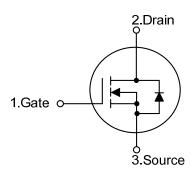


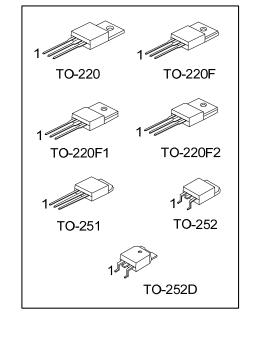
# UNISONIC TECHNOLOGIES CO., LTD

2N80 **Power MOSFET** 

# 2.4A, 800V N-CHANNEL **POWER MOSFET**

#### **DESCRIPTION**

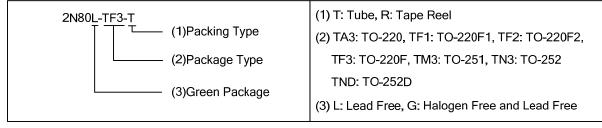

The UTC 2N80 is an N-channel mode power MOSFET using UTC's advanced technology to provide costumers planar stripe and DMOS technology. This technology is specialized in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC 2N80 is universally applied in high efficiency switch mode power supply.

### **FEATURES**

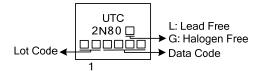
- \*  $R_{DS(on)}$  < 6.3 $\Omega$  @  $V_{GS}$ =10V,  $I_{D}$ =1.2A
- \* High switching speed

#### **SYMBOL**






#### ORDERING INFORMATION


| Ordering Number |              | Daakaga  | Pin Assignment |   |   | Packing   |  |
|-----------------|--------------|----------|----------------|---|---|-----------|--|
| Lead Free       | Halogen Free | Package  | 1              | 2 | 3 | Facking   |  |
| 2N80L-TA3-T     | 2N80G-TA3-T  | TO-220   | G              | D | S | Tube      |  |
| 2N80L-TF1-T     | 2N80G-TF1-T  | TO-220F1 | G              | D | S | Tube      |  |
| 2N80L-TF2-T     | 2N80G-TF2-T  | TO-220F2 | G              | D | S | Tube      |  |
| 2N80L-TF3-T     | 2N80G-TF3-T  | TO-220F  | G              | D | S | Tube      |  |
| 2N80L-TM3-R     | 2N80G-TM3-R  | TO-251   | G              | D | S | Tube      |  |
| 2N80L-TN3-R     | 2N80G-TN3-R  | TO-252   | G              | D | S | Tape Reel |  |
| 2N80L-TND-R     | 2N80G-TND-R  | TO-252D  | G              | D | S | Tape Reel |  |

Note: Pin Assignment: G: Gate D: Drain S: Source



www.unisonic.com.tw 1 of 7

# ■ MARKING



# ■ ABSOLUTE MAXIMUM RATINGS (T<sub>C</sub>=25°C, unless otherwise specified)

| PARAMETER              |                              | SYMBOL                                              | RATINGS            | UNIT |  |
|------------------------|------------------------------|-----------------------------------------------------|--------------------|------|--|
| Drain-Source Voltage   | -Source Voltage              |                                                     | 800                | V    |  |
| Gate-Source Voltage    |                              | V <sub>DSS</sub> 800           V <sub>GSS</sub> ±30 |                    | V    |  |
| Avalanche Current (Not | e 2)                         | $I_{AR}$                                            | 2.4                | Α    |  |
| Drain Current          | Continuous                   | Ι <sub>D</sub>                                      | 2.4                | Α    |  |
| Drain Current          | Pulsed (Note 2)              | I <sub>DM</sub>                                     | 9.6                | Α    |  |
| Avalonaha Enavev       | Single Pulsed (Note 3)       | E <sub>AS</sub>                                     | 180                | mJ   |  |
| Avalanche Energy       | Repetitive (Note 2)          | E <sub>AR</sub>                                     | 8.5                | mJ   |  |
| Peak Diode Recovery d  | v/dt (Note 4)                | dv/dt                                               | 4.0                | V/ns |  |
|                        | TO-220                       |                                                     | 85                 |      |  |
| Power Dissipation      | TO-220F/TO-220F1<br>TO-220F2 | $P_{D}$                                             | 24                 | W    |  |
|                        | TO-251/TO-252<br>TO-252D     |                                                     | 43                 |      |  |
| Junction Temperature   | unction Temperature          |                                                     | +150               | °C   |  |
| Storage Temperature    | Storage Temperature          |                                                     | -55 ~ <b>+</b> 150 | °C   |  |

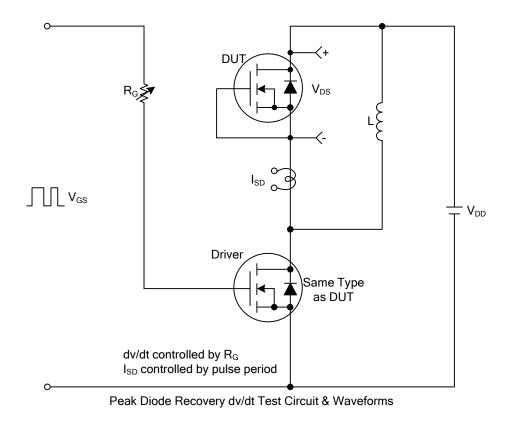
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

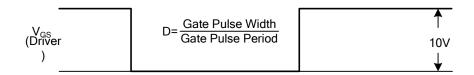
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

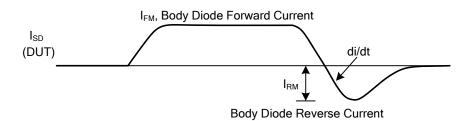
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 59mH,  $I_{AS}$  = 2.4A,  $V_{DD}$  = 50V,  $R_{G}$  = 25  $\Omega$ , Starting  $T_{J}$  = 25°C
- 4.  $I_{SD} \le 2.4 A$ , di/dt  $\le 200 A/\mu s$ ,  $V_{DD} \le BV_{DSS}$ , Starting  $T_J = 25 ^{\circ}C$

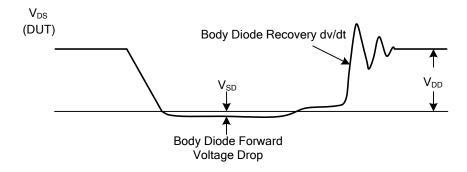
### **■ THERMAL DATA**

| PARAMETER           |                                      | SYMBOL           | RATINGS | UNIT   |  |
|---------------------|--------------------------------------|------------------|---------|--------|--|
| Junction to Ambient | TO-220/ TO-220F<br>TO-220F1/TO-220F2 |                  | 62.5    | °0.004 |  |
|                     | TO-251/TO-252<br>TO-252D             | $	heta_{JA}$     | 110     | °C/W   |  |
|                     | TO-220                               |                  | 1.47    |        |  |
| Junction to Case    | TO-220F/TO-220F1<br>TO-220F2         | $\theta_{ m JC}$ | 5.2     | °C/W   |  |
|                     | TO-251/TO-252<br>TO-252D             |                  | 2.85    |        |  |


# ■ ELECTRICAL CHARACTERISTICS (T<sub>C</sub>=25°C, unless otherwise specified)

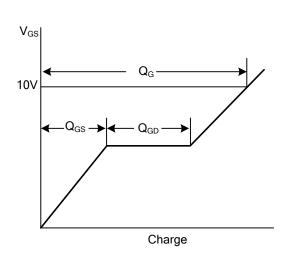

| Drain-Source Leakage Current   I <sub>DSS</sub>   V <sub>DS</sub> =800V, V <sub>GS</sub> =0V   100   μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PARAMETER                        |            | SYMBOL              | TEST CONDITIONS                             | MIN | TYP  | MAX | UNIT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|---------------------|---------------------------------------------|-----|------|-----|------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OFF CHARACTERISTICS              |            |                     |                                             | •   |      |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |            | BV <sub>DSS</sub>   | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V  | 800 |      |     | V    |
| $ \begin{array}{ c c c c } \hline \text{Cate-Source Leakage Current} & \hline \text{I}_{DSS} & \hline V_{DS}=640V, T_{C}=125^{\circ}C & 100 & \mu A \\ \hline \text{Gate-Source Leakage Current} & \hline \text{Forward} & \hline \text{Reverse} & \hline \text{I}_{GSS} & \hline V_{GS}=430V, V_{DS}=0V & +100 & nA \\ \hline \textbf{ON CHARACTERISTICS} & \hline \text{Gate Threshold Voltage} & \hline V_{GS(TH)} & \hline V_{DS}=V_{GS}, \ I_{D}=250\mu A & 3.0 & 5.0 & V \\ \hline \text{Static Drain-Source On-State Resistance} & \hline R_{DS(ON)} & \hline V_{SS}=10V, \ I_{D}=1.2A & 4.8 & 6.3 & \Omega \\ \hline \text{Forward Transconductance (Note 1)} & \hline \text{g}_{FS} & \hline V_{DS}=50V, \ I_{D}=1.2A & 2.65 & S \\ \hline \textbf{DYNAMIC PARAMETERS} & \hline \hline \text{Input Capacitance} & \hline \text{C}_{ISS} & \hline V_{SS}=50V, \ I_{D}=1.2A & 5.0 & 0.5 \\ \hline \textbf{Output Capacitance} & \hline \text{C}_{CSS} & \hline \text{COSS} & \hline \text{F1.0MHz} & 7 & 9 & pF \\ \hline \textbf{SWITCHING PARAMETERS} & \hline \hline \text{Turn-ON Delay Time} & \hline \text{t}_{D(ON)} & \hline \text{Rise Time} & \hline \text{t}_{R} & \hline \text{I}_{D}=0.5A, \ R_{G}=25\Omega & 80 & ns \\ \hline \text{Fall-Time} & \hline \text{t}_{F} & \hline \text{Input Capacitance} & \hline \text{C}_{GSS} & \hline \text{Input Capacitance} & \hline \text{C}_{SS} & \hline \text{Input Capacitance} & \hline \text{C}_{SS} & \hline \text{Input Capacitance} & \hline \text{C}_{SS} & \hline \text{SOURCE-Darage} & \hline \text{Q}_{GS} & \hline \text{Input Capacitance} & \hline \text{C}_{SS} & \hline \text{SOURCE-Darameters} & \hline \text{Input Capacitance} & \hline \text{C}_{SS} & \hline \text{Input Capacitance} & \hline \text{Input Capacitance} & \hline \text{C}_{SS} & \hline \text{Input Capacitance} & \hline Input C$ |                                  |            |                     | 1                                           |     | 0.9  |     | V/°C |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drain-Source Leakage Current     |            | I <sub>DSS</sub>    |                                             |     |      |     | μΑ   |
| ON CHARACTERISTICS   Gate Threshold Voltage   V_{GS(TH)}   V_{DS}=V_{GS}, I_D=250 μA   3.0   5.0   V   Static Drain-Source On-State Resistance   R_{DS(ON)}   V_{GS}=10V, I_D=1.2A   4.8   6.3   Ω   Forward Transconductance (Note 1)   g <sub>FS</sub>   V_{DS}=50V, I_D=1.2A   2.65   S   DYNAMIC PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gate- Source Leakage Current     |            | I <sub>GSS</sub>    | V <sub>GS</sub> =+30V, V <sub>DS</sub> =0V  |     |      |     |      |
| Static Drain-Source On-State Resistance   R <sub>DS(ON)</sub>   V <sub>GS</sub> =10V, I <sub>D</sub> =1.2A   4.8   6.3   Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ON CHARACTERISTICS               | •          | •                   | , 50                                        | · · |      |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gate Threshold Voltage           |            | $V_{GS(TH)}$        | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$          | 3.0 |      | 5.0 | V    |
| Forward Transconductance (Note 1)   g <sub>FS</sub>   V <sub>DS</sub> =50V, I <sub>D</sub> =1.2A   2.65   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Static Drain-Source On-State Re  | sistance   |                     | V <sub>GS</sub> =10V, I <sub>D</sub> =1.2A  |     | 4.8  | 6.3 | Ω    |
| $ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{ISS} \\ \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Turn-ON Delay Time} & t_{D(ON)} \\ \hline \text{Rise Time} & t_{R} \\ \hline \text{Turn-OFF Delay Time} & t_{D(OFF)} \\ \hline \text{Fall-Time} & t_{F} \\ \hline \text{Cate to Source Charge} & Q_{G} \\ \hline \text{Gate to Drain Charge} & Q_{GD} \\ \hline \text{Maximum Pulsed Drain-Source Diode} \\ \hline \text{Forward Current} \\ \hline \text{Drain-Source Diode Forward Voltage} & V_{SD} \\ \hline \text{Reverse Recovery Time (Note 1)} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Forward Transconductance (Note   | e 1)       |                     | $V_{DS}$ =50V, $I_{D}$ =1.2A                |     | 2.65 |     | S    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DYNAMIC PARAMETERS               |            |                     |                                             |     |      |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input Capacitance                |            | C <sub>ISS</sub>    | \/ -0\/ \/ -25\/                            |     | 550  | 650 | pF   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Output Capacitance               |            |                     |                                             |     | 45   | 60  | pF   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reverse Transfer Capacitance     |            | C <sub>RSS</sub>    | 1-1.0IVII 12                                |     | 7    | 9   | pF   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SWITCHING PARAMETERS             |            |                     |                                             |     |      |     |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn-ON Delay Time               |            | t <sub>D(ON)</sub>  |                                             |     | 50   |     | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |            | t <sub>R</sub>      |                                             |     | 60   |     | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn-OFF Delay Time              |            | t <sub>D(OFF)</sub> |                                             |     | 80   |     | ns   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fall-Time                        | II-Time    |                     | (14010-1,2)                                 |     | 40   |     | ns   |
| Gate to Drain Charge         Q <sub>GD</sub> (Note 1,2)         5         nC           SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS           Maximum Continuous Drain-Source Diode Forward Current         I <sub>S</sub> 2.4         A           Maximum Pulsed Drain-Source Diode Forward Current         I <sub>SM</sub> 9.6         A           Drain-Source Diode Forward Voltage         V <sub>SD</sub> I <sub>S</sub> =2.4A, V <sub>GS</sub> =0V         1.4         V           Reverse Recovery Time (Note 1)         t <sub>RR</sub> I <sub>S</sub> =2.4A, V <sub>GS</sub> =0V,         480         ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Gate Charge                |            | $Q_G$               | $V_{GS}$ =10V, $V_{DS}$ =50V,               |     | 18   | 28  | nC   |
| SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS           Maximum Continuous Drain-Source Diode Forward Current         Is         2.4         A           Maximum Pulsed Drain-Source Diode Forward Current         Is         9.6         A           Drain-Source Diode Forward Voltage         VsD         Is=2.4A, Vs=0V         1.4         V           Reverse Recovery Time (Note 1)         trans         Is=2.4A, Vs=0V         480         ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gate to Source Charge            |            | $Q_GS$              | I <sub>D</sub> =1.3A, I <sub>G</sub> =100μA |     | 6    |     | nC   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gate to Drain Charge             |            | $Q_GD$              | (Note 1,2)                                  |     | 5    |     | nC   |
| Forward Current         Is         2.4         A           Maximum Pulsed Drain-Source Diode Forward Current         Ism         9.6         A           Drain-Source Diode Forward Voltage         VsD         Is=2.4A, Vs=0V         1.4         V           Reverse Recovery Time (Note 1)         truly Is=2.4A, Vs=0V         480         ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOURCE- DRAIN DIODE RATII        | NGS AND CH | ARACTERISTIC        | S                                           |     |      |     |      |
| Forward Current $I_{SM}$ $9.6$ A Drain-Source Diode Forward Voltage $V_{SD}$ $I_{S}$ =2.4A, $V_{GS}$ =0V $1.4$ V Reverse Recovery Time (Note 1) $I_{RR}$ $I_{S}$ =2.4A, $V_{GS}$ =0V, $I_{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |            | Is                  |                                             |     |      | 2.4 | Α    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | Diode      | I <sub>SM</sub>     |                                             |     |      | 9.6 | Α    |
| Reverse Recovery Time (Note 1) t <sub>RR</sub> I <sub>S</sub> =2.4A, V <sub>GS</sub> =0V, 480 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |            | $V_{SD}$            | I <sub>S</sub> =2.4A, V <sub>GS</sub> =0V   |     |      | 1.4 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |            |                     |                                             |     | 480  |     | ns   |
| reverse Recovery Charge (Note 1) $  Q_{RR}     q_{IF}/q_{I} = 100A/\mu s$ $  2.0   \mu C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reverse Recovery Charge (Note 1) |            | Q <sub>RR</sub>     | dI <sub>F</sub> /dt=100A/μs                 |     | 2.0  |     | μC   |


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

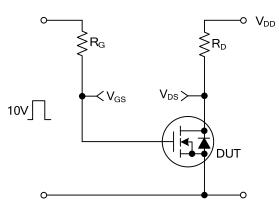

2. Essentially independent of operating temperature

# ■ TEST CIRCUITS AND WAVEFORMS

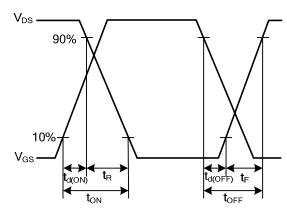




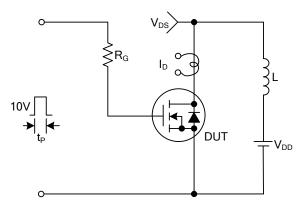


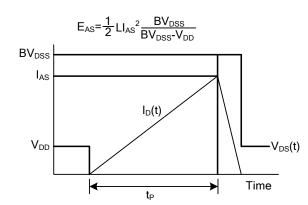

# ■ TEST CIRCUITS AND WAVEFORMS(Cont.)







**Gate Charge Waveforms** 

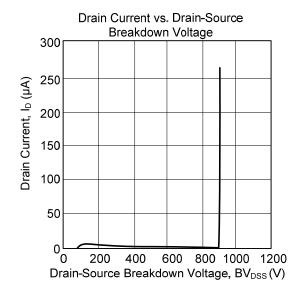


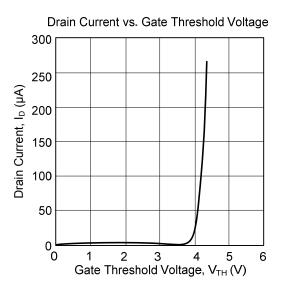


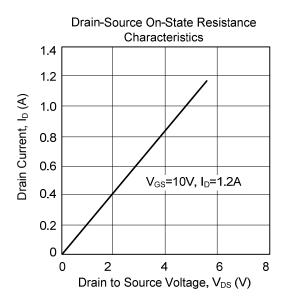



**Resistive Switching Waveforms** 




**Unclamped Inductive Switching Test Circuit** 





**Unclamped Inductive Switching Waveforms** 

2N80 Power MOSFET

#### **■ TYPICAL CHARACTERISTICS**







UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

单击下面可查看定价,库存,交付和生命周期等信息

>>UTC(友顺)