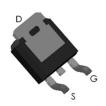


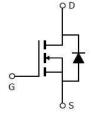
CQD50N06

60V N-CHANNEL MOSFET

Product Summary

V(BR)DSS	RDS(ON) max	ID max	
60V	<23mΩ @ VGS = 10V	33A	
	<25mΩ @ VGS = 4.5V		


Description and Applications


The CQD50N06 uses advanced trench technology to provide excellent RDS(ON). This device provides superior switching performance and commutation mode.

This device is well suited for low voltage applications such as DC/DC converters and high efficiency switching for power management in portable and battery operated products.

View and Internal Schematic Diagram

DPAK (TO252)

Internal Schematic

Marking Information

DPAK

NOTE: LOGO - CQAOS 50N06 - Part number coder F=Fab location A=Assembly location Y=Year W=Week LT=Lot sequence

Ordering Information

Part Number	Case	Packaging
CQD50N06	DPAK	2,500/Tape & Reel

Maximum Ratings (@TA = +25°C unless otherwise specified.)

Parameters		Symbol	Max	Units
Drain-Source Voltage		VDSS	60	V
Gate-Source Voltage		VGSS	±20	V
Continuous Drain Current	TA = +25°C TA = +100°C	ID	33 23	А
Pulsed Drain Current ^C	·	IDM	60	Α
Power Dissipation	TA = +25°C TA = +100°C	PD	60 28	W
Operating and Storage Temperature	Range	TJ, TG	-55 to+175	°C

Jun. 2022 P-QRA-00001-22(a) 1 of 4 www.CQAOS.com

Doc No.:CDS-00005

Rev.:D

Thermal Characteristics

Characteristic		Symbol	Тур	Max	Unit
Maximum Junction-to-Ambient ^A	t ≤ 10s	R _{eJA}	17.4	25	°C/W
Maximum Junction-to-Ambient ^A D	Steady-State		51	60	°C/W
Maximum Junction-to-Case	Steady-State	$R_{ heta JC}$	1.8	2.5	°C/W

Electrical Characteristics (@TA = +25°C unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC PA	RAMETERS			•		
BVDSS	Drain-Source Breakdown Voltage	ID=250μA, VGS=0V	60			V
IDSS	Zero Gate Voltage Drain Current	VDS=60V, VGS=0V			1	
		TJ=55℃			5	μΑ
IGSS	Gate-Body leakage current	VDS=0V, VGS= ±20V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS ID=250μA	1.1	1.6	2.1	V
, ,		VGS=10V, ID=20A		15.3	23	mΩ
RDS(ON)	Static Drain-Source On-Resistance	TJ=125℃		29	37	
` '		VGS=4.5V, ID=20A		18.6	25	mΩ
gFS	Forward Transconductance	VDS=5V, ID=4.0A		40		S
VsD	Diode Forward Voltage	IS=4.1A,VGS=0V		0.7	1	V
Is	Maximum Body-Diode Continuous Curr	ent			33	Α
DYNAMIC I	PARAMETERS		•	•		
Ciss	Input Capacitancer			2785		pF
Coss	Output Capacitance	VGS=0V, VDS=30V,		105		pF
C _{rss}	Reverse Transfer Capacitance	f=1MHz		86		pF
Rg	Gate resistance	VGS=0V, VDS=0V,	1	1.5	2.35	Ω
SWITCHING	G PARAMETERS					
Qg(10V)	Total Gate Charge	\(\oo\ 40\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		57		nC
Qgs	Gate Source Charge	VGS=10V, VDS=30V, ID=20A		13		nC
Q _{gd}	Gate Drain Charge	-1D-20A		9		nC
tD(on)	Turn-On Delay Time			10		ns
tr	Turn-On Rise Time	VGS=10V, VDS=30V,		43		ns
tD(off)	Turn-Off Delay Time	RL=1.5 Ω , RGEN=3 Ω		44		ns
tf	Turn-Off Fall Time]		60		ns
t _{rr}	Body Diode Reverse Recovery Time	IF=20A, dI/dt=100A/μs		26		ns
Qrr	Body Diode Reverse Recovery Charge	IF=20A, dI/dt=100A/μs		16		nC

A. The value of $R_{\theta,M}$ is measured with the device mounted on 1in^2 FR-4 board with 1oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Jun. 2022 P-QRA-00001-22(a) 2 of 4 www.CQAOS.com

Doc No.:CDS-00005 Rev.:D

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using $\leqslant~10s$ junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using $<300\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 1oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERIS

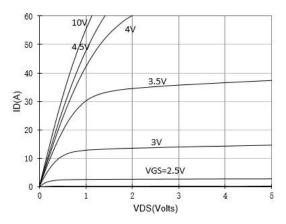


Figure 1: On-Region Characteristics (Note E)

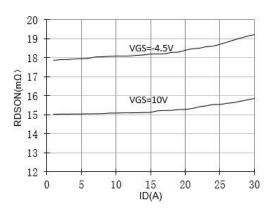


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

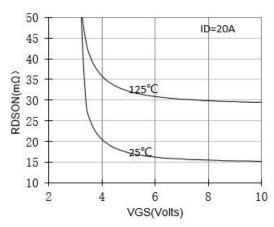


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

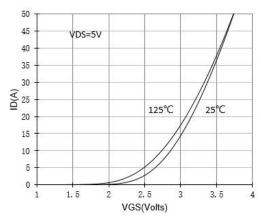


Figure 2 Transfer Characteristics (Note E)

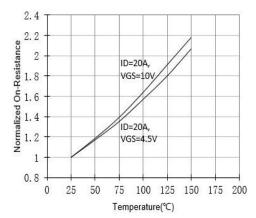


Figure 4: On-Resistance vs. Junction Temperature (Note E)

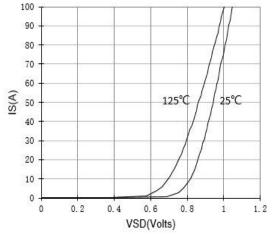


Figure 6: Body-Diode Characteristics (Note E)

Jun. 2022 P-QRA-00001-22(a) 3 of 4 www.CQAOS.com

Doc No.:CDS-00005 Rev.:D

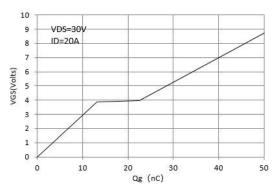


Figure 7: Gate-Charge Characteristics

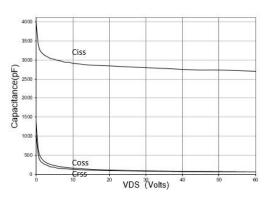


Figure 8: Capacitance Characteristics

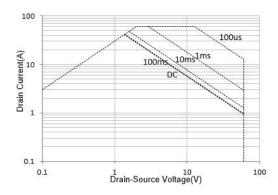


Figure 9: Maximum Forward Biased Safe Operating Area

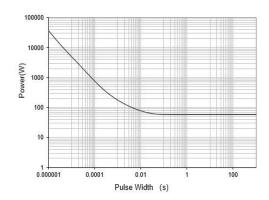


Figure 10: Single Pulse Power Rating
Junction-to-Ambient (Note E)

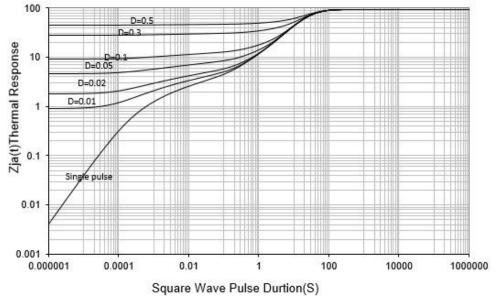


Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

Doc No.:CDS-00005 Rev.:D

单击下面可查看定价,库存,交付和生命周期等信息

>>CQAOS