15	0.20	0.60	0.50	4kp(P8/4)	
			D E	1.6±0.20	0.8±0.20	0.8±0.20 0.8±0.25	-				
			A	1.6±0.25	0.8±0.25	0.8±0.25 0.95 max.				4kp(P8/4)	 10kp(P8/4)
			B	2.0±0.10	1.25 ± 0.10	1.25±0.10	-			3kp(E8/4)	10kp(E8/4)
			C			0.95 max.				4kp(P8/4)	10kp(P8/4)
21	0805	2012	D	2.0 ± 0.15	1.25 ± 0.15	1.25±0.15	0.20	0.75	0.70	3kp(E8/4)	10kp(E8/4)
			E			0.95 max.				4kp(P8/4)	10kp(P8/4)
			F	2.0±0.20	1.25 ± 0.20	1.25±0.20	-			3kp(E8/4)	10kp(E8/4)
			A		1.6±0.15	1.6±0.15		0.05			
316	1206	3216	B	3.2 ± 0.20	1.6±0.20	1.6±0.20	0.30	0.85	1.40	2.5kp(E8/4)	5kp(E8/4)
			C	3.2±0.30	1.6±0.30	1.6±0.30	0.30	0.85	1.90	2kp(E8/4)	-
32	1210	3225	A	3.2±0.30	2.5±0.20	2.5±0.20	0.30	1.00	1.40	1kp(E8/4)	4kp(E8/4)

KNH Series

Size	Co	de	Dimension			Dimension	(mm)			Pack	aging
SIZE	EIA	JIS	Code	L	W	Т	G	Р	R	φ 180 Reel	φ 330 Reel
KNH			A	1.0 ± 0.10	0.5 ± 0.20	0.5 max.					
05	0402	1005	В	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	0.3 ± 0.10	0.15 ± 0.10	≧ 0.05	10kp(P8/2)	-
05			C	1.0 ± 0.20	0.5 ± 0.20 0.5 ± 0.20						


[RoHS Compliant Products]

General CM Series

Features

We offer a diverse product line ranging from ultra-compact (0.4×0.2 mm) to large (3.2×2.5 mm) components configured for a variety of temperature characteristics, rated voltages, and packages. We offer the choice and flexibility for almost any applications.

Temperature Compensation Dielectric

Please contact for capacitance value other than standard.

Alphabets in capacitance chart denote dimensions. Please refer to the below table for detail.

(Example) In case of "B" for CM03; L: 0.6±0.03mm, W: 0.3±0.03mm, T: 0.3±0.03mm

		ח	imension (mn	2)					Pack	aging																
Size	Dimension			17			φ 180 Reel					φ 330 Reel														
0126	Code	1	W	т	Code	Quantity	Taping	Taping	Cavity	Code	Quantity	Taping	Taping	Cavity												
		L.		'	Obue	Quantity	Material	Width	Pitch	Oode	Guantity	Material	Width	Pitch												
02	٨	0.1 ± 0.02	0 2 + 0 02	0.2 ± 0.02	Р	40,000	Plastic	4mm	1mm	—	-	—	-	-												
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 - 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Н	20,000	Paper	8mm	2mm	N	80,000	Paper	8mm	2mm
03	В	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm												
03	U U	0.0 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm												

Applications

This standard type is ideal for use in a wide range of applications, from commercial to industrial equipment.

General CM Series

[RoHS Compliant Products]

X5R Dielectric

citance	chart	Stan	dard Spec	.1 S	tandard S	pec.2 🛛	Optiona	al Spec.										
ize Code)		CM02 (01005))			CM03 (0201)					CN (04	105 02)				CM (06	105 03)	
ltage (Vdc) citance	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	10	16	25	35
150 pF 220 pF																		
680 pF 1000 pF			A8															
2200 pF 3300 pF 4700 pF								В3										
10000 pF 15000 pF 22000 pF																		
47000 pF 68000 pF 0.10 μF	A8	A8				В7						00	C3					
0.47 μF 1.0 μF	A8				B8 C8 C8/F8	E9	E10				C8 C7 C8	C7	C7	C7		B8	C8	
10 µF				E8	<u>F9</u>				D8	G8 2	G8	<u>68</u>	G8		C8		D8 D9	D8 D9
	ize Code) litage (Vdc) citance 100 pF 1500 pF 2200 pF 3300 pF 1000 pF 2200 pF 2200 pF 3300 pF 1000 pF 2200 pF 2200 pF 2200 pF 2200 pF 2200 pF 2200 pF 2200 pF 2200 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 2200 pF 2200 pF 1000 pF 2200 pF 1000 pF 2200 pF 1000 pF 2200 pF 1000 pF 2200 pF 2200 pF 1000 pF 2200 pF 1000 pF 2200 pF 1000 pF 2200 pF 2200 pF 1000 pF 2200 pF 2300 pF 2200 pF 2300 pF 22000 pF 2200 pF 200	ize Code) Itage (Vdc) citance 100 pF 150 pF 220 pF 330 pF 1500 pF 2200 pF 3300 pF 1500 pF 2200 pF 3300 pF 4700 pF 6800 pF 1500 pF 4700 pF 6800 pF 1500 pF 4700 pF 6800 pF 4700 pF 6800 pF 4700 pF 4700 pF 4700 pF 4700 pF 4700 pF 4700 pF 4700 pF 4700 pF 470 pF 48 477 pF 477 p	ize CM02 Code) (01005) Itage (Vdc) 6.3 10 100 pF 6.3 10 150 pF 220 pF 330 pF 470 pF 680 pF 1000 pF 1500 pF 220 pF 3300 pF 1500 pF 1500 pF 200 pF 3300 pF 4700 pF 6800 pF 15000 pF 2200 pF 3300 pF 4700 pF 6800 pF 4700 pF 6800 pF 0.10 µF A8 0.22 µF 0.10 µF A8 0.24 µF A8 43 0.47 µF A8 10 µF	ize CM02 (01005) Itage (Vdc) 6.3 10 16 100 pF	ize CMO2 (01005) Itage (Vdc) citance 6.3 10 16 4 100 pF 6.3 10 16 4 100 pF 220 pF 230 pF 470 pF 680 pF 680 pF 1500 pF 220 pF 330 pF 470 pF 680 pF 680 pF 1500 pF 1500 pF 220 pF 3300 pF 48 470 pF 680 pF 1000 pF 15000 pF 2200 pF 3300 pF 48 500 pF 1000 pF 100 pF <td>ize CM02 Code) (01005) Itage (Vdc) 6.3 10 16 4 6.3 100 pF 150 pF 220 pF 330 pF 4 6.3 10 100 pF 470 pF 470 pF 48 5 5 5 1000 pF A8 100 pF 48 5<</td> <td>ize CMO2 CMO3 Code) (01005) (0201) Itage (Vdc) 6.3 10 16 4 6.3 10 100 pF </td> <td>ize CM02 CM03 Code) (01005) (0201) Itage (Vdc) 6.3 10 16 4 6.3 10 16 100 pF 150 pF 220 pF 330 pF 330 pF 330 pF 330 pF 330 pF 330 pF 16<</td> <td>Code) (01005) (0201) Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 100 pF 150 pF 330 pF 10 16 4 6.3 10 16 25 100 pF 150 pF 100 pF 100 pF 100 pF 100 pF 100 pF 16 25 1000 pF A8 100 pF 100 pF 16 16 25 100 pF 1000 pF A8 100 pF 16 16 16 16 16 25 1000 pF A8 100 pF 16<</td> <td>ize CM02 CM03 CM03 C0201 Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 4 100 pF 6.3 10 16 4 6.3 10 16 25 4 100 pF 70 pF 8 9</td> <td>ize CMO2 (01005) CMO3 (0201) Itage (Vdc) citance 6.3 10 16 4 6.3 10 16 25 4 6.3 100 pF 6.3 10 16 4 6.3 10 16 25 4 6.3 100 pF 70 pF</td> <td>ize CM02 CM03 CM03 CM03 C04 Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 4 6.3 10 100 pF </td> <td>ize CM02 CM03 CM05 CM05 Code) (01005) (0201) (0402) (0402) Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 4 6.3 10 16 100 pF 6.3 10 16 4 6.3 10 16 25 4 6.3 10 16 100 pF 70 pF 8 8 9</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	ize CM02 Code) (01005) Itage (Vdc) 6.3 10 16 4 6.3 100 pF 150 pF 220 pF 330 pF 4 6.3 10 100 pF 470 pF 470 pF 48 5 5 5 1000 pF A8 100 pF 48 5<	ize CMO2 CMO3 Code) (01005) (0201) Itage (Vdc) 6.3 10 16 4 6.3 10 100 pF	ize CM02 CM03 Code) (01005) (0201) Itage (Vdc) 6.3 10 16 4 6.3 10 16 100 pF 150 pF 220 pF 330 pF 330 pF 330 pF 330 pF 330 pF 330 pF 16<	Code) (01005) (0201) Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 100 pF 150 pF 330 pF 10 16 4 6.3 10 16 25 100 pF 150 pF 100 pF 100 pF 100 pF 100 pF 100 pF 16 25 1000 pF A8 100 pF 100 pF 16 16 25 100 pF 1000 pF A8 100 pF 16 16 16 16 16 25 1000 pF A8 100 pF 16<	ize CM02 CM03 CM03 C0201 Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 4 100 pF 6.3 10 16 4 6.3 10 16 25 4 100 pF 70 pF 8 9	ize CMO2 (01005) CMO3 (0201) Itage (Vdc) citance 6.3 10 16 4 6.3 10 16 25 4 6.3 100 pF 6.3 10 16 4 6.3 10 16 25 4 6.3 100 pF 70 pF	ize CM02 CM03 CM03 CM03 C04 Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 4 6.3 10 100 pF	ize CM02 CM03 CM05 CM05 Code) (01005) (0201) (0402) (0402) Itage (Vdc) 6.3 10 16 4 6.3 10 16 25 4 6.3 10 16 100 pF 6.3 10 16 4 6.3 10 16 25 4 6.3 10 16 100 pF 70 pF 8 8 9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Size (EIA Code)	(EIA Code) (0805) ated Voltage (Vdc) 10 16 25 50 Capacitance 10 16 25 50 5 2.2 µF B3 B3 B3						CM (12	316 06)					CM32 (1210)		
Rated Voltage (Vdc) Capacitance	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50
105 1.0 μF															
475 4.7 μF 106 10 μF	B4	B3 D8 F8	F8			A4	A3	A3 B8	B3	<u>B3</u>			A3	A3 A8	A3
226 22 μF 476 47 μF					B5		B8				A5	A4	AS	AO	

<Standard Capacitance Value>

Cpacitance value of less than $0.1\mu F$:E6 Series

Cpacitance value of $0.1\mu F$ and larger :E3 Series Please contact for capacitance value other than standard.

Tan δ Code	Tan δ
3	5.0% max.
4	7.0% max.
5	7.5% max.
7	10.0% max.
8	12.5% max.
9	15.0% max.
10	20.0% max.

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for detail.

(Example) In case of "B3" for CM03;

L: 0.6±0.03mm	, W: 0.3±0.03mm,	T: 0.3±0.03mm,	Tanδ: 5.0% max.
---------------	------------------	----------------	-----------------

		n	imension (mn	2					Pack	aging				
Size	Dimension			17			φ 180 Reel					φ 330 Reel		
0126	Code	L	W	Т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quantity	Taping Material	Taping Width	Cavity Pitch
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Р	40,000	Plastic	4mm	1mm	-	-	-	-	-
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Н	20,000	Paper	8mm	2mm	N	80,000	Paper	8mm	2mm
	В	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm
	В	0.0 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
03	С	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm
03		0.0 ± 0.05	0.5 ± 0.05	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
	E	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н	15,000	Paper	8mm	2mm	—	-	-	-	—
	F	0.6 ± 0.09	0.3 ± 0.09	0.5 ± 0.05	Н	10,000	Paper	8mm	2mm	—	—	-	-	—
	с	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Q	20,000	Paper	8mm	1mm	W	100,000	Paper	8mm	1mm
		1.0 ± 0.05	0.5 ± 0.05	0.0 ± 0.00	Н	10,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
05	D	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	Н	10,000	Paper	8mm	2mm	N	40,000	Paper	8mm	2mm
00	F	1.0 ± 0.20	0.5 ± 0.20	0.55 max.	Н	10,000	Paper	8mm	2mm	—	-	—	-	—
	G	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н	10,000	Paper	8mm	2mm	—	—	—	—	—
	H	1.0 ± 0.20	0.5 ± 0.20	0.8 max.	Н	10,000	Paper	8mm	2mm	—	-	-	-	_
	B	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
105	C	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
	D	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
	B	2.0 ± 0.10			Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
21	D	2.0 ± 0.15	1.25 ± 0.15	1.25 ± 0.15	T	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
	F	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
316	A	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm
	В	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm
32	A	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	Т	1,000	Plastic	8mm	4mm	L	4,000	Plastic	8mm	4mm

🔇 KYOCERA

General CM Series

[RoHS Compliant Products]

X6S/X6T Dielectric

Capacitance chart Standard Spec.2 Ø Optional Spec.

	Х	6S	X6T
Size (EIA Code)	CM105 (0603)	CM21 (0805)	CM105 (0603)
Rated Voltage (Vdc) Capacitance	10	10	4
106 10 μF 226 22 μF	C D9 2	F8	6 E8 2

Please contact for capacitance value other than standard.

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for de (Example) In case of "D9" for CM105;

L: 1.6±0.20mm, W: 0.8±0.20mm, T: 0.8±0.20mm, Tan δ: 15.0% max.

tail.	Code	Tan O
	8	12.5% max.
	9	15.0% max.
ሐ 330 Real		

Tan δ _{Tan δ}

		П	imension (mm	~					Pack	aging	
Size	Dimension	D	innension (min	1)			φ 180 Reel				
0126	Code	L	W	Т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quan

Size	Dimension						ψ 100 1/661					ψ 330 1/661		
0126	Code	L	W	Т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quantity	Taping Material	Taping Width	Cavity Pitch
105	D	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
105	E	1.6 ± 0.25	0.8 ± 0.25	0.8 ± 0.25	Т	4,000	Paper	8mm	4mm	—	—	-	-	—
21	F	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm

X7R Dielectric

•Capacitance chart Standard Spec.1 Ø Optional Spec.

	CM02 (01005)	CM03 (0201)	CM05 (0402)		CM (06					CM21 (0805)		
Rated Voltage (Vdc) Capacitance	16	10	25	6.3	10	16	25	6.3	10	16	25	50
101 100 pF 151 150 pF 221 220 pF 331 330 pF 471 470 pF	A8											
681 680 pF 102 1000 pF 152 1500 pF 222 2200 pF 332 3300 pF												
472 4700 pF 682 6800 pF 103 10000 pF 153 15000 pF		В3										
223 22000 pF 333 33000 pF 473 47000 pF 683 68000 pF 104 0.10 μF			C8									
224 0.22 μF 474 0.47 μF 105 1.0 μF 225 2.2 μF 475 4.7 μF 106 10 μF				C8	B8	B8	E B3 2		B3	Ø F8 3	B8 F8	<u>€ F3 2</u>
106 10 µF								F8				

Size (EIA Code)			CM316 (1206)	CM32 (1210)				
Rated Voltage (Vdc) Capacitance	6.3	10	16	25	50	16	25	50
225 2.2 μF 475 4.7 μF 106 10 μF 226 22 μF	B8	B5	B8	B8 ⋈ B3 ⋈	<u>© вз 7</u>	A2 A8	A8	A3

<Standard Capacitance Value>

Capacitance value of less than 0.1 $\mu\text{F}\text{:}$ E6 Series

Capacitance value of 0.1µF and larger : E3 Series Please contact for capacitance value other than standard.

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for detail.

(Example) In case of "B3" for CM03;

L: 0.6 ± 0.03 mm, W: 0.3 ± 0.03 mm, T: 0.3 ± 0.03 mm, Tan δ : 5.0% max.

		n	imension (mm	2)					Pack	aging				
Size	Dimension	U		17		φ 180 Reel φ 330 Reel								
0126	Code	L	W	Т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quantity	Taping Material	Taping Width	Cavity Pitch
02	Α	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Р	40,000	Plastic	4mm	1mm	—	1	-	-	-
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Н	20,000	Paper	8mm	2mm	N	80,000	Paper	8mm	2mm
03	В	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm
03	D	0.0 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
05	С	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Q	20,000	Paper	8mm	1mm	W	100,000	Paper	8mm	1mm
05		1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Н	10,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
105	В	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
105	C	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
21	B	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
21	F	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
316	B	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm
32	A	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	Т	1,000	Plastic	8mm	4mm	L	4,000	Plastic	8mm	4mm

Tan δ Code	Tan δ
2	3.5% max.
3	5.0% max.
5	7.5% max.
8	12.5% max.

General CM Series

[RoHS Compliant Products]

X7S/X7T Dielectric

●Capacitance chart Standard Spec.1 Standard Spec.2 Ø Optional Spec. X7S X7T Size CM21 CM316 CM105 CM21 (EIA Code) (0805) (1206) (0603) (0805) Rated Voltage (Vdc) 100 10 100 6 3 6 2

Please contact for capacitance value other than standards.

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for detail.

(Example) In case of "D9" for CM105; L: 1.6 \pm 0.20mm, W: 0.8 \pm 0.20mm, T: 0.8 \pm 0.20mm, Tan δ : 15.0% max.

			n –	imension (mn	\sim		Packaging										
	Size	Dimension			1)			φ 180 Reel					φ 330 Ree				
	0126	Code	1	w	т	Code	Quantity	Taping	Taping	Cavity	Code	Quantity	Taping	Taping	Cavity		
			L	vv	I	Coue	Quantity	Material	Width	Pitch	Code	Quantity	Material	Width	Pitch		
	105	D	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm		
	21	F	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm		
ſ	316	В	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm		
	310	С	3.2 ± 0.30	1.6 ± 0.30	1.6 ± 0.30	Т	2,000	Plastic	8mm	4mm	—	-	—	—	—		

Test Conditions and Standards

Test Conditions and Specifications for Temperature Compensation Type (C Δ Characteristics) CM / CU Series (Standard Spec.1)

Test	Items		Te	st Conditions	•		Specifications
Capacitance Va	alue (C)	Capac	itance	Frequency	Volt]	Within tolerance
Q		C≤10	00pF 1).5 to 5Vrms		C≥30pF : Q≥1000 C<30pF : Q≥400+20C
Insulation Resi	stance (IR)	Apply the rated temperature an The charge and exceed 50mA.	d humidity	у.			Over 10000M Ω or 500M Ω - $\mu F,$ whichever is less
Dielectric Resistance		Apply *3 times *CU02C △ R20 The charge and exceed 50mA.	-120/25V:	twice		not	No problem observed
Appearance		Microscope					No problem observed
Termination St	rength	Apply a sidewa sample. note: 2N for O2					No problem observed
Bending Streng	;th	Glass epoxy PC seconds.	B: Fulcrun	n spacing: 90mr	n, duration time	9 10	No significant damage with 1mm bending.
Vibration	Appearance	Vibration freque	ency: 10 to	n 55 (Hz)			No problem observed
Test	ΔC	Amplitude: 1.5n	าท			Within Tolerance	
	Q	Sweeping condi directions: 2 ho				and Z	C≥30pF : Q≥1000 C<30pF : Q≥400+20C
Soldering	Appearance	Soak the samp	pak the sample in 260°C± 5°C solder for 10 ± 0.5 seconds			conde	No problem observed
Heat Resistant	ΔC	and place in no	rmal tempe	erature and hun			Within \pm 2.5% or \pm 0.25pF, whichever is larger
Resistant	Q	the sample after 24 ± 2 hours. (Pre-heating conditions) Order Temperature Time					C≥30pF : Q≥1000 C<30pF : Q≥400+20C
	IR	Order		emperature 0 to 100°C	2 minutes		Over 10000M Ω or 500M Ω •µF whichever is less
	Withstanding Voltage	2 The charge and	2 150 to 200℃ 2 minutes e and discharge current of the capacitor must not mA for IR and withstanding voltage measurement.			Resist without problem	
Solderablity	<u> </u>	Soaking conditi	-0.5Cu	245 ± 5℃ 235 ± 5℃	3 ± 0.5 sec. 2 ± 0.5 sec.		Solder coverage : 90% min.
Temperature	Appearance	(Cycle)					No problem observed
Cycle	ΔC	Room temperat	ure (3 min	ı.) →			Within \pm 2.5% or \pm 0.25pF, whichever is larger
	Q	Lowest operation Room temperat Highest operation	ure (3 min	ı.) →	→		C≥30pF : Q≥1000 C<30pF : Q≥400+20C
	IR	After 5 cycles,	measure a	after 24 ± 2 ho			Over 10000M Ω or 500M Ω - $\mu F,$ whichever is less
	Withstanding Voltage	The charge and exceed 50mA f					Resist without problem
Moisture	Appearance	After applying	the rated v	voltage for 500 [.]	+12/ — 0 hours	in the	No problem observed
Resistant Load	ΔC	condition of 40° stabilize in norr	℃±2℃a	and 90 to 95%R	H, allow the par	ts to	Within \pm 7.5% or \pm 0.75pF, whichever is larger
Q		before measure The charge and	ment.		-		C≥30pF : Q≥200 C<30pF : Q≥100+10C/ 3
IR		exceed 50mA f	or IR meas	surement.			Over 500M Ω or 25M Ω - $\mu F,$ whichever is less
High- Appearance		After applying	*twice the	rated voltage i	n the temperat	ure of	No problem observed.
Temperature Load	ΔC	125 ± 3℃ for	1000+12/	- 0 hours, mea	sure the sampl		Within \pm 3% or \pm 0.3pF, whichever is larger
LUdu	Q	-24 ± 2 hours in The charge and exceed 50mA f	discharge or IR meas	current of the surement.	capacitor must		C≥30pF: Q≥350 10pF <c<30pf: 2<br="" q≥275+5c="">C<10pF: Q≥200+10C</c<30pf:>
	ID	*Applied voltag chart below.	es for resp	pective products	s are indicated	in the	
	IR individual speci						Over $1000M\Omega$ or $50M\Omega\cdot\mu F,$ whichever is less

Please ask for individual specification for the hatched range in previous chart.

Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated volatage)

Applied Voltage	Rated Voltage	Products
× 1.0	16V	CM02C Δ 221
× 1.2	25V	CM02C & R20-120

Test Conditions and Standards

Test Conditions and Specifications for High Dielectric Type (X5R, X7R) CM / CT Series (Standard Spec.1)

Test	Items	Test Conditions	Specifications		
Capacitance V	alue (C)	Measure after heat treatment	Within tolerance		
Tanδ		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Refer to capacitance chart		
Insulation Res	istance (IR)	Apply the rated voltage for 1 minute, and measure it in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA.	Over 10000M Ω or 500M Ω - $\mu F,$ whichever is less		
Dielectric Resi	stance	Apply 2.5 times of the rated voltage for 1 to 5 seconds. The charge and discharge current of the capacitor must not exceed 50mA.	No problem observed		
Appearance		Microscope	No problem observed		
Termination S	trength	Apply a sideward force of 500g (5N) to a PCB-mounted sample. note : 2N for 0201 size, and 1N for 01005 size. Exclude CT series with thickness of less than 0.66mm.	No problem observed		
Bending Stren	gth	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds. Exclude CT series with thickness of less than 0.66mm.	No significant damage with 1mm bending		
Vibration Test	Appearance	Take the initial value after heat treatment. Vibration frequency: 10 to 55 (Hz)	No problem observed		
	ΔC	Amplitude: 1.5mm Sweeping condition: $10 \rightarrow 55 \rightarrow 10$ Hz/1 minute in X, Y and Z	Within tolerance		
	Tanδ	directions: 2 hours each, 6 hours in total, and place in normal temperature and humidity, then measure the sample after heat treatment.	Within tolerance		
Soldering Heat	Appearance	Take the initial value after heat treatment. Soak the sample in $260^{\circ}C \pm 5^{\circ}C$ solder for 10 ± 0.5 seconds	No problem observed		
Resistant	ΔC	and place in normal temperature and humidity, and measure after heat treatment.	Within ± 7.5%		
	Tanδ	(Pre-heating conditions)	Within tolerance		
	IR	Order Temperature Time 1 80 to 100°C 2 minutes	Over 10000M Ω or 500M Ω - $\mu F,$ whichever is less		
	Withstanding Voltage	2 150 to 200°C 2 minutes The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.	Resist without problem		
Solderablity	1	Soaking condition Sn-3Ag-0.5Cu $245 \pm 5^{\circ}$ C 3 ± 0.5 sec. Sn63 Solder $235 \pm 5^{\circ}$ C 2 ± 0.5 sec.	Solder coverage : 90% min.		
Temperature	Appearance	Take the initial value after heat treatment.	No problem observed		
Cycle	ΔC	(Cycle) Room temperature (3 min.) →	Within \pm 7.5%		
	Tanδ	Lowest operation temperature (30 min.) →	Within tolerance		
	IR	Room temperature (3 min.) → Highest operation temperature(30 min.)	Over $10000M\Omega$ or $500M\Omega \cdot \mu F$, whichever is less		
	Withstanding Voltage	After 5 cycles, measure after heat treatment. The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.	Resist without problem		
Moisture	Appearance	Take the initial value after heat treatment. After applying rated voltage for $500+12/-0$ hours in the	No problem observed		
Resistant Load	ΔC	condition of 40° C ± 2°C and 90 to 95%RH, and place in normal temperature and humidity, then measure the sample after heat	Within ± 12.5%		
	Tanδ	treatment.	200% max. of initial value		
	IR	The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.	Over 500M Ω or 25M Ω -µF, whichever is less		
High- Temperature	Appearance	Take the initial value after heat treatment. After applying *twice the rated voltage at the highest operation	No problem observed		
Load ΔC		temperature for $1000+12/-0$ hours, and measure the sample after heat treatment in normal temperature and humidity.	Within ± 12.5%		
	Tanδ	The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.	200% max. of initial value		
	IR	*Apply 1.5 times when the rated voltage is 10V or less. Applied voltages for respective products are indicated in the chart below.	Over $1000M\Omega$ or $50M\Omega$ - $\mu F,$ whichever is less		
Heat treatme	nt	Expose sample in the temperature of $150+0/-10^{\circ}$ C for 1 humidity for 24 ± 2 hours.	hour and leave the sample in normal temperature and		

Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated voltage)

pplied Voltage	Rated Voltage	Products
× 1.0	10V	CM02X5R104
× 1.3	6.3V	CM02X5R153-104, CT03X5R104
	16V	CM02X5R101-103, CM05X5R224, CM105X5R225, CM21X5R475-106, CM316X5R226, CM02X7R101-222,
	100	CM105X7R105, CM316X7R106, CM32X7R226, CT105X5R105, CT21X5R475
× 1.5	0EV	CM03X5R332-103, CM105X5R105, CM21X5R225-475, CM316X5R106, CM32X5R106-226,
	257	CM05X7R104, CM21X7R105-225, CM316X7R475, CM32X7R106
-	50V	CM21X5R105, CM32X5R106, CM32X7R106, CT21X5R225, CM316X5R475
	× 1.0 × 1.3	× 1.0 10V × 1.3 6.3V × 1.5 25V

Please contact us for the optional specifications of the capacitance chart.

Test Conditions and Standards

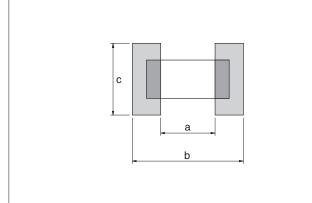
Test Conditions and Specifications for High Dielectric Type (X5R, X7R) CM / CT Series (Standard Spec.2)

Test	Items	Test Conditions	Specifications	
Capacitance Va	alue (C)	Measure after heat treatment	Within tolerance	
Tan δ		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Refer to capacitance chart	
nsulation Resi	stance (IR)	Apply the rated voltage for 1minute, and measure it in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA.	Over 50MΩ-µF	
Dielectric Resis	stance	Apply 2.5 times of the rated voltage for 1 to 5 seconds. The charge and discharge current of the capacitor must not exceed 50mA.	No problem observed	
Appearance		Microscope	No problem observed	
Termination St	rength	Apply a sideward force of 500g (5N) to a PCB-mounted sample. note : 2N for 0201 size, and 1N for 01005 size. Exclude CT series with thickness of less than 0.66mm.	No problem observed	
Bending Streng	;th	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds. Exclude CT series with thickness of less than 0.66mm.	No significant damage with 1mm bending	
Vibration Test	Appearance	Take the initial value after heat treatment. Vibration frequency: 10 to 55 (Hz)	No problem observed	
	ΔC	Amplitude: 1.5mm Sweeping condition: $10 \rightarrow 55 \rightarrow 10$ Hz/1 minute in X, Y and Z direc-	Within tolerance	
	Tanδ	tions: 2 hours each, 6 hours in total, and place in normal tempera- ture and humidity, then measure the sample after heat treatment.	Within tolerance	
Soldering Heat	Appearance	Take the initial value after heat treatment. Soak the sample in $260^{\circ}C \pm 5^{\circ}C$ solder for 10 ± 0.5 seconds	No problem observed	
Resistant	ΔC	and place in normal temperature and humidity, and measure after heat treatment.		
	Tanδ	(Pre-heating conditions)	Within tolerance	
	IR	Order Temperature Time 1 80 to 100°C 2 minutes 0 10°C 2 minutes	Over 50MΩ •μF	
	Withstanding Voltage	2 150 to 200°C 2 minutes The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.	Resist without problem	
Solderablity		Soaking conditionSn-3Ag-0.5Cu $245 \pm 5^{\circ}$ C 3 ± 0.5 sec.Sn63 Solder $235 \pm 5^{\circ}$ C 2 ± 0.5 sec.	Solder coverage : 90% min.	
Temperature Cycle	Appearance ΔC	Take the initial value after heat treatment. (Cycle)	No problem observed Within \pm 7.5%	
0 9 0 10	Tanδ	Room temperature (3 min.) → Lowest operation temperature	Within tolerance	
	IR	(30 min.) \rightarrow Room temperature (3 min.) \rightarrow Highest operation temperature(30 min.)	Over 50MΩ - μF	
	Withstanding Voltage	After 5 cycles, measure after heat treatment. The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.	Resist without problem	
Moisture	Appearance	Take the initial value after heat treatment.	No problem observed	
Resistant Load	ΔC	After applying rated voltage for $500+12/-0$ hours in the condition of $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95%RH, and place in normal tempera-	Within ± 12.5%	
	Tanδ	ture and humidity, then measure the sample after heat treatment. The charge and discharge current of the capacitor must not	200% max. of initial value	
IR		exceed 50mA for IR measurement.	Over 10MΩ •µF	
Load tion temperature for 1000+12/ - 0 hours, and measure the		Take the initial value after heat treatment. After applying ∗ □ times the rated voltage at the highest opera-	No problem observed	
			Within ± 12.5%	
		The charge and discharge current of the capacitor must not	200% max. of initial value	
	IR	*Apply 1.0 times when the rated voltage is 4V or less. Applied voltages for respective products are indicated in the chart below.	Over 10MΩ·µF	
Heat treatmen	ıt	Expose sample in the temperature of $150+0/-10^{\circ}$ C for 1 humidity for 24 ± 2 hours.		

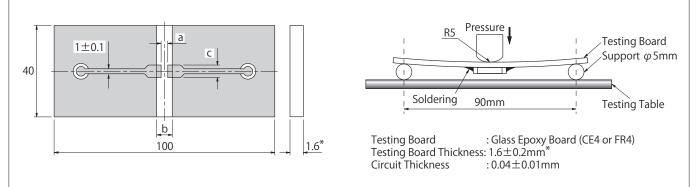
Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated voltage)

Applied Voltage	Rated Voltage	Products	Applied Voltage	Rated Voltage	Products
	6.3V	CM02X5R224, CM02X5R474, CM03X5R225,	× 1.2	6.3V	CM03X5R105
	0.3 V	CT05X5R105, CT05X5R225, CT05X5R475		6.3V	CM03X5R474
× 1.0	10V	CM03X5R225, CM21X6S226	× 1.3	10V	CM03X5R223-224, CM05X5R105-225
^ 1.0	16V	CM03X5R105, CM05X5R225		16V	CM05X5R105
	25V	CM05X5R105, CM105X5R475, CM105X5R106	× 1.5	6.3V	CM21X7T226
	35V	CM05X5R105, CM105X5R475, CM105X5R106	∧ 1.5	10V	CM05X5R474, CM05X5R475

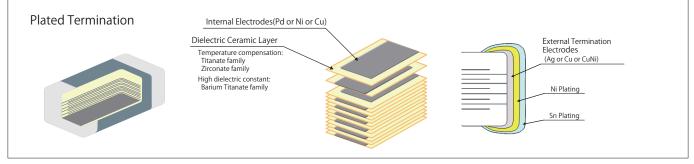
Please contact us for the optional specifications of the capacitance chart.



(Unit: mm)


Test Conditions and Standards

Substrate for Adhesion Strength Test, Vibration Test, Soldering Heat Resistance Test, Temperature Cycle Test, Load Humidity Test, High-Temperature with Loading Test.

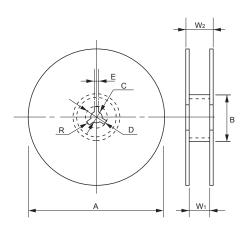

			(Unit: mm)
Size (EIA Code)	а	b	C
02 (01005)	0.15	0.50	0.20
03 (0201)	0.26	0.92	0.32
05 (0402)	0.4	1.4	0.5
105 (0603)	1.0	3.0	1.2
21 (0805)	1.2	4.0	1.65
316 (1206)	2.2	5.0	2.0
32 (1210)	2.2	5.0	2.9

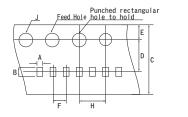
Substrate for Bending Test

* 02, 03, 05 size 0.8 ± 0.1mm

Structure

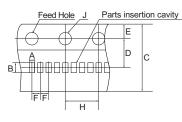
• Please contact your local kyocera sales office or distributor for specifications not covered in this catalog.


• Our products are continually being improved. As a result, the capacitance range of each series is subject to change without notice. Please contact sales representative to confirm compatibility with your application.



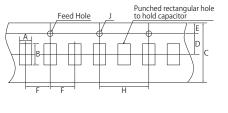
Packaging Options Tape and Reel

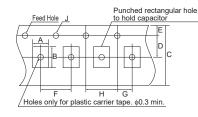
Reel

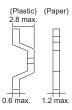


Carrier Tape F=1mm (02 Size)

(Plastic)


F=1mm (02, 03, 05 Size)


				(Unit: mm)
Code Reel	A	В	С	D
7-inch Reel (CODE: T, H, Q)	180 ⁺⁰ -2.0			
7-inch Reel (CODE: P)	178±2.0	φ60 min.	13±0.5	21±0.8
13-inch Reel (CODE: L, N, W)	330±2.0			
Code Reel	E	W 1	W 2	R
7-inch Reel (CODE: T, H, Q)		10.5±1.5	16.5 max.	
7-inch Reel (CODE: P)	2.0 ± 0.5	4.35±0.3	6.95±1.0	1.0
13-inch Reel (CODE: L, N, W)		9.5±1.0	16.5 max.	


F=2mm (02, 03, 05 Size)

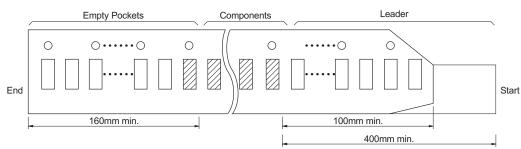
F=4mm (105, 21, 316, 32 Size)

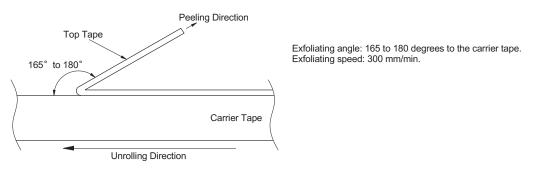
(Unit: mm)

Carrier Tape

0'										Oantia	
Size (EIA Code)	A	В	C	D	E	F	G	Н	J	Width	r Tape Material
02 (01005)*	0.23 ± 0.02	0.43 ± 0.02	4.0 ± 0.08	1.8±0.02	0.9 ± 0.05	1.0 ± 0.02		2.0 ± 0.04	0.8 ± 0.04	4mm	Plastic
02 (01003)	0.25 ± 0.03	0.45 ± 0.03	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	2.0 ± 0.05	_	4.0±0.1	1.5+0.1/-0	8mm	Paper
	0.37 ± 0.03	0.67 ± 0.03	8.0+0.3/-0.1	2 5 - 0 05	1.75 ± 0.1	1.0 ± 0.05		4.0±0.05	1 5+0 1 /-0		
02 (0201)*	0.37 ± 0.03	0.07-0.03	8.0±0.3	3.5 ± 0.05	1./5±0.1	2.0±0.05	_	4.0±0.1	1.5+0.1/-0	0.m.m	Dopor
03 (0201)*	0.39 ± 0.03	0.69 ± 0.03	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	2.0 ± 0.05	—	4.0±0.1	1.5+0.1/-0	8mm	Paper
	0.42 ± 0.03	0.72 ± 0.03	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	2.0 ± 0.05	—	4.0±0.1	1.5+0.1/-0		
	0.65 ± 0.1		8.0+0.3/-0.1			1.0 ± 0.05	—	4.0±0.05			
05 (0402)*	0.05 - 0.1	1.15±0.1	8.0±0.3	3.5 ± 0.05	1.75±0.1	2.0 ± 0.05		4.0±0.1	1.5+0.1/-0	8mm	Paper
05 (0402)*	0.75±0.1]	0.0 - 0.3			2.0 ± 0.05	_	4.0 - 0.1		011111	raper
	0.8±0.1	1.3±0.1	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	2.0 ± 0.05	—	4.0±0.1	1.5+0.1/-0		
105 (0602)*	1.0±0.2	1.8±0.2	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Paper
105 (0603)*	1.1±0.2	1.9±0.2	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	011111	гареі
21 (0805)	1.5±0.2	2.3±0.2	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Paper
21 (0805)	1.5 - 0.2	2.3 - 0.2	0.0 - 0.3	3.5 ± 0.05	1.75-0.1	4.0 - 0.1	2.0 ± 0.05	4.0 - 0.1	1.5+0.1/-0	8mm	Plastic
316 (1206)	2.0±0.2	3.6±0.2	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Paper
310 (1200)	2.0 - 0.2	3.0	0.0-20.3	3.5-0.05	1.75±0.1	4.0-20.1	2.0-20.05	4.0-20.1	1.5+0.1/=0	8mm	Plastic
32 (1210)	2.9±0.2	3.6±0.2	8.0±0.3	3.5 ± 0.05	1.75 ± 0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Plastic
* Ontion											

* Option


CAT1H1910GH2787E As of October 2019


Packaging Options

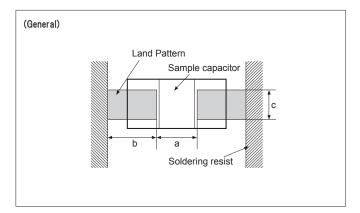
Detail of leader and trailer

Adhesive tape

- 1) The exfoliative strength when peeling off the top tape from the carrier tape by the method of the following figure shall be *0.1 to 0.7N. *02 Size: 0.1 to 0.5N
- 2) When the top tape is peeled off, the adhesive stays on the top tape.
- 3) Chip capacitors will be in a state free without being stuck on the thermal adhesive tape.

Carrier tape

- 1) Chip will not fall off from carrier tape or carrier tape will not be damaged by bending than within a radius of 25mm.
- 2) The chip are inserted continuously without any empty pocket.
- 3) Chip will not be mis-mounted because of too big clearance between components and cavity. Also the waste of carrier tape will not fill a nozzle hole of mounting machine.



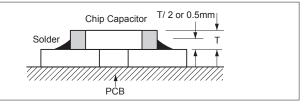
Surface Mounting Information

Dimensions for recommended typical land Since the amount of solder (size of fillet) to be used has direct influence on the capacitor after mounting, the sufficient consideration is necessary.

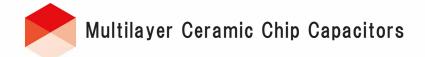
When the amounts of solder is too much, the stress that a capacitor receives becomes larger. It may become the cause of a crack in the capacitor. When the land design of printed wiring board is considered, it is necessary to set up the form and size of land pattern so that the amount of solder is suitable.

General					(Unit: mm
Size	Dime	nsion	Recomm	ended land dii	mensions
(EIA Code)	L	W	а	b	C
02 (01005)	0.4 ± 0.02	0.2 ± 0.02	0.13 to 0.20	0.12 to 0.18	0.20 to 0.23
	0.6 ± 0.03	0.3 ± 0.03	0.00 to 0.05	0.25 to 0.35	0 20 to 0 40
03 (0201)	0.6 ± 0.05	0.3 ± 0.05	0.20 10 0.25	0.25 10 0.35	0.30 to 0.40
	0.6 ± 0.09	0.3 ± 0.09	0.23 to 0.30	0.25 to 0.35	0.30 to 0.45
	1.0 ± 0.05	0.5 ± 0.05	0.30 to 0.50	0.35 to 0.45	0.40 to 0.60
05 (0402)	1.0 ± 0.15	0.5 ± 0.15	0 40 40 0 60	0 40 40 0 50	0 50 40 0 75
	1.0 ± 0.20	0.5 ± 0.20	0.40 10 0.60	0.40 to 0.50	0.50 10 0.75
	1.6 ± 0.10	0.8 ± 0.10	0.70 to 1.00	0.80 to 1.00	0.60 to 0.90
105 (0603)	1.6 ± 0.15	0.8 ± 0.15			
105 (0603)	1.6 ± 0.20	0.8 ± 0.20	0.80 to 1.00	0.80 to 1.00	0.80 to 1.10
	1.6 ± 0.25	0.8 ± 0.25			
	2.0 ± 0.10	1.25 ± 0.10	1.00 to 1.30	1.00 to 1.20	1.00 to 1.45
21 (0805)	2.0 ± 0.15	1.25 ± 0.15	1 00 40 1 20	1.00 to 1.20	1 0E to 1 EE
	2.0 ± 0.20	1.25 ± 0.20	1.00 10 1.30	1.00 10 1.20	1.20 10 1.00
	3.2 ± 0.20	1.6 ± 0.15	2.10 to 2.50	1.10 to 1.30	1.40 to 1.90
316 (1206)	3.2 ± 0.20	1.6 ± 0.20	0 10 to 0 E0	1.10 to 1.30	1 60 to 2 00
	3.2 ± 0.30	1.6 ± 0.30	2.10 10 2.50	1.10 10 1.30	1.00 10 2.00
32 (1210)	3.2 ± 0.30	2.5 ± 0.20	2.10 to 2.50	1.10 to 1.30	1.90 to 2.80

* Recommended land dimensions may differ depending on dimensional tolerance.


Design of printed circuit and Soldering

The recommended fillet height shall be 1/2 of the thickness of capacitors or 0.5mm. When mounting two or more capacitors in the common land, it is necessary to separate the land with the solder resist strike so that it may become the exclusive land of each capacitor.


Ideal Solder Height

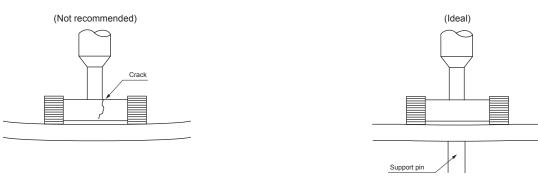
~

.

Item	Prohibited	Recommended example : Separation by solder resist
Multiple parts mount		Solder resist
Mount with leaded parts	Leaded parts	Solder resist Leaded parts
Wire soldering after mounting	Soldering iron Wire	Solder resist
Side by side layout	Solder resist	Solder resist

Surface Mounting Information

Mounting Design


The chip could crack if the PCB warps during processing after the chip has been soldered.

Recommended chip position on PCB to minimize stress from PCB warpage

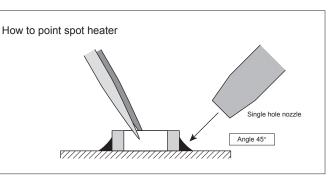
Actual Mounting

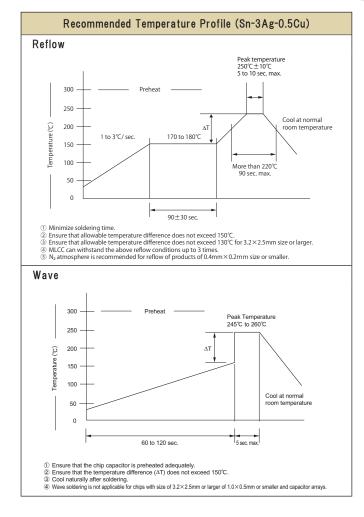
- 1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking.
- 2) During mounting, set the nozzle pressure to a static load of 1 to 3 $\ensuremath{\mathsf{N}}$.
- 3) To minimize the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture.

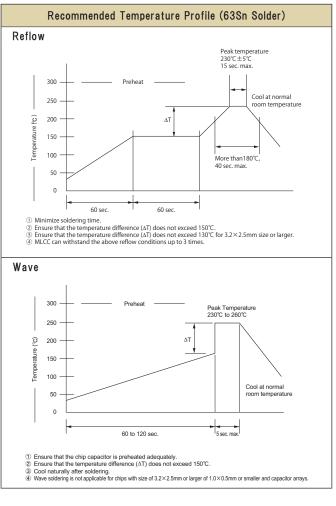
4) Bottom position of pick up nozzle should be adjusted to the top surface of a substrate which camber is corrected.

Resin Mold

- 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin.
- 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin.
- 3) Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.


Surface Mounting Information


Soldering Method


- 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, preheat enough to limit the temperature difference (Delta T) to within 150 degree Celsius.
- 2) The product size 1.6 × 0.8mm to 3.2 × 1.6mm can be used in reflow and wave soldering, and the product size of bigger than 3.2 × 1.6mm, or smaller than 1.6 × 0.8mm can be used in reflow.
- Circuit shortage and smoking can be created by using capacitors which are used neglecting the above caution.
- 3) Please see our recommended soldering conditions.
- 4) In case of using Sn-Zn Solder, please contact us in advance.
- 5) The following condition is recommended for spot heater application.

- Recommended spot heater condition

ltem	Condition
Distance	5mm min.
Angle	45°
Projection Temp.	400°C max.
Flow rate	Set at the minimum
Nozzle diameter	2ϕ to 4ϕ (Single hole type)
Application time	10 sec. max. (1206 and smaller) 30 sec. max. (1210 and larger)

Precautions

Circuit Design

- 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc.
- 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability. Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors.
- 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C.
- 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage. In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage. Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worst case situations, may cause the capacitor to smoke or flame.
- 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer. In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate.
- 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage.

Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation.

- 7. Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications. In addition, it is a common piezo phenomenon of high dielectric products to have some voltage due to vibration or to have noise due to voltage change. Please contact sales in such case.
- 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately.
- 9. Please contact us upon using conductive adhesives.

Storage

- 1. If the component is stored in minimal packaging (a heat-sealed or zippered plastic bag), the bag should be kept closed. Once the bag has been opened, reseal it or store it in a desiccator.
- 2. Keep storage place temperature + 5 to + 40 °C, humidity 20 to 70% RH. See JIS C 60721-3-1, class 1K2 for other climatic conditions.
- 3. The storage atmosphere must be free of corrosive gas such as sulfur dioxide and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be effected.
- 4. Precautions 1) to 3) apply to chip capacitors packaged in carrier tapes.
- 5. The solderability is assured for 6 months from our shipping date if the above storage precautions are followed.

Safety application guideline and detailed information of electrical properties are also provided in kyocera web site; URL: https://global.kyocera.com/prdct/electro/

General CM02 Series Size (JIS Code): 01005(0402) # Packaging Code (Packaging quantity): H(20,000pcs.) / N(80,000pcs.) / P(40,000pcs.)

Distantais and	0	□:Tolerance	Voltage	Part Number	Tan δ		Dimension	•	# Packaging Code		
Dielectric code	Capacitance		[V]	Part Number	[%]	L[mm]	W[mm]	T[mm]	(quantity)		
	100pF			CM02X5R101 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	150pF			CM02X5R151 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	220pF			CM02X5R221 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	330pF			CM02X5R331 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	470pF			CM02X5R471 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	680pF	K: ± 10% / M: ± 20%		CM02X5R681 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	1000pF		16	CM02X5R102 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	1500pF			CM02X5R152 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	2200pF			CM02X5R222 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	3300pF			CM02X5R332 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
VED	4700pF			CM02X5R472 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
X5R	6800pF			CM02X5R682 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	10000pF			CM02X5R103 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	15000pF			CM02X5R153 D 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	22000pF			CM02X5R223 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	33000pF	K: ± 10% / M: ± 20%	6.3	CM02X5R333 🗆 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	47000pF						CM02X5R473 🗆 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02
	68000pF			CM02X5R683 🗆 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
			10	CM02X5R104 10A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	0.10µF	K: ± 10% / M: ± 20%	6.3	CM02X5R104 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	0.22µF	Mt. 1. 00%	0.0	CM02X5R224M06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	0.47µF	M: ± 20%	6.3	CM02X5R474M06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	100pF			CM02X7R101 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	150pF			CM02X7R151 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	220pF			CM02X7R221 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	330pF			CM02X7R331 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
X7R	470pF	K: ± 10% / M: ± 20%	16	CM02X7R471 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	680pF			CM02X7R681 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	1000µF			CM02X7R102 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	1500µF			CM02X7R152 I 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		
	2200µF			CM02X7R222 🗆 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P		

General CM03 Series Size (JIS Code): 0201(0603) # Packaging Code (Packaging quantity): H(15,000pcs.) (*10,00pcs.) / N(50,000pcs.) / Q(30,000pcs.) / W(150,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage	Part Number	Tan δ		Dimension		# Packaging Code
Dielectric coue	Gapacitance		[V]			L[mm]	W[mm]	T[mm]	(quantity)
	3300pF			CM03X5R332 🗆 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	4700pF	K. + 10% / M. + 20%	25	CM03X5R472 🗆 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	6800pF	K: ± 10% / M: ± 20%	25	CM03X5R682 🗆 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	10000pF			CM03X5R103 🗆 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	22000pF			CM03X5R223 🗆 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	33000pF	K: ± 10% / M: ± 20%		CM03X5R333 🗆 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	47000pF		10	CM03X5R473 🗆 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	68000pF		10	CM03X5R683 🗆 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
X5R	0.10µF			CM03X5R104 🗆 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
ASK	0.22µF			CM03X5R224 🗆 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	0.47µF	K: ± 10% / M: ± 20%	6.3	CM03X5R474 🗆 06A#	12.5	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	1.0µF	M: ± 20%	16	CM03X5R105M16AH	20.0	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
	1.0µF	Wi- ± 20%	6.3	CM03X5R105M06A#	12.5	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	H/N/Q/W
			10	CM03X5R225M10AH	15.0	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
	2.2µF	M: ± 20%	6.3	CM03X5R225M06AH	12.5	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
				CM03X5R225M06A#035	12.5	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	H/N/Q/W
	4.7µF	M: ± 20%	6.3	CM03X5R475M06AH055	15.0	0.6 ± 0.09	0.3 ± 0.09	0.5 ± 0.05	H(*)
		NI: ± 20%	4	CM03X5R475M04AH	12.5	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
	3300pF			CM03X7R332 🗆 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
X7R	4700pF	K: ± 10% / M: ± 20%	10	CM03X7R472 🗆 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	6800pF	10 ± 10/0 / Wi ± 20/0	10	CM03X7R682 🗆 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	10000pF			CM03X7R103 🗆 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W

General CM05 Series Size (JIS Code): 0402(1005) # Packaging Code (Packaging quantity): H(10,000pcs) / N(50,000pcs) / 40,000pcs) / W(100,000pcs)

Dialastria sada	Conseitense	□:Tolerance	Voltage	Part Number	Tan δ		Dimension		# Packaging Code
Dielectric code	Capacitance			[%]	L[mm]	W[mm]	T[mm]	(quantity)	
	0.10µF	K: ± 10% / M: ± 20%	25	CM05X5R104 25A#	5.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	0.22µF	K: ± 10% / M: ± 20%	16	CM05X5R224 🗆 16A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	0.47µF	K: ± 10% / M: ± 20%	10	CM05X5R474 🗖 10A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
			35	CM05X5R105 🗆 35A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	1.0µF	K: ± 10% / M: ± 20%	25	CM05X5R105 🗆 25A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	1.0μΓ	K. ± 10% / Wi. ± 20%	16	CM05X5R105 🗆 16A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
			10	CM05X5R105 🗆 10A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
		M: ± 20%	25	CM05X5R225M25AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
	2.2µF	WI: - 20%		CM05X5R225M25AH055	12.5	1.0 ± 0.20	0.5 ± 0.20	0.55 max.	Н
X5R	2.2µr	K: ± 10% / M: ± 20%	16	CM05X5R225 🗖 16A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
			10	CM05X5R225 🗖 10A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
			25	CM05X5R475M25AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
	4.7µF	4.7µF M: ± 20%	16	CM05X5R475M16AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
			10	CM05X5R475M10AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
	10µF	M: ± 20%	6.3	CM05X5R106M06AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	H
	15µF	M: ± 20%	6.3	CM05X5R156M06A#	12.5	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	H / N(*)
	Topi	WI: - 20%	4	CM05X5R156M04A#	12.5	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	H / N(*)
	22µF	M: ± 20%	6.3	CM05X5R226M06AH080	12.5	1.0 ± 0.20	0.5 ± 0.20	0.80 max.	H
			4	CM05X5R226M04AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
X7R	0.10µF	K: ± 10% / M: ± 20%	25	CM05X7R104 🗆 25A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W

General CM105 Series Size (JIS Code): 0603(1608) # Packaging Code (Packaging quantity): T(4,000pcs.) / L(10,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage	Part Number	Tan δ		Dimension		# Packaging Code	
Dielectric code	oapaontanoo		[V]	Fait Nullipei	[%]	L[mm]	W[mm]	T[mm]	(quantity)	
	1.0µF	K: ± 10% / M: ± 20%	25	CM105X5R105 🗆 25A#	12.5	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	T/L	
	2.2µF	K: ± 10% / M: ± 20%	16	CM105X5R225 🗆 16A#	12.5	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L	
		M: ± 20%	35	CM105X5R475M35A#	12.5	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L	
X5R	4.7µF	K: ± 10% / M: ± 20%	25	CM105X5R475 🗆 25A#	12.5	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L	
		R: ± 10% / W: ± 20%	10	CM105X5R475 🗆 10A#	12.5	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	T/L	
	10	10µF	M: ± 20%	35	CM105X5R106M35A#	15.0	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L
	ТОЙЕ	Wi ± 20%	25	CM105X5R106M25A#	15.0	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L	
X6S	10µF	M: ± 20%	10	CM105X6S106M10A#	15.0	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L	
X6T	22µF	M: ± 20%	4	CM105X6T226M04AT	12.5	1.6 ± 0.25	0.8 ± 0.25	0.8 ± 0.25	T	
			25	CM105X7R105 🗆 25A#	5.0	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L	
X7R	1.0µF	K: ± 10% / M: ± 20%	16	CM105X7R105 🗆 16A#	12.5	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L	
A/K			10	CM105X7R105 🗆 10A#	12.5	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L	
	2.2µF	K: ± 10% / M: ± 20%	6.3	CM105X7R225 🗆 06A#	12.5	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	T/L	
X7T	10µF	M: ± 20%	6.3	CM105X7T106M06A#	15.0	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L	

General CM21 Series Size (JIS Code): 0805(2012) # Packaging Code (Packaging quantity): T(3,000pcs.) / L(10,000pcs.)

Dielectric code	Constitutes	□:Tolerance	Voltage	Part Number	Tan δ		Dimension		# Packaging Code
Dielectric code	Capacitance		[V]		[%]	L[mm]	W[mm]	T[mm]	(quantity)
	1.0	K: ± 10% / M: ± 20%	50	CM21X5R105 🗆 50A#	12.5	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	1.0µF	K・エ 10% / Wi・エ 20%	25	CM21X5R105 🗆 25A#	5.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	2.2µF	K: ± 10% / M: ± 20%	25	CM21X5R225 🗆 25A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
X5R	2.2μΓ	K. ± 10% / Wi. ± 20%	16	CM21X5R225 🗆 16A#	5.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
AUK			25	CM21X5R475 🗆 25A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	4.7µF	K: ± 10% / M: ± 20%	16	CM21X5R475 🗆 16A#	12.5	2.0 ± 0.15	1.25 ± 0.15	1.25 ± 0.15	T/L
			10	CM21X5R475 🗆 10A#	7.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	10µF	K: ± 10% / M: ± 20%	16	CM21X5R106 🗆 16A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
X6S	22µF	M: ± 20%	10	CM21X6S226M10A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
			50	CM21X7R105 🗆 50A#	5.0	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	1.0µF	K: ± 10% / M: ± 20%	25	CM21X7R105 🗆 25A#	12.5	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
X7R			10	CM21X7R105 🗆 10A#	5.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
A/K	2.2µF	K: ± 10% / M: ± 20%	25	CM21X7R225 🗆 25A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	4.7µF	K: ± 10% / M: ± 20%	16	CM21X7R475 🗆 16A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	10µF K: ± 10% / M	K: ± 10% / M: ± 20%	6.3	CM21X7R106 D 06A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
X7S	1.0µF	K: ± 10% / M: ± 20%	100	CM21X7S105 🗆 100A#	5.0	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
X7T	22µF	M: ± 20%	6.3	CM21X7T226M06A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L

General CM316 Series Size (JIS Code): 1206(3216) # Packaging Code (Packaging quantity): T(2,500pcs.) / L(5,000pcs.)

Dialantzia anda	Conseitones	□:Tolerance	Voltage	Part Number	Tan δ		Dimension		# Packaging Code
Dielectric code	Capacitance			[%]	L[mm]	W[mm]	T[mm]	(quantity)	
	0.0	K: ± 10% / M: ± 20%	100	CM316X5R225 🗆 100A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	2.2µr	2.2µF K: ± 10% / M: ± 20%	25	CM316X5R225 🗆 25A#	5.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
	4.7µF	K: ± 10% / M: ± 20%	50	CM316X5R475 🗆 50A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	4./µr	K・エ 10% / Wi・エ 20%	25	CM316X5R475 🗆 25A#	5.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
X5R			25	CM316X5R106 🗆 25A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	10µF	K: ± 10% / M: ± 20%	16	CM316X5R106 🗆 16A#	5.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
			10	CM316X5R106 🗆 10A#	7.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
	22µF K: ± 10% / M: ± 20	K: + 10% / M: + 20%	16	CM316X5R226 🗆 16A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	ZZHF	K. ± 10% / Wi. ± 20%	6.3	CM316X5R226 🗆 06A#	7.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	4.7µF	4.7µF K: ± 10% / M: ± 20%	50	CM316X7R475 🗆 50A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	4.7µr	K: ± 10% / M: ± 20%	25	CM316X7R475 🗆 25A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
X7R	10µF	K: ± 10% / M: ± 20%	25	CM316X7R106 🗆 25A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	τυμε	K: ± 10% / M: ± 20%	16	CM316X7R106 🗆 16A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	22µF	22µF K: ± 10% / M: ± 20%	10	CM316X7R226 🗆 10A#	7.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	ZZHF	K・エ 10% / M・エ 20%	6.3	CM316X7R226 🗆 06A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	2.2µF	K: ± 10% / M: ± 20%	100	CM316X7S225 🗆 100A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
X7S	4.7µF	K: ± 10% / M: ± 20%	100	CM316X7S475 🗆 100AT	5.0	3.2 ± 0.30	1.6 ± 0.30	1.6 ± 0.30	T(*)
	22µF	K: ± 10% / M: ± 20%	10	CM316X7S226 🗆 10A#	7.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L

General CM32 Series Size (JIS Code): 1210(3225) # Packaging Code (Packaging quantity): T(1,000pcs.) / L(4,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage	Part Number	Tan δ		Dimension		# Packaging Code
Dielectific code	Capacitanico		[V]	Fait Nullipei	[%]	L[mm]	W[mm]	T[mm]	(quantity)
	4.7µF	K: ± 10% / M: ± 20%	25	CM32X5R475 🗆 25A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
			50	CM32X5R106 🗆 50A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	10µF	K: ± 10% / M: ± 20%	25	CM32X5R106 🗆 25A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
X5R			16	CM32X5R106 🗆 16A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
7.51			25	CM32X5R226 🗆 25A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	22µF	K: ± 10% / M: ± 20%	16	CM32X5R226 🗆 16A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
			10	CM32X5R226 🗆 10A#	7.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	47µF	K: ± 10% / M: ± 20%	6.3	CM32X5R476 🗆 06A#	7.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	4.7µF	K: ± 10% / M: ± 20%	16	CM32X7R475 🗆 16A#	3.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
X7R	10E	K: ± 10% / M: ± 20%	50	CM32X7R106 🗆 50A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	10µF	K. ± 10% / M: ± 20%	25	CM32X7R106 🗆 25A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
1	22µF	K: ± 10% / M: ± 20%	16	CM32X7R226 🗆 16A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L

Notes for Using the Catalog

- 1. Specifications described in this catalog are for references. Products specifications shall be based on written documents agreed by each party.
- Contents in this catalog are subject to change without notice. It is recommended to confirm the latest information at the time of usage. Also, Kyocera Electronic Components Catalog is revised once a year. We may not be able to accept requests based on old catalogs.
- 3. Products in this catalog are intended to be used in general electronic equipment such as office equipment, audio and visual equipment, communication equipment, measurement instrument and home appliances. It is absolutely recommended to consult with our sales representatives in advance upon planning to use our products in applications which require extremely high quality and reliability such as aircraft and aerospace equipment, traffic systems, safety systems, power plant and medical equipment including life maintenance systems.
- 4. Even though we strive for improvements of quality and reliability of products, it is requested to design with enough safety margin in equipment or systems in order not to threaten human lives directly or damage human bodies or properties by an accidental result of products.
- 5. It is requested to design based on guaranteed specifications for such as maximum ratings, operating voltage and operating temperature. It is not the scope of our guarantee for unsatisfactory results due to misuse or inadequate usage of products in the catalog.
- 6. Operation summaries and circuit examples in this catalog are intended to explain typical operation and usage of the product. It is recommended to perform circuit and assembly design considering surrounding conditions upon using products in this catalog.
- 7. Technical information described in this catalog is meant to explain typical operations and applications of products, and it is not intended to guarantee or license intellectual properties or other industrial rights of the third party or Kyocera.
- 8. Trademarks, logos and brand names used in this catalog are owned by Kyocera or the corresponding third party.
- 9. Certain products in this catalog are subject to the Foreign Exchange and Foreign Trade Control Act of Japan, and require the license from Japanese Government upon exporting the restricted products and technical information under the law. Besides, it is requested not to use products and technical information in the catalog for the development and/or manufacture of weapons of mass destruction or other conventional weapons, nor to provide them to any third party with the possibility of having such purposes.
- 10. It is prohibited to reprint and reproduce a part or whole of this catalog without permission.
- 11. Contents described herein are as of October 2019.

Design Tool Introduction

Part Number, environmental documents, and other data can be searched with cap value, case size, or electrical characteristic of MLCC.

http://prdct-search.kyocera.co.jp/electro-mlcc-en/

eramic Capacitor Search				
ch by Part Numbers ex) C	M05X5R225M6A Search		Recently searched products : CM02X0822406A (CM02X0270125A (CM02X0120760A	
836 products were f	ound 🗌 Turn off real t	ime search		
Purpose/Type [Series]				
General Purpose [CM]	Low Profile [CT]	High Q [CU]	High Voltage [CF]	
Au Terminaton [AT]	Soft Termination [ST]			
Size Code (EIA)				
01005 (0.4 x 0.2mm)	0201 (0.6 x 0.3mm)	0402 (1.0 × 0.5mm)	0603 (1.6 x 0.8mm)	
0805 (2.0 x 1.25mm)	1206 (3.2 x 1.6mm)	1210 (3.2 x 2.5mm)	1808 (4.5 x 2.0mm)	
	2208 (5.7 x 2.0mm)	2220 (5.7 x 5.0mm)		

单击下面可查看定价,库存,交付和生命周期等信息

>>Kyocera(京瓷)