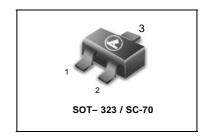


General Purpose Transistors

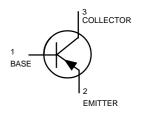
PNP Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SOT–323/SC–70 which is designed for low power surface mount applications.


Features

We declare that the material of product compliance with RoHS requirements.

MAXIMUM RATINGS


Rating	Symbol	BC856	BC857	BC858	Unit
Collector–Emitter Voltage	V_{CEO}	-65	– 45	-30	V
Collector-Base Voltage	V _{CBO}	-80	– 50	-30	V
Emitter-Base Voltage	V _{EBO}	-5.0	-5.0	-5.0	V
Collector Current — Continuous	I _c	-100	-100	-100	mAdc

LBC856AWT1G, BWT1G LBC857AWT1G, BWT1G LBC858AWT1G, BWT1G CWT1G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR- 5 Board, (1) $T_A = 25$ °C	P _D	150	mW
Thermal Resistance, Junction to Ambient	R _{eJA}	833	°C/W
Junction and Storage Temperature	T_J , T_stg	-55 to +150	°C

DEVICE MARKING

LBC856AWT1G= 3A; LBC856BWT1G= 3B; LBC857AWT1G= 3E; LBC857BWT1G = 3F; LBC858AWT1G= 3J; LBC858BWT1G= 3K; LBC858CWT1G= 3L

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage	LBC856 Series		– 65	_	_	
$(I_{\rm C} = -10 \text{ mA})$	LBC857 Series	$V_{(BR)CEO}$	- 45	_	_	V
	LBC858 Series		- 30	_	_	
Collector–Emitter Breakdown Voltage	LBC856 Series		- 80	_	_	
$(I_C = -10 \mu A, V_{EB} = 0)$	LBC857 Series	$V_{(BR)CES}$	- 50	_	_	V
	LBC858 Series		- 30	_	_	
Collector-Base Breakdown Voltage	LBC856 Series		- 80	_	_	
$(I_C = -10 \mu\text{A})$	LBC857 Series	$V_{(BR)CBO}$	- 50	_	_	V
	LBC858 Series		- 30	_	_	
Emitter-Base Breakdown Voltage	LBC856 Series		- 5.0	_	_	
$(I_E = -1.0 \mu A)$	LBC857 Series	$V_{(BR)EBO}$	-5.0	_	_	V
	LBC858 Series		- 5.0	_	_	
Collector Cutoff Current (V _{CB} = -30 V)		I _{CBO}	_	_	– 15	nA
$(V_{CB} = -30)$	$V, T_A = 150^{\circ}C)$	СВО	_	_	- 4.0	μΑ

^{1.}FR-5=1.0 x 0.75 x 0.062in

4.5

10

рF

dΒ

LBC856AWT1G, BWT1G LBC857AWT1G, BWT1G LBC858AWT1G, BWT1G, CWT1G

C_{ob}

NF

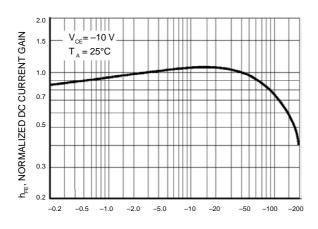
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

	Symbol	Min	Тур	Max	Unit	
ON CHARACTERISTICS	3					
DC Current Gain	nt Gain LBC856A, LBC857A, LBC858A		_	90	_	_
$(I_C = -10 \mu A, V_{CE} = -5.0 V)$	LBC856B,LBC857B, LBC858B		_	150	_	
	LBC858C,		_	270	_	
$(I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$	LBC856A, LBC857A, LBC858A		125	180	250	
	LBC856B,LBC857B, LBC858B		220	290	475	
	LBC858C,		420	520	800	
Collector–Emitter Saturation Voltage (I _c = -10 mA, I _B = -0.5 mA)		V _{CE(sat)}			- 0.3	
	_		_	-0.65	V	
Base–Emitter Saturation \	/oltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$)	V	_	- 0.7	_	V
$(I_c = -100 \text{ mA}, I_B = -5.0 \text{ mA})$		$V_{BE(sat)}$	_	- 0.9	_	V
Base–Emitter Voltage ($I_c = -2.0 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$)		V BE(on)	- 0.6	_	- 0.75	V
(I _C :	_		_	- 0.82	V	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product		f _T	100	_	_	MHz
$(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ mA})$	'					

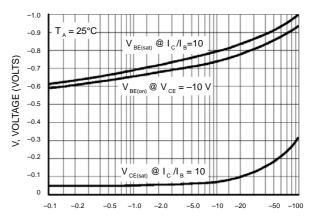
ORDERING INFORMATION (Pb-Free)

Noise Figure

Output Capacitance (V $_{CB} = -10 \text{ V}, f = 1.0 \text{ MHz})$


Device	Package	Shipping
LBC856AWT1G_S	SOT-23	3000/Tape & Reel
LBC856AWT3G_S	SOT-23	10000/Tape & Reel

(I $_{\text{C}}\text{=}-0.2$ mA,V $_{\text{CE}}\text{=}-5.0$ V $_{\text{dc}},\ R$ $_{\text{S}}\text{=}2.0$ k $\Omega,\ f$ =1.0 kHz, BW= 200 Hz)


LBC856AWT1G, BWT1G LBC857AWT1G, BWT1G LBC858AWT1G, BWT1G, CWT1G

LBC857/LBC858

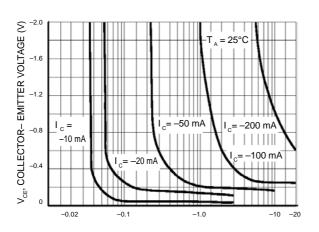
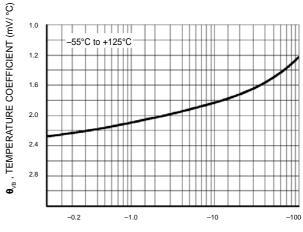

I_C, COLLECTOR CURRENT (mAdc)

Figure 1. Normalized DC Current Gain



I_c, COLLECTOR CURRENT (mAdc)

Figure 2. "Saturation" and "On" Voltages

I , BASE CURRENT (mA) Figure 3. Collector Saturation Region

 ${\rm I}_{_{\rm C}}$, COLLECTOR CURRENT (mA) Figure 4. Base-Emitter Temperature Coefficient

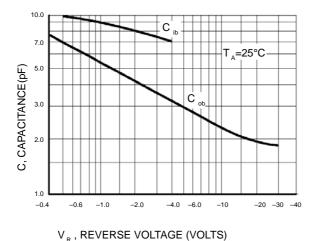
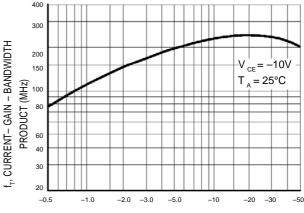



Figure 5. Capacitances

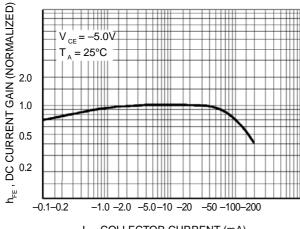

 $\rm I_{_{\rm C}}$, COLLECTOR CURRENT (mAdc)

Figure 6. Current-Gain - Bandwidth Product

LBC856AWT1G, BWT1G LBC857AWT1G, BWT1G LBC858AWT1G, BWT1G, CWT1G

LBC856

 $\rm I_{_{\rm C}}$, COLLECTOR CURRENT (mA) Figure 7. DC Current Gain

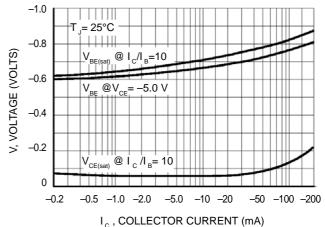


Figure 8. "On" Voltage

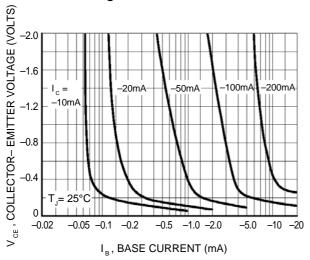


Figure 9. Collector Saturation Region

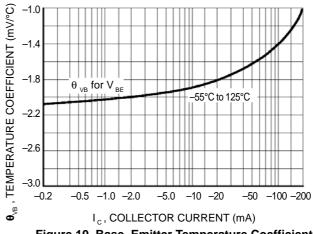


Figure 10. Base-Emitter Temperature Coefficient

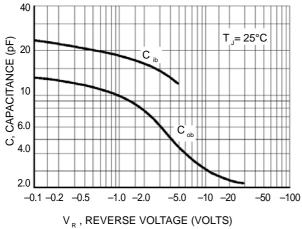
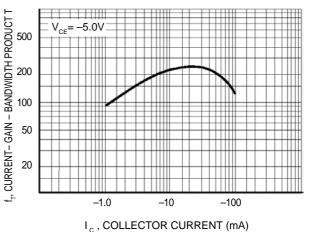



Figure 11. Capacitance

LBC856AWT1G, BWT1G LBC857AWT1G, BWT1G LBC858AWT1G, BWT1G, CWT1G

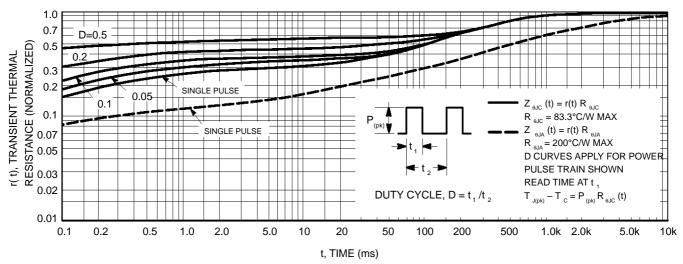


Figure 13. Thermal Response

 V_{CE} , COLLECTOR-EMITTER VOLTAGE (V)

Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I $_{\rm C}$ –V $_{\rm CE}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

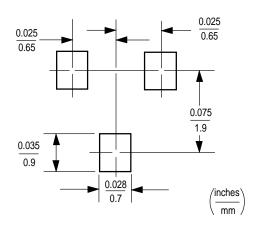
The data of Figure 14 is based upon T $_{J(pk)}$ = 150°C; T $_{C}$ or T $_{A}$ is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided T $_{J(pk)}$ \leq 150°C. T $_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.

LBC856AWT1G, BWT1G LBC857AWT1G, BWT1G LBC858AWT1G, BWT1G, CWT1G

SC-70 / SOT-323

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.


	A	
0.05 (0.002)	c t	N

DIM	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.032	0.040	0.80	1.00	
D	0.012	0.016	0.30	0.40	
G	0.047	0.055	1.20	1.40	
Н	0.000	0.004	0.00	0.10	
J	0.004	0.010	0.10	0.25	
K	0.017 REF		0.425 REF		
L	0.026 BSC		0.650 BSC		
N	0.028	REF	0.700	REF	
S	0.079	0.095	2.00	2.40	

PIN 1. BASE

2. EMITTER

3. COLLECTOR

单击下面可查看定价,库存,交付和生命周期等信息

>>LRC(乐山无线电)