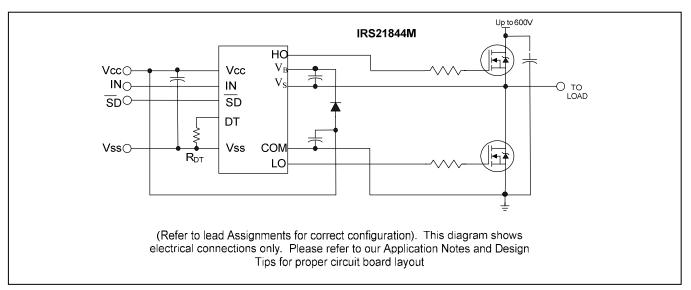
International TOR Rectifier

IRS21844MPBF HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to + 600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4 A/1.8 A
- Lead free, RoHS compliant


Product Summary

Topology	Half-Bridge
V _{OFFSET}	600 V
V _{OUT}	10 V – 20 V
I _{o+} & I _{o-} (typical)	1.9 A & 2.3 A
t _{on} & t _{off} (typical)	680 ns & 270 ns
Deadtime (typical)	400 ns (R _{DT} = 0 Ω) 5 μs (R _{DT} = 200 kΩ)

Package Options

Typical Connection

^{*} Qualification standards can be found at www.irf.com

Description

The IRS21844MPBF is a high voltage, high speed power MOSFET and IGBT drivers with dependent high and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

Feature Comparison: IRS2181(4)/IRS2183(4)/IRS2184(4)

Part	Input	Cross- Conduction	Dead-Time	Ground	Ton/Toff
	Logic	Prevention logic		Pins	
2181				COM	180/220 ns
21814	HIN/LIN	no	none	V _{SS} /COM	100/220 115
2183			Internal 500ns	COM	180/220 ns
21834	HIN/LIN	yes	Programmable 0.4 – 5 us	V _{SS} /COM	100/220 115
2184			Internal 500ns	COM	690/270 pa
21844	IN/SD	yes	Programmable 0.4 – 5 us	V _{SS} /COM	680/270 ns

Qualification Information[†]

dainication information					
		Industrial ^{††} (per JEDEC JESD 47)			
Qualification Level		Comments: This IC has passed JEDEC's Industri			
		qualification. IR's Consumer qualification level granted by extension of the higher Industrial level.			
Moisture Sensitivity	Level	MLPQ4x4 14L	MSL2 ^{†††}		
Moisture delisitivity Level		WILL Q4X4 14L	(per IPC/JEDEC J-STD-020)		
	Machine Model		Class A (+/-100V)		
	Wacrime Woder	(per JEDEC standard JESD22-A115)			
ESD	Human Bady Madal	Class 1C (+/-1500V)			
E3D	Human Body Model	(per EIA/JEDEC standard EIA/JESD22-A114)			
	Charged Davies Madel	Class III (+/-1000V)			
Charged Device Model		(per JEDEC standard JESD22-C101)			
IC Latch-Up Test		Class II, Level A			
Laten-op rest		(per JESD78A)			
RoHS Compliant			Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min	Max	Units
V_B	High-side floating absolute voltage	-0.3	620	
Vs	High-side floating supply offset voltage	V _B - 25	V _B + 0.3	
V_{HO}	High-side floating output voltage	V _S - 0.3	$V_B + 0.3$	
V_{CC}	Low-side and logic fixed supply voltage	-0.3	20 [†]	V
V_{LO}	Low-side output voltage	-0.3	$V_{CC} + 0.3$	V
DT	Programmable deadtime pin voltage	V _{SS} -0.3	$V_{CC} + 0.3$	
V_{IN}	Logic input voltage (IN & SD)	V _{SS} -0.3	$V_{CC} + 0.3$	
V_{SS}	Logic ground	V _{CC} - 20	$V_{CC} + 0.3$	
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns
P _D	Package power dissipation @ TA ≤ 25°C	_	2.08	W
Rth _{JA}	Thermal resistance, junction to ambient		36	°C/W
TJ	Junction temperature	_	150	
Ts	Storage temperature	-50	150	°C
T _L	Lead temperature (soldering, 10 seconds)	_	300	

[†] All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The $V_{\rm S}$ and $V_{\rm SS}$ offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min	Max	Units
V_B	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	(††)	600	
V_{HO}	High-side floating output voltage	Vs	V_B	
V_{CC}	Low-side and logic fixed supply voltage	10	20	V
V_{LO}	Low-side output voltage	0	V _{CC}	V
V_{IN}	Logic input voltage (IN & SD) (†††)	V _{SS}	V _{CC}	
DT	Programmable deadtime pin voltage	V _{SS}	V _{CC}	
V_{SS}	Logic ground	-5	5	
T _A	Ambient temperature	-40	125	°C

^{††} Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to $-V_{BS}$. (Please refer to Design Tip DT97-3 for more details).

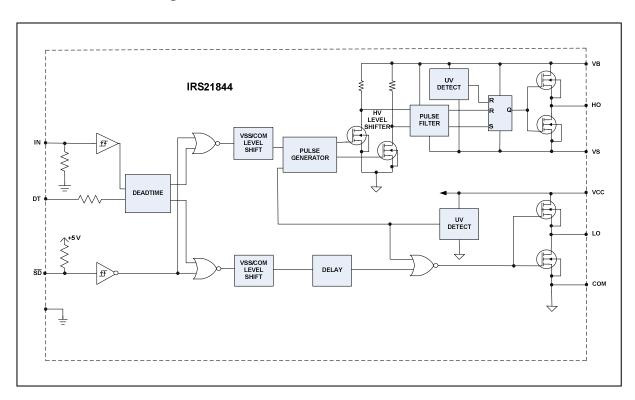
^{†††} HIN and LIN are internally clamped with a 5.2 V zener diode.

Dynamic Electrical Characteristics

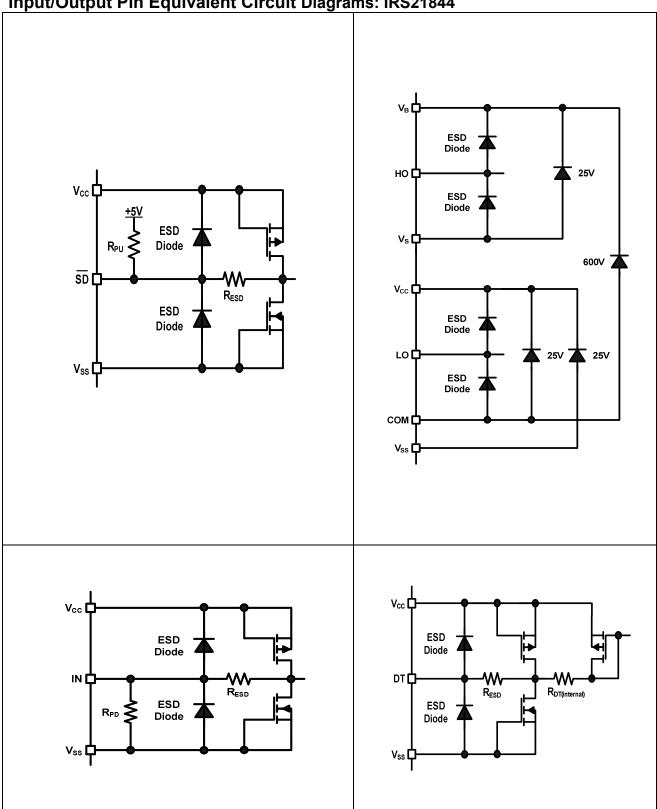
 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C, DT = V_{SS} unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	680	900		$V_S = 0 V$
t _{off}	Turn-off propagation delay — 270 400					$V_{S} = 0 \text{ V or } 600 \text{ V}$
t_{sd}	Shut-down propagation delay	_	180	270		
MT_{on}	Delay matching, HS & LS turn-on		0	90	ns	
MT _{off}	Delay matching , HS & LS turn-off		0	40		
t _r	Turn-on rise time		40	60		V _S = 0 V
t _f	Turn-off fall time	_	20	35		V _S – U V
DT	Deadtime: LO turn-off to HO turn-on (DT _{LO-HO}) &		400	520		$R_{DT} = 0 \Omega$
וט	HO turn-off to LO turn-on (DT _{HO-LO})	4	5	6	μs	R_{DT} = 200 k Ω
MDT	Doodting metaking DT DT		0	50	ne	$R_{DT} = 0 \Omega$
IVIDI	Deadtime matching DT _{LO-HO} - DT _{HO-LO}		0	600	ns	R_{DT} = 200 k Ω

Static Electrical Characteristics

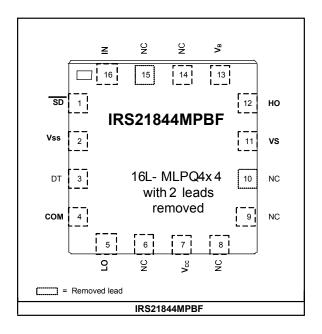

 $V_{BIAS}(V_{CC}, V_{BS})$ = 15 V, V_{SS} = COM, DT = V_{SS} and T_A = 25°C unless otherwise specified. The V_{IL} V_{IH} and I_{IN} parameters are referenced to V_{SS}/COM and are applicable to the respective input leads: IN and \overline{SD} . The V_{O} and V_{O} and V_{O} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V_{IH}	Logic "1" input voltage for HO & logic "0" for LO	2.5	_	_		
V_{IL}	Logic "0" input voltage for HO & logic "1" for LO			0.8		V _{CC} = 10 V to 20 V
$V_{SD,TH+}$	SD input positive going threshold 2.5 — —		V	V _{CC} - 10 V to 20 V		
$V_{\text{SD,TH-}}$	SD input negative going threshold	_		0.8	v	
V_{OH}	High level output voltage, V_{BIAS} - V_{O}	_	_	1.4		$I_O = 0 A$
V_{OL}	Low level output voltage, Vo	_	_	0.2		$I_O = 20 \text{ mA}$
I _{LK}	Offset supply leakage current			50		$V_{B} = V_{S} = 600 \text{ V}$
I_{QBS}	Quiescent V _{BS} supply current	20	60	150	μA	V _{IN} = 0 V or 5 V
I _{QCC}	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} – 0 V OI 5 V
I _{IN+}	Logic "1" input bias current		25	60		$IN = 5 V, \overline{SD} = 0 V$
I _{IN-}	Logic "0" input bias current			5.0	μA	IN = 0 V, SD = 5 V
$V_{\text{CCUV+}} \ V_{\text{BSUV+}}$	V_{CC} and V_{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V_{CCUVH} V_{BSUVH}	Hysteresis	0.3	0.7	_		
I _{O+}	Output high short circuit pulsed current	1.4	1.9	_	Α	$V_O = 0 V$, PW $\leq 10 \mu s$
I _{O-}	Output low short circuit pulsed current	1.8	2.3	_	^	$V_O = 15 V$, PW $\leq 10 \mu s$

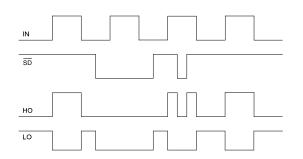

Downloaded From Oneyac.com

Functional Block Diagram: IRS21844

Input/Output Pin Equivalent Circuit Diagrams: IRS21844



Lead Definitions


PIN	Symbol	Description				
1	SD	ogic input for shutdown (referenced to V _{SS})				
2	V_{SS}	Logic ground				
3	DT	Programmable deadtime lead, referenced to V _{SS}				
4	COM	Low-side return				
5	LO	Low-side gate drive output				
6	NC	No Connection				
7	V_{CC}	Low-side and logic fixed supply				
8	NC	No Connection				
9	NC	No Connection				
10	NC	No Connection (removed lead)				
11	V_S	High-side floating supply return				
12	НО	High-side gate drive output				
13	V_{B}	High-side floating supply				
14	NC	No Connection				
15	NC	No Connection (removed lead)				
16	IN	Logic input for high-side gate driver output (HO), in phase				

Lead Assignments: IRS21844

Application Information and Additional Details

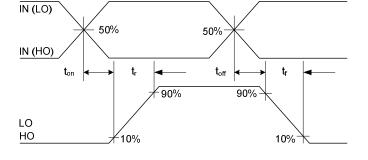


Figure 1: Input/Output Timing Diagram

Figure 2: Switching Time Waveform Definitions

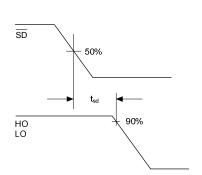
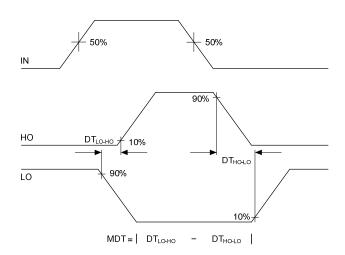



Figure 3: Shutdown Waveform Definitions

Figure 4: Deadtime Waveform Definitions

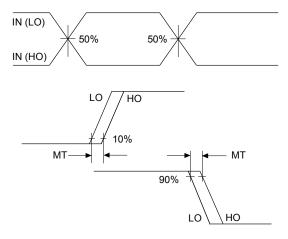


Figure 5: Delay Matching Waveform Definitions

www.irf.com

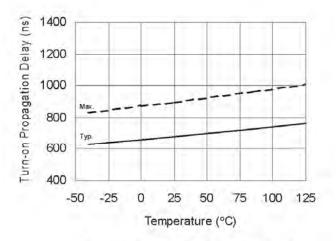


Figure 6A. Turn-On Propagation Delay vs. Temperature

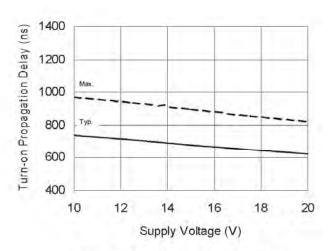


Figure 6B. Turn-On Propagation Delay vs. Supply Voltage

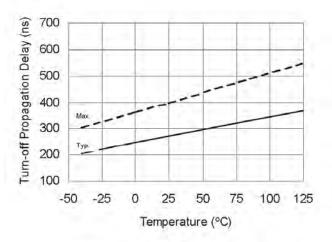


Figure 7A. Turn-Off Propagation Delay vs. Temperature

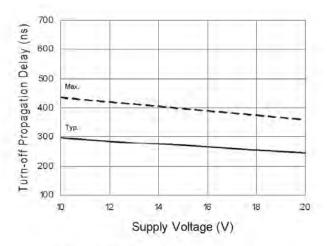


Figure 7B. Turn-Off Propagation Delay vs. Supply Voltage

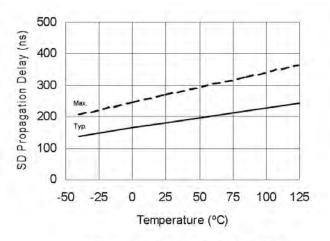


Figure 8A. SD Propagation Delay vs. Temperature

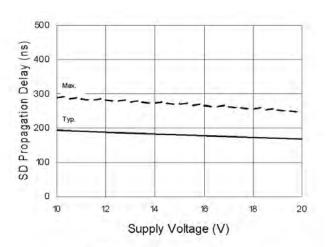


Figure 8B. SD Propagation Delay vs. Supply Voltage

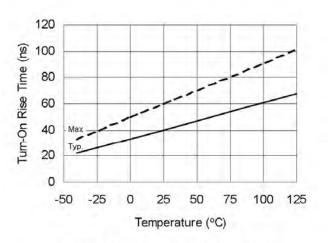


Figure 9A. Turn-On Rise Time vs. Temperature

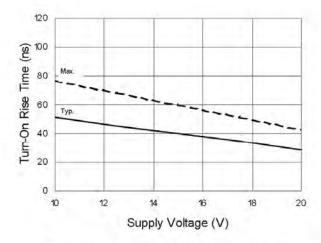


Figure 9B. Turn-On Rise Time vs. Supply Voltage

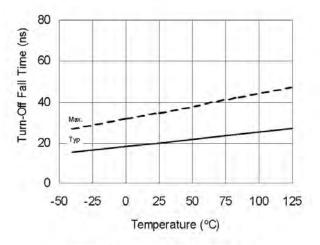


Figure 10A. Turn-Off Fall Time vs.
Temperature

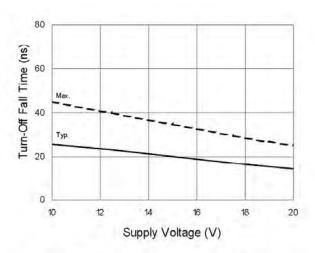


Figure 10B. Turn-Off Fall Time vs. Supply Voltage

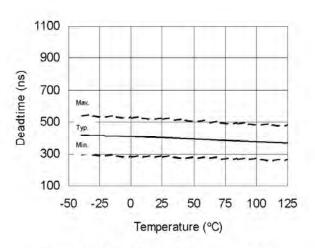


Figure 11A. Deadtime vs. Temperature

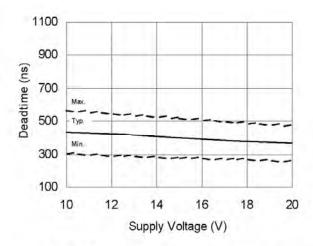


Figure 11B. Deadtime vs. Supply Voltage

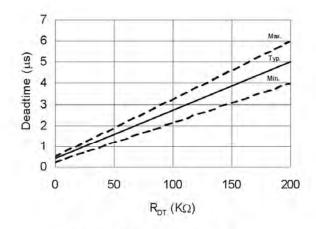


Figure 11C. Deadtime vs. R_{DT}

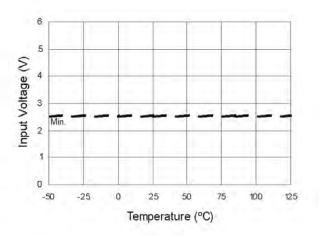


Figure 12A. Logic "1" Input Voltage vs. Temperature

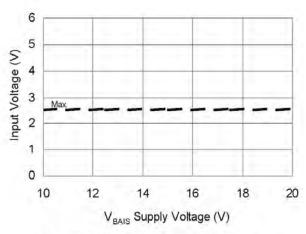


Figure 12B. Logic "1" Input Voltage vs. Supply Voltage

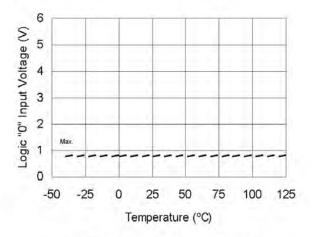


Figure 13A. Logic "0" Input Voltage vs. Temperature

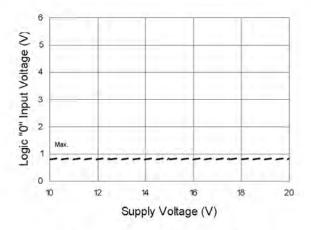


Figure 13B. Logic "0" Input Voltage vs. Supply Voltage

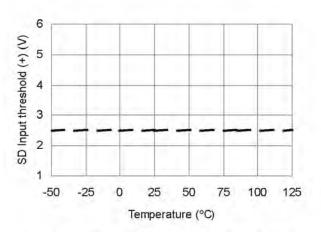


Figure 14A. SD input positive going threshold (+) vs. Temperature

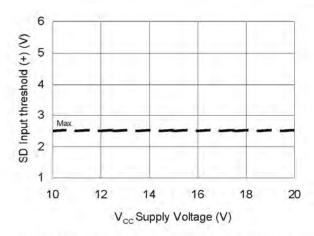


Figure 14B. SD input positive going threshold (+) vs. Supply Voltage

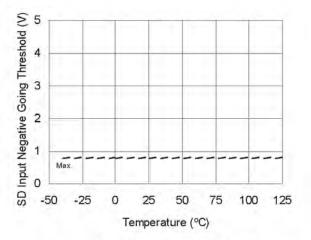


Figure 15A. SD Input Negative Going Threshold vs. Temperature

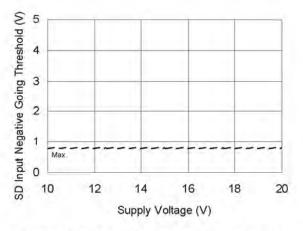


Figure 15B. SD Input Negative Going Threshold vs. Supply Voltage

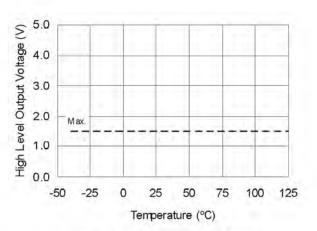


Figure 16A. High Level Output Voltage vs. Temperature (I_O = 0 mA)

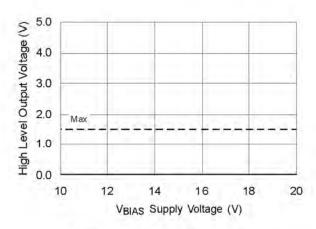


Figure 16B. High Level Output Voltage vs. Supply Voltage (Io = 0 mA)

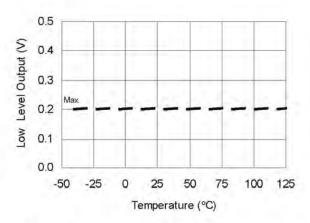


Figure 17A. Low Level Output vs. Temperature

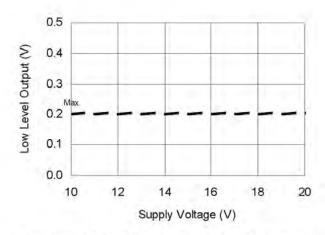


Figure 17B. Low Level Output vs. Supply Voltage

Figure 18A. Offset Supply Leakage Current vs. Temperature

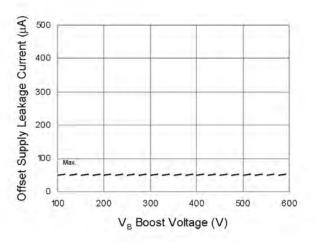


Figure 18B. Offset Supply Leakage Current vs. V_B Boost Voltage

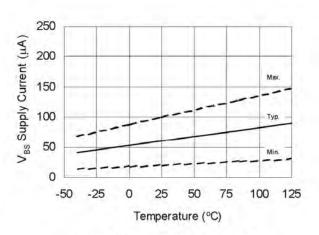


Figure 19A. V_{BS} Supply Current vs. Temperature

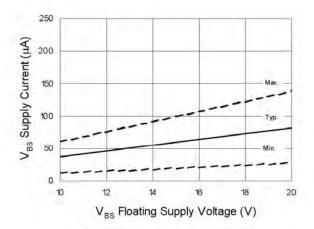


Figure 19B. $V_{\rm BS}$ Supply Current vs. $V_{\rm BS}$ Floating Supply Voltage

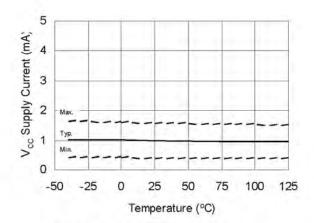


Figure 20A. V_{cc} Supply Current vs. Temperature

Figure 20B. $V_{\rm cc}$ Supply Current vs. $V_{\rm cc}$ Supply Voltage

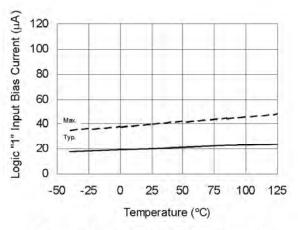


Figure 21A. Logic "1" Input Bias Current vs. Temperature

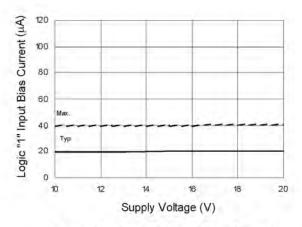


Figure 21B. Logic "1" Input Bias Current vs. Supply Voltage

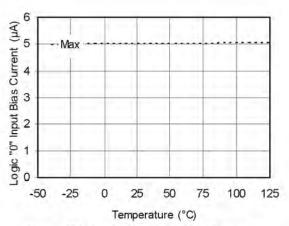


Figure 22A. Logic "0" Input Bias Curremt vs. Temperature

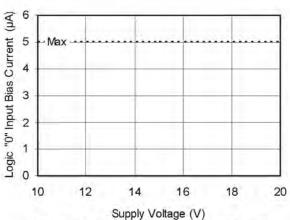


Figure 22B. Logic "0" Input Bias Curremt vs. Voltage

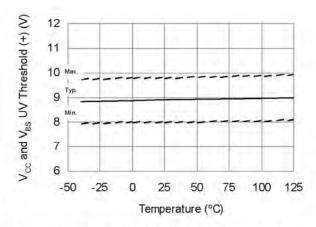


Figure 23. $V_{\rm cc}$ and $V_{\rm BS}$ Undervoltage Threshold (+) vs. Temperature

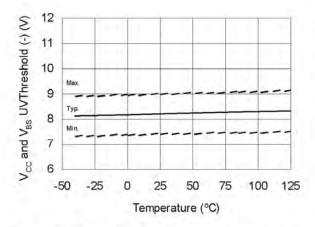


Figure 24. $V_{\rm CC}$ and $V_{\rm BS}$ Undervoltage Threshold (-) vs. Temperature

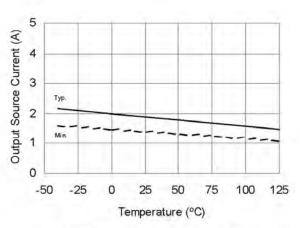


Figure 25A. Output Source Current vs. Temperature

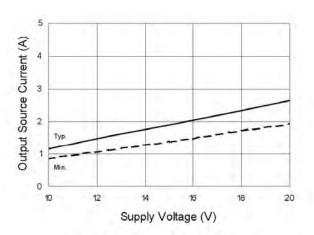


Figure 25B. Output Source Current vs. Supply Voltage

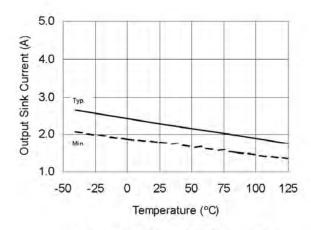


Figure 26A. Output Sink Current vs. Temperature

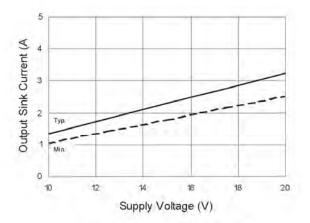


Figure 26B. Output Sink Current vs. Supply Voltage

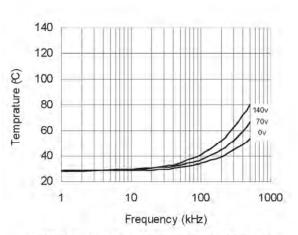


Figure 27. IRS2181 vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{CC} = 15~V$

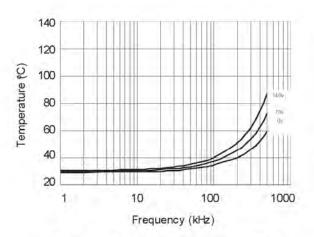


Figure 28. IRS2181 vs. Frequency (IRFBC30), $R_{\text{gate}} = 22~\Omega,~V_{\text{CC}} = 15~\text{V}$

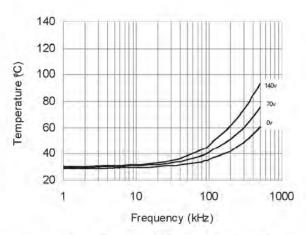


Figure 29. IRS2181 vs. Frequency (IRFBC40), $\rm R_{\rm gate}$ =15 $\Omega,\,\rm V_{\rm CC}$ =15 V

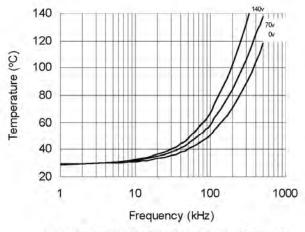


Figure 30. IRS2181 vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 $\Omega,\,\rm V_{\rm CC}$ =15 V

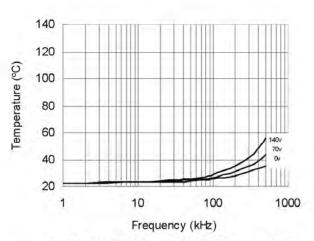


Figure 31. IRS21814 vs. Frequency (IRFBC20), R_{gate} =33 Ω , V_{CC} =15 V

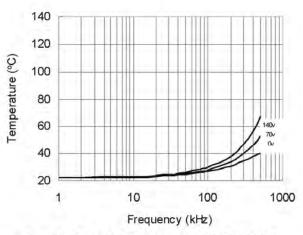


Figure 32. IRS21814 vs. Frequency (IRFBC30), $R_{\rm oate} = 22~\Omega,~V_{\rm cc} = 15~V$

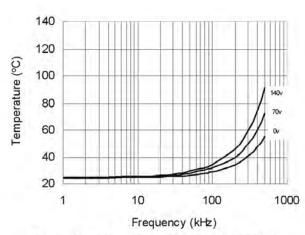


Figure 33. IRS21814 vs. Frequency (IRFBC40), $\rm R_{\rm gate}$ =15 Ω , $\rm V_{\rm CC}$ =15 V

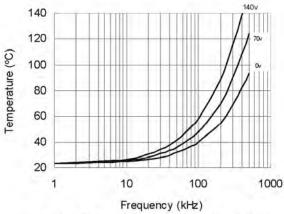


Figure 34. IRS21814 vs. Frequency (IRFPE50), R_{tate} =10 Ω , V_{CC} =15 V

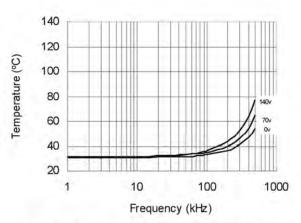


Figure 35. IRS2181s vs. Frequency (IRFBC20), $\rm R_{\rm gate}$ =33 $\Omega, \rm \, V_{\rm CC}$ =15 V

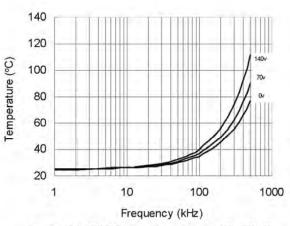


Figure 36. IRS2181s vs. Frequency (IRFBC30), $\rm R_{gate}$ =22 $\Omega, \rm V_{cC}$ =15 V

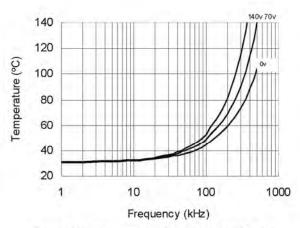


Figure 37. IRS2181s vs. Frequency (IRFBC40), $\rm R_{\rm gate}$ =15 Ω , $\rm V_{\rm CC}$ =15 V

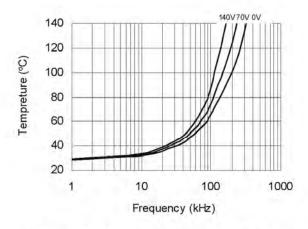


Figure 38. IRS2181s vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 $\Omega,\,\rm V_{\rm CC}$ =15 V

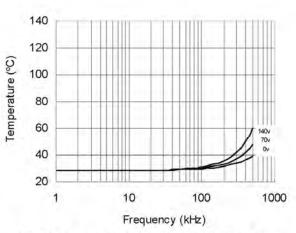


Figure 39. IRS21814s vs. Frequency (IRFBC20), $\rm R_{gate}$ =33 $\Omega,\,\rm V_{CC}$ =15 V

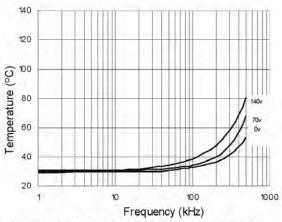


Figure 40. IRS21814s vs. Frequency (IRFBC30), $R_{\rm tate}$ =22 Ω , $V_{\rm CC}$ =15 V

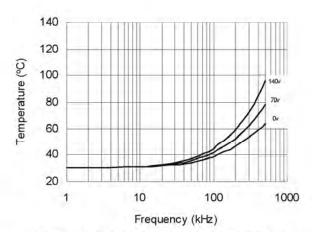


Figure 41. IRS21814s vs. Frequency (IRFBC40), $\rm R_{oate}$ =15 $\Omega, \rm V_{cc}$ =15 V

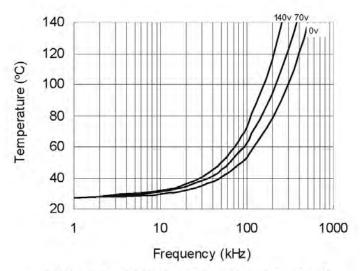
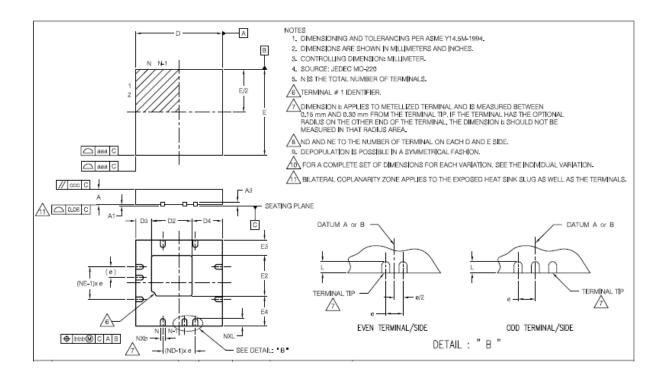
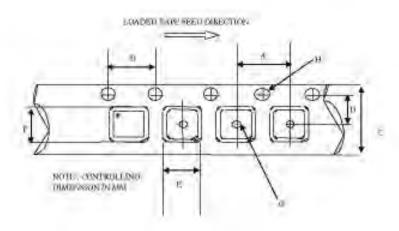
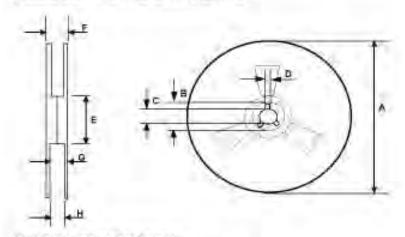



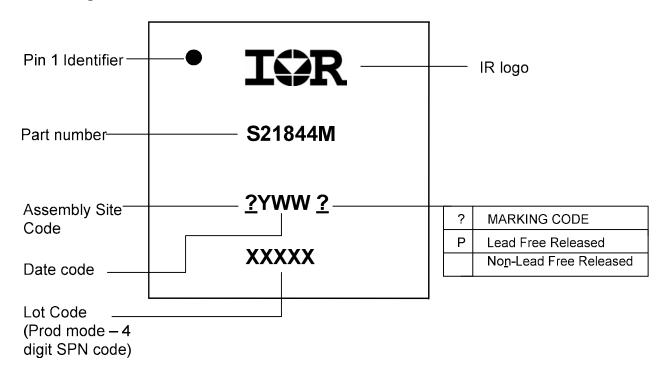
Figure 42. IRS21814s vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 $\Omega, \, \rm V_{\rm cc}$ =15 V

Downloaded From Oneyac.com


Package Details: MLPQ 4x4 -16L


SYMBOL		VGGD-10				
B	M	ILLIMETE	RS	INCHES		
Ľ	MIN	NOM	MAX	MIN	MAX	
Α	0.80	0.90	1.00	.032	.035	.039
A1	0.00	0.02	0.05	.000	-0008	.0019
A3		0.20 REF			.008 REF	
b	0.18	0.25	0.30	.007	.010	.012
D2	1.78	1.88	1.98	.070	.074	.078
D3		0.73 REF	=		.029 REF	
D4		1.40 REF	-		.055 REF	
D	4.00 BSC			.157 BSC		
Е		4.00 BS0		.157 BSC		
E4		1.40 REF		.055 REF		
E3		0.73 REF		.029 REF		
E2	1.78	1.88	1.98	.070	.074	.078
L	0.30	0.40	0.50	.012	.016	.020
е		0.50 PITC	H	.(20 PITCH	Η
N	16				16	
ND	4				4	
NE	4				4	
aaa	0.15			.0059		
bbb	0.10			.0039		
CCC		0.10		.0039		
ddd		0.05			.0019	

Tape and Reel Details: MLPQ 4x4


200	Me	tric .	Imperial		
Care	Min	Max	Min	Max	
A.	7.90	8.10	0.311	0.358	
В	3.90	4.10	0/154	0.151	
C	11.70	12.30	0.461	0.484	
0	5.45	5.55	0.215	0.219	
E	4,25	4.45	0,168	0.176	
F	4.25	0.35	0.168	0.176	
G	1.50	n/a	0.059	17/8	
LT.	3.66	4 (04)	0.060	D.O.C.	

	Me	Write.	Imperial		
Code	Mer	Mirr Max		5/10X	
A	329.60	330.25	12.075	13 001	
B	20,95	21.45	0.924	0.844	
C.	12.80	13.20	0.503	0.519	
D	1.96	2.46	0.767	0.096	
E	98.00	102:00	3.858	A 015	
F	n/a	18.40	n/a	0.724	
G	14.50	17 10	05/0 06		
1.7	40.00	44.46	0.400	6.500	

Part Marking Information

Ordering Information

Dogo Dout Neurobou	Stand		Pack	Complete Dout Nember
Base Part Number	Package Type	Form	Quantity	Complete Part Number
	MLPQ 4x4-16L	Tube/Bulk	92	IRS21844MPBF
IRS21844		Tape and Reel	3,000	IRS21844MTRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

www.irf.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)