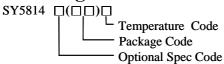


Applications Note:SY5814U


Single Stage Buck PFC Controller for LED Lighting

Preliminary Specification

General Description

The SY5814U is a single stage Buck PFC controller targeting at LED lighting applications. It drives the Buck converter in the quasi-resonant mode to achieve higher efficiency. It keeps the Buck converter in constant on time operation to achieve high power factor.

Ordering Information

Temperature Range: -40°C to 105°C

Ordering Number	Package type	Note
SY5814UABC	SOT23-6	

Features

- Valley turn-on of the MOSFET to achieve low switching losses
- Aux-winding for ZCS detection and bias current optional
- Better current accuracy and better line regulation through direct sensing of LED current
- 0.3V current sense reference voltage leads to a lower conduction loss on the sense resistor
- Internal high current MOSFET driver: 0.25A sourcing and 0.5A sinking
- Low start up current: 15μA typical
- Reliable short LED and Open LED protection
- Power factor >0.90 with single-stage conversion.
- Compact package: SOT23-6

Applications

- LED lighting
- Down light
- Tube lamp
- PAR lamp
- Bulb lamp

Typical Applications

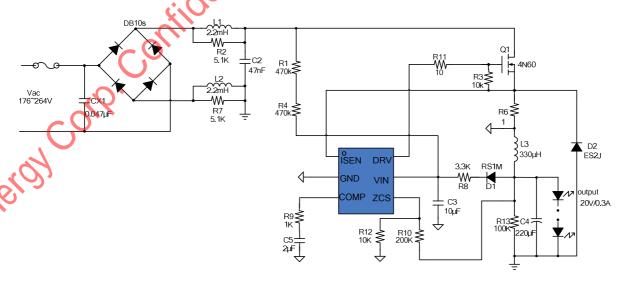
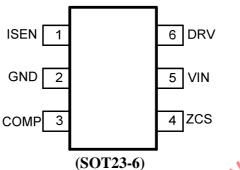



Figure 1. Schematic Diagram

Pinout (top view)

Top Mark: RRxyz for SY5814UABC(device code: RR, x=year code, y=week code, z= lot number code)

	Pin Name	Pin Number	Pin Description
	ISEN	1	Current sense pin. Connect this pin to the source of the switch. Connect the sense resistor across the source of the switch and the GND pin. (current sense resister R_S : $I_0 = 0.3 \text{V/R}_S$)
	GND	2	Ground pin for IC
	COMP	3	Loop compensation pin. Connect a RC network from this pin to GND to stabilize the control loop.
	ZCS	4	Inductor current zero-crossing detection pin. This pin receives the inductor voltage by a resister divider and detects the inductor current zero crossing point. This pin also provides over-voltage protection. If the voltage on this pin is above $V_{ZCS,OVP}$, the IC would enter over-voltage protection mode.
	VIN	5	Power supply pin. This pin also provides output over-voltage protection along with ZCS pin.
	DRV	6	Gate drive pin. Connect this pin to the gate of MOSFET.
sileroy	oip.	John	

Absolute Maximum Ratings (Note 1) ZCS ------V_{VIN}+0.3V ISEN, COMP -----Package Thermal Resistance (Note 2) SOT23-6, θ_{JC} ------130°C/W Maximum Junction Temperature ------ 125°C Lead Temperature (Soldering, 10 sec.) ------ 260°C Storage Temperature Range ------65°C to 150°C **Recommended Operating Conditions (Note 3)** Junction Temperature Range ------ -40°C to 125°C Ambient Temperature Range ------40°C to 105°C **Block Diagram** VIN ISEN⋢ PWM Logic □ DRV Driver **□** GND Valley Detector

Electrical Characteristics

 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25^{\circ}\text{C unless otherwise specified)}$

Power Supply Section						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Current Sense Section Current limit reference voltage $V_{ISEN,MAX}$ ZCS pin Section ZCS pin OVP voltage threshold $V_{ZCS,OVP}$ Gate Driver Section Gate driver voltage V_{Gate} Maximum source current I_{SOURCE} Minimum sink current I_{SINK} 0.5						
Maximum source current I _{SOURCE} 0.25 Minimum sink current I _{SINK} 0.5						
Minimum sink current I _{SINK} 0.5						
SINK						
May ON Time T V 15V						
Max ON Time $T_{ON,MAX}$ $V_{COMP}=1.5V$ 24						
Min ON Time T _{ON,MIN} 400 r						
Max OFF Time T _{OFF,MAX} 69						
Min OFF Time T _{OFF,MIN} 2 µ						
Maximum switching frequency f _{MAX} 200 kl						
Thermal Section						
Thermal Shutdown T _{SD} 150						
Temperature T _{SD} 150						

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 202 copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.

Note 3: Increase VIN pin voltage gradually higher than $V_{VIN,ON}$ voltage then turn down to 12V.

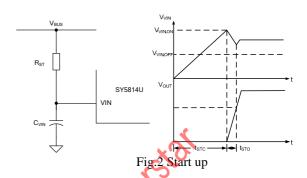
Operation

SY5814U is a constant current Buck PFC controller targeting at LED lighting applications.

High power factor is achieved by constant on operation mode, with which the control scheme and the circuit structure are both simple.

Better current accuracy is achieved by sensing output LED current directly. It is compatible with no auxiliary winding design.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage of drain valley; the start up current of SY5814U is rather small (15 μ A typically) to reduce the standby power loss further; the maximum switching frequency is clamped to 200kHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.


SY5814U provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.

SY5814U is available with SOT23-6 package.

Applications Information Start up

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through a start up resistor R_{ST} . Once V_{VIN} rises up to V_{VIN-ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Buck transformer could supply enough energy to maintain V_{VIN} above $V_{VIN-OFF}$.

The whole start up procedure is divided into two sections shown in Fig.2. t_{STC} is the C_{VIN} charged up section, and t_{STO} is the output voltage built-up section. The start up time t_{ST} composes of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

The start up resistor R_{ST} and C_{VIN} are designed by rules below:

(a) Preset start up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than I_{VIN_OVP}

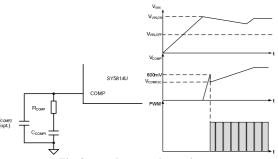
$$\frac{V_{\text{BUS}}}{I_{\text{VIN_OVP}}} < R_{\text{ST}} < \frac{V_{\text{BUS}}}{I_{\text{ST}}} (1)$$

Where V_{BUS} is the BUS line voltage.

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{VIN} = \frac{(\frac{V_{BUS}}{R_{ST}} - I_{ST}) \times t_{ST}}{V_{VIN_ON}}$$
 (2)

(c) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and redo such design flow until the ideal start up procedure is obtained.


Internal pre-charge design for quick start up

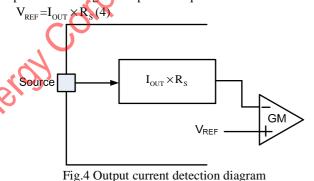
After V_{VIN} exceeds $V_{VIN,ON}$, V_{COMP} is pre-charged by an internal current source. The PWM block won't start to output PWM signals until V_{COMP} is over the initial voltage $V_{COMP,IC}$, which can be programmed by R_{COMP} . Such design is meant to reduce the start up time shown in Fig.3.

The voltage pre-charged $V_{\text{COMP_IC}}$ in start-up procedure can be programmed by R_{COMP}

 $V_{COMP\ IC}$ =600mV-300 μ A×R_{COMP} (3)

 $Fig. 3 \ pre-charge \ scheme \ in \ start \ up \\ Where \ V_{COMP-IC} \ is \ the \ pre-charged \ voltage \ of \ COMP \ pin.$

Generally, a big capacitance of C_{COMP} is necessary to achieve high power factor and stabilize the system loop $(1\mu F \sim 2\mu F$ recommended); The voltage pre-charged in start-up procedure can be programmed by R_{COMP} ; On the other hand, larger R_{COMP} can provide larger phase margin for the control loop; A small ceramic capacitor C_{COMP2} is added to filter out high frequency noise $(10pF \sim 100pF)$ is recommended if necessary)


Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. Once V_{VIN} is below $V_{VIN-OFF}$, the IC will stop working and V_{COMP} will be discharged to zero.

Constant-current control

The switching waveforms are shown in Fig.5.

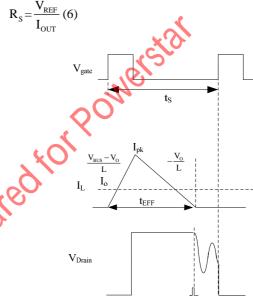
The average current of the inductor can be detected by Source pin of the IC directly, which is applied to the negative input of the gain modulator. In static state, the positive and negative inputs are equal.

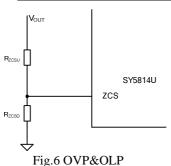
The output current I_{OUT} can be represented by,

$$I_{OUT} = \frac{V_{REF}}{R_{S}} (5)$$

Where V_{REF} is the internal reference voltage; R_S is the current sense resistor.

 I_{OUT} can be programmed by R_{S} .




Fig.5 switching waveforms

Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for Buck converter. The voltage across drain and source of the integrated MOSFET is reflected by the main winding of the Buck transformer. ZCS pin detects the voltage across the main winding by a resistor divider. When the voltage across drain and source of the integrated MOSFET is at voltage valley, the MOSFET would be turned on.

Over Voltage Protection (OVP) & Open LED Protection (OLP)

The output voltage is reflected by the Buck inductor, and both ZCS pin and VIN pin provide over voltage protection function.

When the load is null or large transient happens, the output voltage will exceed the rated value. When V_{VIN} exceeds $V_{VIN,OVP}$ or V_{ZCS} exceeds $V_{ZCS,OVP}$, the over voltage protection is triggered and the IC will discharge V_{VIN} by an internal current source $I_{VIN,OVP}$. Once V_{VIN} is below $V_{VIN,OFF}$, the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the resistor divider is related with the OVP function.

$$\frac{V_{ZCS_OVP}}{V_{OVP}} = \frac{R_{ZCSD}}{R_{ZCSU} + R_{ZCSD}} (7)$$

Where V_{OVP} is the output over voltage specification; R_{ZCSU} and R_{ZCSD} compose the resistor divider.

The ratio of R_{ZCSU} to R_{ZCSD} could be induced from equation (7)

Short Circuit Protection (SCP)

When the output is shorted, the output voltage is clamped to zero. Once V_{VIN} is below $V_{VIN,OFF}$, the IC will shut down and be charged again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$V_{\text{MOS DS MAX}} = \sqrt{2} V_{\text{AC MAX}} (8)$$

$$V_{D_{\perp}R_{\perp}MAX} = \sqrt{2}V_{AC_{\perp}MAX}(9)$$

Where $V_{AC,MAX}$ is maximum input AC RMS voltage. When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

Inductor (L)

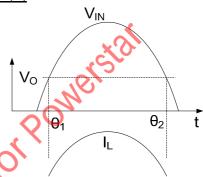


Fig.7 input waveforms

The power is transferred from AC input to output only when the input voltage is larger than output voltage in Buck converter. The input voltage and inductor current waveforms are shown in Fig.7, where θ_1 and θ_2 are the time that input voltage is equal to output voltage.

In Quasi-Resonant mode, each switching period cycle t_S consists of three parts: current rising time t₁, current falling time t₂ and quasi-resonant time t₃ shown in Fig.8.

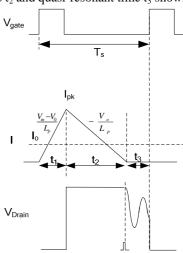


Fig.8 switching waveforms

The system operates in the constant on time mode to achieve high power factor. The ON time increases with the input AC RMS voltage decreasing and the load

increasing. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized.

Thus, the minimum switching frequency f_{S-MIN} happens at the peak value of input voltage with minimum input AC RMS voltage and maximum load condition; Meanwhile, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency f_{S-MIN} is set, the inductance of the transformer could be Calculated. The design flow is shown as below:

- (a) Preset minimum frequency f_{S-MIN}
- (b) Compute relative t_S , t_1

$$t_{s} = \frac{1}{f_{s_MIN}} (10)$$

$$t_{1} = \frac{t_{s} \times (V_{OUT} + V_{DF})}{(\sqrt{2}V_{AC_MIN} + V_{DF})} (11)$$

Where V_{DF} is the forward voltage of the diode

(c) Design inductance I

 $t_2 = t_s - t_1$ (12)

$$\theta_{1} = \arcsin(\frac{V_{OUT}}{\sqrt{2}V_{AC_MIN}}) \times \frac{1}{\pi} \times \frac{1}{2 \times f_{AC}}$$
 (13)

$$\theta_2 = \frac{1}{2 \times f_{AC}} - \theta_1 (14)$$

$$L = \frac{\eta \times f_{AC} \times V_{OUT} \times t_1}{P_{OUT}} \times \frac{P_{OUT}}{P_{OUT}} \times \frac{\cos(2\pi f_{AC} \times \theta_1) - \cos(2\pi f_{AC} \times \theta_2)}{2\pi f_{AC}} - V_{OUT}(\theta_2 - \theta_1)]$$

$$[\sqrt{2}V_{AC_MIN} \times \frac{\cos(2\pi f_{AC} \times \theta_1) - \cos(2\pi f_{AC} \times \theta_2)}{2\pi f_{AC}} - V_{OUT}(\theta_2 - \theta_1)]$$
(15)

Where η is the efficiency; P_{OUT} is rated full load power;

(d) compute inductor maximum peak current I_{L-PK-MAX}.

$$I_{C_{DK}_MAX} = \frac{(\sqrt{2}V_{AC_MIN} - V_{OUT}) \times t_1}{L}$$
 (16)

Where I_{L-PK-MAX} is maximum inductor peak current;

(f) compute RMS current of the inductor

$$I_{L_{LRMS_MAX}} = \frac{t_1}{\sqrt{3} \times L} \sqrt{V_{AC_MIN}^2 + V_{OUT}^2} - \frac{4\sqrt{2}V_{AC_MIN} \times V_{OUT}}{\pi}$$
 (17)

Where $I_{L_RMS_MAX}$ is Inductor RMS current of whole AC period

(g) compute RMS current of the MOSFET

$$I_{L_{LRMS_MAX}} = \sqrt{\frac{t_{1}}{3t_{S}}} \times \frac{t_{1}}{L} \sqrt{V_{AC_MIN}^{2} + V_{OUT}^{2} - \frac{4\sqrt{2}V_{AC_MIN} \times V_{OUT}}{\pi}}$$
 (18)

inductor design (N)

the parameters below are necessary

Necessary parameters				
Inductance	L			
inductor maximum current	$I_{L_PK_MAX}$			
inductor maximum RMS current	I _{L-RMS-MAX}			

The design rules are as followed:

- (a) Select the magnetic core style, identify the effective
- (b) Preset the maximum magnetic flux ΔB

 $\Delta B = 0.22 \sim 0.26 T$

(c) Compute primary turn N

$$N = \frac{L_{M} \times I_{L_PK_MAX}}{\Delta B \times A} (19)$$

(e) Select an appropriate wire diameter

With I_{L-RMS-MAX}, select appropriate wire to make sure the current density ranges from 4A/mm² to 10A/mm²

(f) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

Preset the output current ripple ΔI_{OUT} , C_{OUT} is induced by

$$C_{OUT} = \frac{\sqrt{(\frac{2I_{OUT}}{\Delta I_{OUT}})^2 - 1}}{4\pi f_{AC} R_{LED}} (20)$$

Where I_{OUT} is the rated output current; ΔI_{OUT} is the

demanded current ripple; f_{AC} is the input AC supply frequency; R_{LED} is the equivalent series resistor of the LED load.

Bias Supply

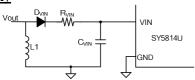


Fig.9 bias supply (a)

The simple bias supply circuit is composed of D_{VIN} , R_{VIN} and C_{VIN} shown in Fig.9. Select R_{VIN} between R_{VIN_MIN} and R_{VIN_MAX} to make sure that V_{VIN} is larger than V_{VIN} ore and smaller than V_{VIN} over

$$V_{\text{VIN,OFF}} \text{ and smaller than } V_{\text{VIN_OVP}}.$$

$$R_{\text{VIN_MAX}} = \int_{\ell_l}^{\ell_l} \frac{\left[\sqrt{2} \times V_{AC_MN} \times \sin(2\pi \times f_{lN} \times t) - V_{OLT}\right] \times \left(V_{OLT} - V_{\text{VIN,OFF}}\right) \times 2f_{lN}}{\sqrt{2} \times V_{AC_MN} \times \sin(2\pi \times f_{lN} \times t) \times I_{\text{VIN}}} dt$$
 (21)

$$\mathbf{R}_{vIN_MIN} = \int_{e_{l}}^{e_{l}} \frac{\left[\sqrt{2} \times V_{AC_MAX} \times \sin(2\pi \times f_{IN} \times t) - V_{OUT}\right] \times \left(V_{OUT} - V_{VIN,OMP}\right) \times 2f_{IN}}{\sqrt{2} \times V_{AC_MAX} \times \sin(2\pi \times f_{IN} \times t) \times \mathbf{I}_{vIN}} dt (22)$$

Where f_{IN} is input frequency.

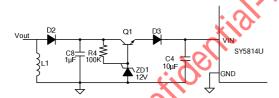


Fig.9 bias supply (b)

Another auxiliary circuit can be applied in more stable bias supply operation which is shown in Fig. 10.

Layout

- (a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.
- (b) The circuit loop of all switching circuit should be kept small.
- (c) bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.
- (d) Loop of 'ISEN pin current sample resistor GND pin should be kept as small as possible.
- (e) The resistor divider connected to ZCS pin is recommended to be put beside the IC.
- (f) The control circuit is recommended to be put outside the power circuit loop.

Design Example

A design example of typical application is shown below step by step.

#1. Identify design specification

Design Specification			
$V_{AC}(RMS)$	176V~264V	V _{OUT}	20V
I_{OUT}	300mA	η	92%

#2.Inductor design (L)

Refer to Power Device Design

Conditions			
$V_{AC,MIN}$	176V	V _{AC-MAX}	264V
P _{OUT}	6W	f_{S-MIN}	56kHz

(a)f_{S,MIN} is preset

$$f_{S MIN} = 55kHz$$

(b) Compute the switching period t_S and ON time t₁ at the peak of input voltage.

$$t_{s} = \frac{1}{f_{s_MIN}} = 18.18 \mu s$$

$$t_1 = \frac{t_S \times (V_{OUT} + V_{DF})}{(\sqrt{2}V_{AC_MIN} + V_{DF})} = \frac{18.18us \times (20V + 1V)}{(\sqrt{2} \times 176V + 1V)} = 1.528\mu s$$

$$t_2 = t_S - t_1 = 18.18\mu s - 1.528\mu s = 16.65\mu s$$

$$t_2 = t_S - t_1 = 18.18 \mu s - 1.528 \mu s = 16.65 \mu s$$

(c) Compute the inductance

$$\theta_{1} = \arcsin(\frac{V_{OUT}}{\sqrt{2}V_{AC_MIN}}) \times \frac{1}{\pi} \times \frac{1}{2 \times f_{AC}} = \arcsin(\frac{20V}{\sqrt{2} \times 176V}) \times \frac{1}{\pi} \times \frac{1}{2 \times 50 Hz} = 0.256 \times 10^{-3} s$$

$$\theta_2 = \frac{1}{2 \times f_{AG}} - \theta = \frac{1}{2 \times 50 HZ} - 0.256 \times 10^{-3} s = 9.744 \times 10^{-3} s$$

$$L = \frac{\eta \times f_{AC} \times V_{OUT} \times t_1}{P_{OUT}} \times \frac{1}{2}$$

$$[\sqrt{2}\mathbf{V}_{\text{AC_MIN}} \times \frac{\cos(2 \times \pi \times f_{AC} \times \theta_1) - \cos(2 \times \pi \times f_{AC} \times \theta_2)}{2 \times \pi \times f_{AC}} - \mathbf{V}_{OUT}(\theta_2 - \theta_1)]$$

$$= \frac{0.92 \times 50 Hz \times 20 V \times 1.528 \mu s}{1.000 \times 1.528 \mu s} \times$$

$$[\sqrt{2} \times 176\text{V} \times \frac{\cos(2\pi \times 50 Hz \times 0.256 \times 10^{-3} s) - \cos(2\pi \times 50 Hz \times 9.744 \times 10^{-3} s)}{2\pi \times 50 Hz} - 20V(9.744 \times 10^{-3} s - 0.256 \times 10^{-3} s)]$$

 $= 326 \mu H$

(d) compute inductor maximum peak current $I_{L-PK-MAX}$.

$$I_{L_{-}PK_{-}MAX} = \frac{(\sqrt{2}V_{AC_{-}MIN} - V_{OUT}) \times t_{1}}{L} = \frac{(\sqrt{2} \times 176 - 20) \times 1.528us}{326uH} = 1.073A$$

Where $I_{\text{L-PK-MAX}}$ is maximum inductor peak current ; (f) compute RMS of the inductor current $I_{\text{L-RMS-MAX}}$

$$\begin{split} & I_{L_RMS_MAX} = \frac{t_1}{\sqrt{3} \times L} \sqrt{V_{AC_MIN}^2 + V_{OUT}^2 - \frac{4\sqrt{2}V_{AC_MIN} \times V_{OUT}}{\pi}} \\ & = \frac{1.528 \mu s}{\sqrt{3} \times 326 \mu H} \sqrt{176V^2 + 20V^2 - \frac{4\sqrt{2} \times 176V \times 20V}{\pi}} \\ & = 0.428A \end{split}$$

#3. Select power MOSFET and power diode

Refer to Power Device Design

Known conditions	at this step	7/2	
$V_{AC\text{-}MAX}$	264V	η 92%	
V_{OUT}	80V	~~	

Compute the current stress of MOSFET:

$$\begin{split} &\mathbf{I}_{\text{L_RMS_MAX}} = \sqrt{\frac{\mathbf{t}_1}{3t_s}} \times \frac{\mathbf{t}_1}{\mathbf{L}} \sqrt{V_{AC_MIN}^2 + V_{OUT}^2 - \frac{4\sqrt{2}V_{AC_MIN} \times V_{OUT}}{\pi}} \\ &= \sqrt{\frac{1.528}{3\times18.18}} \times \frac{1.528}{326} \times \sqrt{176V^2 + 20V^2 - \frac{4\sqrt{2}\times176V\times20V}{\pi}} \\ &= 0.124A \end{split}$$

#4. Select the output capacitor C_{OUT}

Refer to Power Device Design

Conditions			
I _{OUT}	300mA	ΔI_{OUT}	$0.3I_{OUT}$
f_{AC}	50Hz	R_{LED}	$6 \times 1.6\Omega$

The output capacitor is

$$\begin{split} C_{\text{out}} = & \frac{\sqrt{(\frac{2I_{\text{out}}}{\Delta I_{\text{out}}})^2 - 1}}{4\pi f_{\text{AC}} R_{\text{LED}}} \\ = & \frac{\sqrt{(\frac{2\times 0.3A}{0.3\times 0.3A})^2 - 1}}{4\pi \times 50 Hz \times 6 \times 1.6\Omega} \\ = & 1000 \mu F \end{split}$$

#6. Set VIN pin

Refer to Start up

Conditions			20
$V_{BUS-MIN}$	176V×1.414	$V_{BUS\text{-}MAX}$	264V×1.414
I_{ST}	15μA (typical)	$V_{\text{IN-ON}}$	16V (typical)
$I_{VIN-OVP}$	2mA (typical)	t_{ST}	500ms (designed by user)
(a) R _{ST} is preset		180	,
$R_{ST} < \frac{V_{BUS}}{I_{ST}} = \frac{176V}{15}$	$\times 1.414 = 16.59 \text{M}\Omega$,	oreboy.	
$R_{ST} > \frac{V_{BUS}}{I_{VIN_OVP}} = \frac{26}{1}$			
Set R _{ST}	idell.		
$R_{ST} = 470 k\Omega \times 2 = 9$	50kΩ		
(b) Design C _{VIN}	CO.		

$$R_{ST} < \frac{V_{BUS}}{I_{ST}} = \frac{176V \times 1.414}{15\mu A} = 16.59M\Omega$$

$$R_{ST} > \frac{V_{BUS}}{I_{VIN,OVP}} = \frac{264V \times 1.414}{2mA} = 186.7k\Omega$$

$$R_{cr} = 470 k\Omega \times 2 = 950 k\Omega$$

$$C_{VIN} = \frac{(\frac{V_{BUS}}{R_{ST}} A_{ST}) \times t_{ST}}{V_{VIN_ON}}$$

$$= \frac{(\frac{176V \times 1.414}{950k\Omega} - 15\mu A) \times 500ms}{16V}$$

$$= 7.72\mu F$$

Set C_{VIN}

$$C_{\text{VIN}} = 10 \mu F$$

#7 Set COMP pin

Refer to **Internal pre-charge design for quick start up**

Parameters designed			
R _{COMP}	1ΚΩ	$V_{COMP,IC}$	600mV
C_{COMP1}	2μF	C_{COMP2}	0

#8 Set current sense resistor to achieve ideal output current

Refer to constant-current control

Known conditions at this	s step		XO,
V_{REF}	0.3V	I_{OUT}	0.3A

The current sense resistor is

$$R_{\rm S} = \frac{V_{\rm REF}}{I_{\rm OUT}} = \frac{0.3}{0.3 A} = 1\Omega$$

#9 set ZCS pin

Refer to Over Voltage Protection (OVP) & Open Loop Protection (OLP)

First identify R_{ZCSU} need for line regulation.

			/ () \	
Known conditions at this	step			
Parameters Designed				
R_{ZCSU}	100kΩ	. 0		

Then compute R_{ZCSD}

Conditions	78,			
V_{ZCS_OVP}	1.42V	V_{OVP}	30V	
V_{OUT}	20V			
Parameters designed				
R _{ZCSU}	100kΩ			

$$R_{ZCSD} < \frac{\frac{V_{ZCS_QVP}}{V_{OUT}}}{V_{OUT}} \times R_{ZCSU}$$

$$= \frac{\frac{1.42V}{20V}}{1 - \frac{1.42V}{20V}} \times 100k\Omega$$

$$\begin{split} R_{zcsd} &\geq \frac{\frac{V_{zcs_ovp}}{V_{ovp}}}{1 - \frac{V_{zcs_ovp}}{V_{ovp}}} \times R_{zcsu} \\ &= \frac{\frac{1.42 V}{30 V}}{1 - \frac{1.42 V}{30 V}} \times 100 \text{k}\Omega \\ &= 4.969 \text{k}\Omega \end{split}$$

R_{ZCSD} is set to 5K

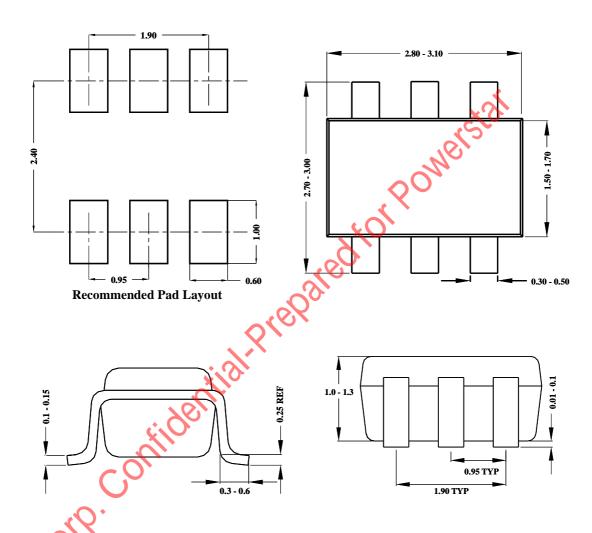
$$R_{ZCSD} = 5k\Omega$$

#10 set Rvin

Known conditions	at this step		
Parameters Design	ned	, 40	
$V_{VIN,OFF}$	7.9V	V _{VIN,OVP}	18.45V
I_{VIN}	2mA	400	

$$R_{VIN_MIN} = \int_{q}^{g_2} \frac{\left[\sqrt{2} \times V_{AC_MIX} \times \sin(2\pi \times f_{IN} \times t) - V_{OUT}\right] \times \left(V_{OUT} - V_{NIN,Q(V)}\right) \times 2f_{IN}}{\sqrt{2} \times V_{AC_MIX} \times \sin(2\pi \times f_{IN} \times t) \times I_{NIN}} dt = 650\Omega$$

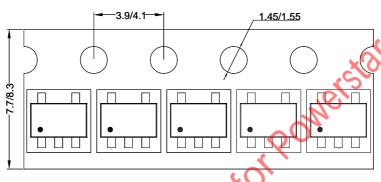
$$R_{VIN} \text{ is set to } 3.3 \text{ K}$$



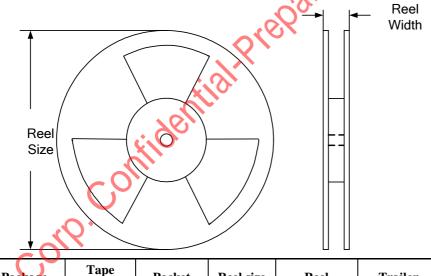
#11 final result

SOT23-6 Package outline & PCB layout design

Notes: All dimensions are in millimeters.


All dimensions don't include mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

SOT23-6

Feeding direction

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Reel width(mm)	Trailer length(mm)	Leader length (mm)	Qty per reel
SOT23-6	8	4	7''	8.4	280	160	3000

3. Others: NA

单击下面可查看定价,库存,交付和生命周期等信息

>>SILERGY(矽力杰)