

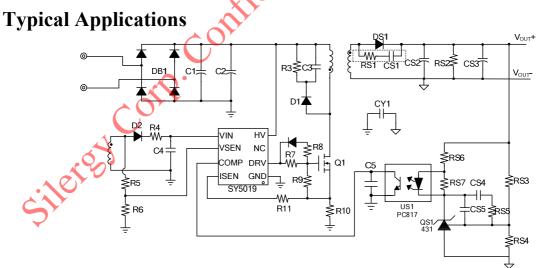
Applications Note: SY5019 Flyback controller For adapters or chargers

General Description

SY5019 is a PWM/PFM controller with several features to enhance performance of Flyback converters that targeting at adapter or charger applications. It drives Flyback controller in the Quasi-Resonant mode for higher efficiency and better EMI performance. SY5019 adopt burst mode control for improved efficiency and the output current is detected by internal primary detection technology to achieve more reliable Over Current Protection and Short Circuit Protection. The output voltage is achieved by secondary side control technology for good load and line regulation. SY5019 provides a fast internal HV start up circuit without consuming any standby power to achieve lowest no-load power consumption.

Ordering Information

	U		
SY5019			
		Temperature Co	de
		Package Code	
		Optional Spec Co	ode
	1		


Ordering Number	Package type	Note	
SY5019FAC	SO8		
			<u> </u>

Features

- Quasi-Resonant (QR) mode operation: Valley turnon of the primary MOSFET to achieve low switching losses
- Output current is monitored by primary detection for reliable Over Current Protection and Short Circuit Protection
- PWM/PFM control for higher average efficiency
- Burst mode control for low no load loss and efficiency
- HV start up circuit is used to reduce no-load.
- Internal high current MOSFET driver: 120mA
- Auto-Recovery for QVP/OCP/SCP/OTP
- Maximum frequency limitation 125kHz
- Compact package: SO8

Applications

- COC Adapters
- Battery Chargers
- Consumer Electronics
- Auxiliary power supplies

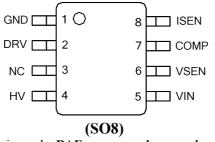
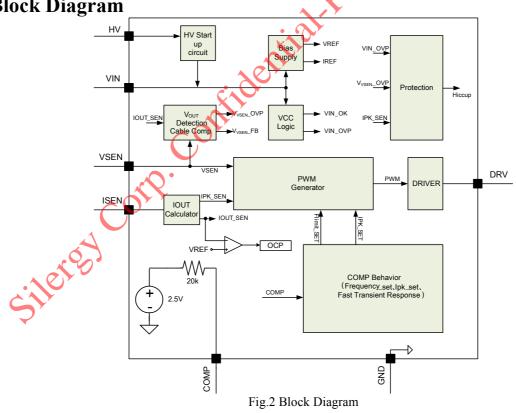

Notell Ground node of current sample resistor must be connected to the ground of BUS line capacitor.

Fig.1 Schematic Diagram


Pinout (top view)

Pin	Name	Description
1	GND	Ground pin.
2	DRV	Gate driver pin. Connect this pin to the gate of primary MOSFET.
3	NC	Not Connect
4	HV	Connect an internal HV start up circuit. Connect this pin to Bus or Drain Pin of Primary MOSFET.
5	VIN	Power supply pin.
6	VSEN	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resistor divider and detects the inductor current zero crossing point.
7	COMP	Feedback input pin. The PWM ducy cycle is determined by voltage level into this pin. It's connected to a optocoupler.
8	ISEN	Current sense pin. Connect this pin to the source of the primary switch.

Absolute Maximum Ratings (Note 1)

HV	600V
VIN	
Supply Current I _{VIN}	20mA
VSEN	
DRV	
ISEN, COMP	
Power Dissipation, @ TA = 25°C SO8	1.1W
Package Thermal Resistance (Note 2)	
SO8,θ _{JA}	125°C/W
SO8, θ _{JC}	60°C/W
Junction Temperature Range	45°C to 150°C
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	

Recommended Operating Conditions (Note 3)

Recommended Operating Conditions (Note 3)	\mathbf{Q}^{-}	9V~17.5V
Iunction Temperature Range Ambient Temperature Range	<u> </u>	40°C to 125°C 40°C to 105°C
	arect	
Ambient Temperature Range		
e dentic		
confit		
corp.		
rest		
Sile		

Electrical Characteristics

 $(V_{IN} = 12V, T_A = 25^{\circ}C$ unless otherwise specified)

$(V_{IN} = 12V, T_A = 25^{\circ}C \text{ unless otherw})$		•				-
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section	T	Τ				T
Input voltage range	V _{VIN}		9		17.5	V
VIN turn-on threshold	V _{VIN_ON}		13.7	14.7	15.7	V
VIN turn-off threshold	V _{VIN_OFF}		6.3	7	8.3	V
VIN OVP voltage	V _{VIN_OVP}		17.5	18.5	19.5	V
HV start up current	I _{HV_ON}			1.5		mA
HV leakage current	I _{HV_OFF}	V _{HV} =373V		3		μΑ
Start up current	I _{ST}	$V_{VIN}\!\!<\!\!V_{VIN_OFF}$		1.2	4	μΑ
Operating current	I _{VIN}	C _L =100pF,f=100kHz		1.5	 Image: A set of the set of the	mA
Quiescent current	I _Q		100	300	600	μA
Shunt current in OVP mode	I _{VIN_OVP}	$V_{VIN} > V_{VIN_OVP}$		9		mA
Current Feedback Modulator Sect						
Internal reference voltage	V _{REFI}		0.413	0.42	0.426	V
ISEN Pin Section	1	1	<u> </u>	<u>)</u> *		T
Current limit voltage	V _{ISEN_LIM}	$V_{FBV} < 0.4V$		0.7	1 1	V
Latch voltage for ISEN		V _{FBV} >0.4V	0.9	1 2	1.1	V V
CC feedforward resistor	V _{ISEN_EX} R _{k2}		225	300	375	ν
VSEN Pin Section	\mathbf{K}_{k2}		223	500	515	32
OVP voltage threshold	V _{VSEN_OVP}		1.37	1.45	1.52	V
COMP Section	VSEN_OVP		1.57	1.45	1.52	v
Internal voltage bias	V _{CVB}			2.5		V
Sleep mode voltage ON threshold	V _{COMP_ON}	i de la companya de l		0.4		V
Sleep mode voltage OFF threshold	V _{COMP_OFF}	¢.		0.45		V
Internal pull-up resistor	R _{COMP}			20		kΩ
Gate Driver Section						
Gate driver voltage	VGATE			12		V
Maximum. source current	SOURCE_MAX			120		mA
Maximum. sink current	I _{SINK_MAX}			500		mA
Max ON Time	T _{ON_MAX}	$V_{COMP}=2.5V$		24		μs
Min ON Time	T _{ON_MIN}		100	300	400	ns
Max OFF Time	T _{OFF_MAX}		400	500	650	μs
Min OFF Time	T _{OFF_MIN}			1.2		μs
Minimum switching period	T _{PERIOD_MIN}		7	8	9	μs
Thermal Section		•				
Thermal shutdown temperature	T _{SD}			150		°C

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}$ C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. **Note 3**: Increase VIN pin voltage gradually higher than V_{VIN ON} voltage then turn down to 12V.

4

AN_SY5019

Operation

SY5019 is a PWM/PFM controller with several features to enhance performance of Flyback converters.

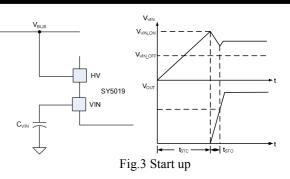
To achieve higher efficiency and better EMI performance, SY5019 drives Flyback converters in the Quasi-Resonant mode; the start up current of the device is rather small(4 μ A max) to reduce the standby power loss further and the maximum switching frequency is limited below 125kHz.

In order to improve the stability, the self-adaption compensation is applied.

The output current is monitored by primary side detection technology, and the maximum output current can be programmed in Over Current Protection and Short Circuit Protection. In addition to SY5019 provides Over Voltage Protection (OVP), Over Temperature Protection (OTP), VSEN pin short protection, etc..

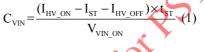
SY5019 can be applied in AC/DC adapters, Battery Chargers and other consumer electronics.

SY5019 is available with SO8package.


Applications Information

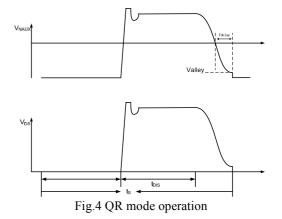
<u>Start up</u>

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through HV start up circuit. Once V_{VIN} rises up to V_{VIN_ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Flyback transformer could supply enough energy to maintain V_{VIN} above V_{VIN_OFF} .


The whole start up procedure is divided into two sections shown in Fig.3. $t_{\rm STC}$ is the C_{VIN} charged up section, and $t_{\rm STO}$ is the output voltage built-up section. The start up time $t_{\rm ST}$ composes of $t_{\rm STC}$ and $t_{\rm STO}$, and usually $t_{\rm STO}$ is much smaller than $t_{\rm STC}$.

The C_{VIN} are designed by rules below:

(a) Select C_{VIN} to obtain an ideal start up time $t_{ST_{2}}$ and ensure the output voltage is built up at one time.


(b) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} until the ideal start up procedure is obtained.

Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of Flyback transformer cannot supply enough energy to VIN pin, V_{VIN} will drop down. Once V_{VIN} is below V_{VIN} off, the IC will stop working.

Quasi-Resonant Operation(valley detection)

QR mode operation provides low turn-on switching losses for Flyback converter.

The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the

AN_SY5019

Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage on VSEN pin across zero, the MOSFET would be turned on after 400ns delay.

Output Voltage Control(CV control)

SY5019 is compatible with opto-coupler to achieve output voltage control, which is shown by Fig.5.

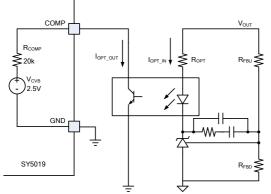


Fig.5 Output voltage feedback circuit

The OFF time of MOSFET is up to the valley detection of VSEN pin, and the ON time of MOSFET is a function of V_{COMP} , so the output power can be controlled by V_{COMP} .

SY5019 integrates an internal 2.5V voltage bias and $20k\Omega$ resistor to interface the output of opto-coupler. V_{COMP} is in relation with the output current of the opto-coupler I_{OPT OUT} by

$$V_{\text{COMP}} = V_{\text{CVB}} - I_{\text{OPT}_{\text{OUT}}} \times R_{\text{COMP}}$$
(2)

 R_{OPT} is the resistor across the output node and the anode of the opto-coupler. The selection of R_{OPT} is related with system loop stability, and higher loop gain of the system is achieved by smaller R_{OPT} .

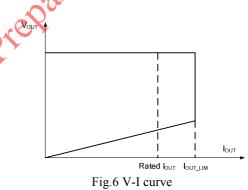
At the same time, R_{OPT} is designed by

$$V_{\text{CVB}} - I_{\text{OPT}_{\text{DV}_{\text{CMAX}}}} \times \beta \times R_{\text{COMP}} < V_{\text{COMP}_{\text{ON}}} (3)$$

Where B is the transfer ratio of the opto-coupler; $I_{OPT_IN_MAX}$ is the maximum input current through the opto-coupler, which is limited by R_{OPT} .

Output current detection by Primary side(CC control)

The output current is monitored by SY5019 with primary side detection technology. The maximum output current $I_{OUT\ LIM}$ can be regulated by:


$$I_{\text{OUT_LIM}} = \frac{k_1 \times k_2 \times V_{\text{REF}} \times N_{\text{PS}}}{R_s}$$
(4)

Where k_1 is the output current weight coefficient; k_2 is the output modification coefficient; V_{REF} is the internal reference voltage; N_{PS} is the turns ratio of the Flyback transformer; R_S is the current sense resistor.

 k_1 , k_2 and V_{REF} are all internal constant parameters, $I_{OUT\ LIM}$ can be programmed by N_{PS} and $R_{S}.$

$$R_{s} = \frac{k_{1} \times k_{2} \times V_{REF} \times N_{PS}}{I_{OUT_LIM}}$$
(5)

When over current operation or short circuit operation happens. V_{COMP} will be pulled down, and the output current will be limited at I_{OUT_LIM} . The V-I curve is shown as Fig.6.

Line regulation modification

The IC provides line regulation modification function to improve line regulation performance of the output current.

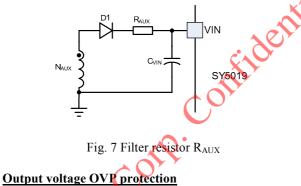
Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage ΔV_{ISEN_C} is added to ISEN pin during ON time to improve such performance. This ΔV_{ISEN_C} is adjusted by the upper resistor of the divider connected to VSEN pin.

$$\Delta V_{\text{ISEN_C}} = V_{\text{BUS}} \times \frac{N_{\text{AUX}}}{N_{\text{P}}} \times \frac{1}{R_{\text{VSENU}}} \times k_3 (6)$$

Where R_{VSENU} is the upper resistor of the divider; k3 is an internal constant as the modification coefficient.

AN_SY5019

The compensation is mainly related with $R_{VSENU},$ larger compensation is achieved with smaller $R_{VSENU}.$ Normally, R_{VSENU} ranges from 50k $\Omega{\sim}150k\Omega.$


Short Circuit Protection (SCP)

There are two kinds of situations, one is the valley signal cannot be detected by VSEN, the other is the valley signal can be detected by VSEN.

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so valley signal cannot be detected by VSEN. There are two cases , the one is without valley detection, MOSFET cannot be turned on until maximum off time is reached. If MOSFET is turned on with maximum off-time for 64 times continuously which can not detected valley, IC will be shut down and enter into hiccup mode. The other is that IC will be shut down and enter into hiccup mode when $V_{\rm VIN}$ below $V_{\rm VIN}$ off within 64 times .

When the output voltage is not low enough to disable valley detection in short condition, SY5019 will operate in CC mode until VIN is below $V_{\rm IN\ OFF}$.

In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor R_{AUX} is needed.

The secondary maximum voltage is limited by the SY5019.When the VSEN pin signal exceeds 1.45V, SY5019 will stop switching and discharge the VIN voltage. Once V_{VIN} is below V_{VIN_OFF} , the IC will shut down and be charged again by HV start up.

VSEN pin short protection

The SY5019 has a protection against faults caused by a shorted VSEN pin or a shorted pull-down resistor. During start-up, the voltage on the VSEN pin is monitored. In normal situations, the voltage on the VSEN pin reaches

the sense protection trigger level. When the VSEN voltage does not reach this level, the VSEN pin is shorted and the protection is activated. The IC stops switching and discharge the VIN voltage. Once V_{VIN} is below V_{VIN_OFF} , the IC will shut down and be charged again by HV start up. In order to ensure reliable detection, the pull-down resistor should larger than $2k\Omega$.

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized.

$$V_{\text{MOS}_\text{DS}_\text{MAX}} = \sqrt{2} V_{\text{AC}_\text{MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D},\text{F}}) + \Delta V_{\text{S}} (7)$$
$$V_{\text{D}_\text{R}_\text{MAX}} = \frac{\sqrt{2} V_{\text{AC}_\text{MAX}}}{N_{\text{PS}}} + V_{\text{OUT}} (8)$$

Where V_{AC} was is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the rated output voltage; $V_{D_{-}F}$ is the forward voltage of secondary power diode; ΔV_S is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$\begin{split} &I_{\text{MOS}_{PK}\text{MAX}} = I_{P_{PK}\text{MAX}} (9) \\ &I_{\text{MOS}_{RMS}\text{MAX}} = I_{P_{PK}\text{MAX}} (10) \\ &I_{D_{PK}\text{MAX}} = N_{PS} \times I_{P_{PK}\text{MAX}} (11) \\ &I_{D_{AVG}} = I_{\text{OUT}} (12) \end{split}$$

Where $I_{P_PK_MAX}$ and $I_{P_RMS_MAX}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer (N_{PS} and L_M)

 N_{PS} is limited by the electrical stress of the power MOSFET:

$$N_{PS} \leq \frac{V_{MOS_{(BR)DS}} \times 90\% - \sqrt{2}V_{AC_{MAX}} - \Delta V_{S}}{V_{OUT} + V_{D_{F}}}$$
(13)

Where $V_{MOS_(BR)DS}$ is the breakdown voltage of the power MOSFET; V_{AC_MAX} is maximum input AC RMS voltage.

In Quasi-Resonant mode, each switching period cycle t_s consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 shown in Fig.8.

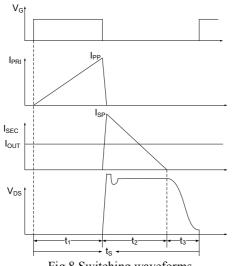


Fig.8 Switching waveforms

When the operation condition is with minimum input AC RMS voltage and full load, the switching frequency is minimum frequency, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency $f_{S_{MIN}}$ is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS};

$$N_{PS} \leq \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MA} - \Delta V_{S}}{V_{OUT} + V_{D_F}}$$
(14)

(b) Preset minimum frequency $f_{S_{MIN}}$;

(c) Compute inductor L_M and maximum primary peak current I_{PK_MAX} ;

$$I_{P_{P_{F_{MAX}}}} = \underbrace{\frac{2P_{OUT}}{\eta \times V_{DC_{MIN}}}}_{+\pi\sqrt{\frac{2P_{OUT}}{\eta} \times C_{Drain} \times f_{S_{MIN}}}} + \underbrace{\frac{2P_{OUT}}{\eta \times N_{PS} \times (V_{OUT} + V_{D_{F}})} (15)$$

$$L_{M} = \frac{2P_{OUT}}{\eta \times I_{P_{P_{F_{MAX}}}}^{2} \times f_{S_{MIN}}} (16)$$

Where C_{Drain} is the parasitic capacitance at drain of MOSFET; η is the efficiency; P_{OUT} is rated full load power; V_{DC_MIN} is minimum input DC RMS voltage.

(d) Compute current rising time t_1 and current falling time t_2 ;

$$t_{1} = \frac{L_{M} \times I_{P_{P}K_{MAX}}}{V_{DC_{MIN}}} (17)$$

$$t_{2} = \frac{L_{M} \times I_{P_{P}K}}{N_{PS} \times (V_{OUT} + V_{D_{P}F})} (18)$$

$$t_{S} = \frac{1}{f_{S_{MIN}}} (19)$$

(e) Compute primary maximum RMS current $I_{P_{RMS}_{MAX}}$ for the transformer fabrication

$$I_{P_{RMS}MAX} = \frac{\sqrt{3}}{3} I_{P_{PK}MAX} \sqrt{\frac{1}{15}}$$
(20)

(f) Compute secondary maximum peak current $I_{S_PK_MAX}$ and RMS current $I_{S_RMS_MAX}$ for the transformer fabrication

$$I_{S_{PK-Max}} = N_{PS} \times I_{P_{PK}Max} (21)$$
$$J_{S_{RMS}Max} = \frac{\sqrt{3}}{3} N_{PS} \times I_{P_{PK}Max} \times \sqrt{\frac{t_2}{t_s}} (22)$$

Transformer design (NP, NS, NAUX)

The design of the transformer is similar with ordinary Flyback transformer. The parameters below are necessary:

Necessary parameters	
Turns ratio	N _{PS}
Inductance	L _M
Primary maximum current	$I_{P_{PK_{MAX}}}$
Primary maximum RMS current	$I_{P_RMS_MAX}$
Secondary maximum RMS current	$I_{S_{RMS_{MAX}}}$

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area $A_{e}\,;$

(b) Preset the maximum magnetic flux ΔB ;

 $\Delta B=0.22\sim0.26T$

(c) Compute primary turn N_P;

$$N_{p} = \frac{L_{M} \times I_{P_{P} - PK_{MAX}}}{\Delta B \times A_{e}}$$
(23)

(d) Compute secondary turn N_S ;

$$N_{\rm S} = \frac{N_{\rm P}}{N_{\rm PS}} (24)$$

(e) compute auxiliary turn N_{AUX} ;

$$N_{AUX} = N_{S} \times \frac{V_{VIN}}{V_{OUT}}$$
(25)

Where V_{VIN} is the working voltage of VIN pin (11V~15V is recommended);

(f) Select an appropriate wire diameter;

With $I_{P_RMS_MAX}$ and $I_{S_RMS_MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$.

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

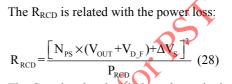
Input capacitor C_{BUS}

Generally, the input capacitor C_{BUS} is selected by $C_{BUS} {=} 2 {\sim} 3 \mu F/W$

Or more accurately by

Silerosy

$$C_{BUS} = \frac{\arcsin(1 - \frac{V_{DC MIN}}{\sqrt{2}V_{AC_{MIN}}}) + \frac{\pi}{2}}{\pi} \frac{P_{OUT}}{\eta} \frac{1}{2f_{IN}V_{AC_{MIN}}^{2}(1 - \frac{V_{DC_{MIN}}}{\sqrt{2}V_{AC_{MIN}}})^{2}} (26)$$


Where V_{DC_MIN} is the minimum voltage of BUS line and ΔV_{BUS} is the voltage ripple of BUS line; f_{IN} is AC line frequency;

RCD snubber for MOSFET

The power loss of the snubber P_{RCD} is evaluated first.

$$P_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_{\text{F}}}) + \Delta V_{\text{S}}}{\Delta V_{\text{S}}} \times \frac{L_{\text{K}}}{L_{\text{M}}} \times P_{\text{OUT}} \quad (27)$$

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; V_{D_F} is the forward voltage of the power diode; ΔV_S is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; P_{OUT} is the output power.

The C_{RCD} is related with the voltage ripple of the snubber $\Delta V_{C \ RCD}$:

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit;

(b) The ground of the BUS line capacitor, the ground of the current sample resistor and the signal ground of the IC should be connected in a star connection;

(c) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.

Design Example

A design example of typical application is shown below step by step.

#1. Identify Design Specification

Design Specification	on		
V _{AC_MIN}	90V	V _{AC_MAX}	264V
V _{OUT}	12V	I _{OUT}	2A
P _{OUT}	24W	η	86%
f_{IN_MIN}	60KHz		
Refer to Power De	esign $(N_{PS} and L_M)$ vice Design		FOLX
Conditions			<u> </u>
V_{AC_MIN}	90V	V_{AC_MAX}	264V
P _{OUT}	24W	f_{S_MIN}	60kHz
Parameters designed	ed		00
V _{MOS_(BR)DS}	600V	$\Delta V_{\rm S}$	75V

 $V_{D\ F}$

75V 1V

(a)Compute turns ratio N_{PS} first ;

(a)Compute turns ratio N_{PS} first ;

$$N_{PS} \leq \frac{V_{MOS_{(BR)DS}} \times 90\% - \sqrt{2}V_{AC_{MAX}} - \Delta V_{S}}{V_{OUT} + V_{D_{F}}}$$

$$= \frac{600V \times 0.9 - \sqrt{2} \times 264V - 75V}{12V + 1V}$$

100pF

 N_{PS} is set to

C_{Drain}

 $N_{PS} = 7$

(**b**)f_{S_MIN} is preset

 $f_{S_{MIN}} = 60 kH_{2}$

(c) Compute inductor L_M and maximum primary peak current $I_{P_-PK_-MAX}$;

$$\begin{split} I_{P_{-}PK_{-}MAX} &= \frac{2P_{OUT}}{\eta \times \left(\sqrt{2}V_{AC_{-}MIN} - \Delta V_{BUS}\right)} + \frac{2P_{OUT}}{\eta \times N_{PS} \times (V_{OUT} + V_{D_{-}F})} + \pi \sqrt{\frac{2P_{OUT}}{\eta} \times C_{Dmin} \times f_{S_{-}MIN}} \\ &= \frac{2 \times 24W}{0.86 \times (\sqrt{2} \times 90V - 0.3 \times \sqrt{2} \times 90V)} + \frac{2 \times 24W}{0.86 \times 7 \times (12V + 1V)} + \pi \times \sqrt{\frac{2 \times 24W}{0.86} \times 100 \text{pF} \times 60 \text{KHz}} \\ &= 1.297 \text{A} \end{split}$$

$$L_{M} = \frac{2P_{OUT}}{\eta \times I_{P_{P}PK_{MAX}}^{2} \times f_{S_{MIN}}}$$
$$= \frac{2 \times 24W}{0.86 \times (1.297A)^{2} \times 60 \text{KHz}}$$
$$= 0.553 \text{mH}$$

Set

 $L_M = 0.55 \text{mH}$

(d) Compute current rising time t_1 and current falling time t_2 ;

$$t_{1} = \frac{L_{M} \times I_{P_{-}PK_{-}MAX}}{V_{BUS_{-}MIN}} = \frac{0.55mH \times 1.297A}{\sqrt{2} \times 90V} = 5.61\mu s$$

$$t_{2} = \frac{L_{M} \times I_{P_{-}PK_{-}MAX}}{N_{PS} \times (V_{OUT} + V_{D_{-}F})} = \frac{0.55mH \times 1.297A}{7 \times (12V + 1V)} = 7.84\mu s$$

$$t_3 = \pi \times \sqrt{L_M \times C_{Drain}} = \pi \times \sqrt{0.55 \text{mH} \times 100 \text{pF}} = 0.74 \mu \text{s}$$

ed for PST $t_{_S} = t_{_1} + t_{_2} + t_{_3} = 5.6\, \mu s + 7.84 \mu s + 0.74 \mu s = 14.19 \mu s$ (e) Compute primary maximum RMS current $I_{P_{RMS}MAX}$ for the transformer fabrication ;

$$I_{P_{RMS}MAX} = \frac{\sqrt{3}}{3} I_{P_{PK}MAX} \times \sqrt{\frac{t_1}{t_s}} = \frac{\sqrt{3}}{3} \times 1.261 \text{A} \times \sqrt{\frac{5.61 \mu s}{14.19 \mu s}} = 0.471 \text{A}$$

(f) Compute secondary maximum peak current $I_{S_{PK}MAX}$ and RMS current $I_{S_{RMS}MAX}$ for the transformer fabrication.

$$I_{S_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX} = 7 \times 1.297 A = 9.081 A$$
$$I_{S_{RMS}MAX} = N_{PS} \times \frac{\sqrt{3}}{3} I_{P_{PK}MAX} \times \sqrt{\frac{t_2}{t_s}} = 7 \times \frac{\sqrt{3}}{3} \times 0.905 A \times \sqrt{\frac{7.84\mu s}{14.19\mu s}} = 3.898 A$$

#3. MOSFET and Diode Design

Conditions	N.		
V _{AC_MAX}	264V	N _{PS}	7
V _{OUT}	/12V	V _{D_F}	1V
$\Delta V_{\rm S}$	75V	η	86%

(a) Compute the voltage and the current stress of MOSFET:

$$V_{MOS_{DS}MAX} = \sqrt{2} V_{AC_{MAX}} + N_{PS} \times (V_{OUT} + V_{D_{F}}) + \Delta V_{S}$$

= $\sqrt{2} \times 264V + 7 \times (12V + 1V) + 75V$
= 539V

 $I_{MOS PK MAX} = I_{P PK MAX} = 1.297A$

 $I_{MOS RMS MAX} = I_{P RMS MAX} = 0.471A$

(b) Compute the voltage and the current stress of secondary power diode

$$V_{D_{D_{R}}MAX} = \frac{\sqrt{2}V_{AC_MAX}}{N_{PS}} + V_{OUT}$$
$$= \frac{\sqrt{2} \times 264V}{7} + 12V$$
$$= 65.3V$$

 $I_{D PK MAX} = N_{PS} \times I_{P PK MAX} = 7 \times 1.297 A = 9.081 A$

 $I_{DAVG} = I_{OUT} = 2A$

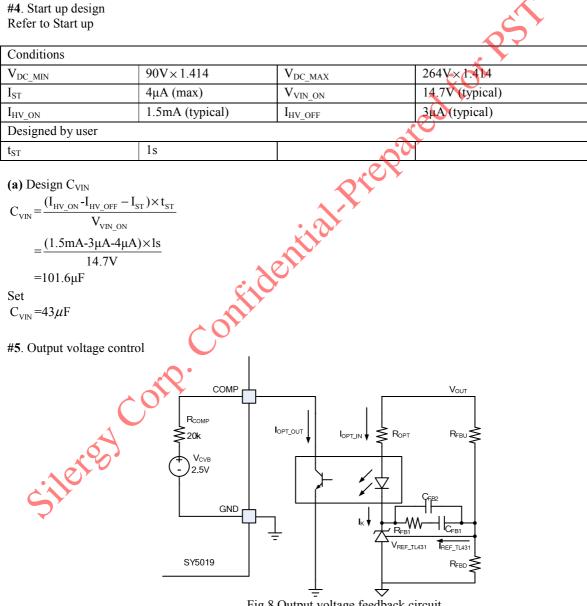


Fig.8 Output voltage feedback circuit

Conditions				
V _{CVB}	2.5V	V _{COMP_ON}	0.4V	
R _{COMP}	20kΩ	V _{OPT}	1.2V	
β	1	V _{REF_TL431}	2.5V	
I _{K_MIN}	1mA	I _{K_MAX}	100mA	
I _{REF_TL431}	2~4µA			

Where V_{OPT} is the input forward voltage of the opto-coupler; I_K is the cathode current of the TL431; I_{REF_TL431} is the reference input current of the TL431.

(a) R_{OPT} Design

The maximum input current of the opto-coupler is limited by

$$I_{OPT_IN_MAX} > \frac{V_{CVB} - V_{COMP_ON}}{R_{COMP}} \times \frac{1}{\beta}$$
$$= \frac{2.5V - 0.4V}{20K\Omega} \times 1$$
$$= 0.105 \text{mA}$$

Confidential Propage of For PSY At the same time, $I_{\text{OPT } \ensuremath{\mathbb{IN}}}$ is limited by the current range of TL431 cathode .

$$I_{K_MAX} \! > \! I_{OPT_IN} \! > \! I_{K_MIN}$$

And
$$I_{OPT_IN} = \frac{V_{OUT} - V_{OPT} - V_{REF_TL431}}{R_{OPT}}$$

Hence,

$$R_{OPT} < \frac{V_{OUT} - V_{OPT} - V_{REF_{TL431}}}{I_{OPT_{IN}_{MAX}}}$$

$$= \frac{12V - 1.2V - 2.5V}{0.105 \text{ mA}}$$

$$= 79.04 \text{ K}\Omega$$

$$R_{OPT} > \frac{V_{OUT} - V_{OPT} - V_{REF_{TL431}}}{I_{K_{MAX}}}$$

$$= \frac{12V - 1.2V - 2.5V}{200 \text{ mA}}$$
Set
$$R_{D} = -5100$$

 $R_{OPT} = 510\Omega$

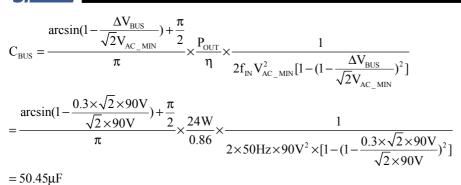
(b) resistor divider design

To achieve accurate voltage reference, R_{FBD} is limited by

AN_SY5019 Rev.0.9B

$$R_{\text{FBD}} \le \frac{V_{\text{REF}_\text{TL431}}}{100I_{\text{REF}_\text{TL431}}} = \frac{2.5V}{100 \times 2\mu A} = 12.5 \text{K}\Omega$$

Set


R_{FBD}=10K

$$R_{FBU} = \frac{V_{OUT} - V_{REF_{TL431}}}{V_{REF_{TL431}}} \times R_{FBD} = \frac{12V - 2.5V}{2.5V} \times 10K\Omega = 38K\Omega$$

(c) Feedback Loop Design

Recommended pa	rameters		
C _{FB1}	100nF	C _{FB2}	22nF
R _{FB1}	1.5KΩ		
#6. Output Curren	t Protection design		RST
Refer to Primary	-side constant-current	<u>control</u>	sot
Conditions			
\mathbf{k}_1	0.5	N _{PS}	
V _{REF}	0.42V		
Parameters design	ed		
I _{OUT_LIM}	2.4A		
$R_{s} = \frac{k_{1} \times V_{REF} \times N}{I_{OUT_LIM}}$ $= \frac{0.5 \times 0.42V \times 2.4A}{2.4A}$ $= 0.613\Omega$	<u>PS</u>	milential	
#7. Input Capacito	or C _{BUS} Design		
Conditions			
V _{AC_MIN}	<u> </u>	ΔV_{BUS}	30% V _{BUS_MIN}
Silerq	0		

Set

<i>C</i> _{виз} =44 <i>µF</i> #8. set VSEN pin			pest
To reduced power loss a	and consider humidity, i	identify R _{VSENU} .	cort
Conditions			
k ₃	68		
Parameters Designed			× v
R _{VSENU}	110kΩ		

Then compute R_{VSEND}		prex		
Conditions			· · · ·	
V _{VSEN_OVP}	1.45V	V _{OUT}	12V	
Parameters designed			·	
V _{OVP}	16V	R _{VSENU}	110kΩ	
N _S /N _{AUX}	1	C'NOT		

$$R_{VSEND} < \frac{\frac{V_{VSEN_{OVP}}}{V_{OUT}} \times \frac{N_{s}}{N_{AUX}}}{1 - \frac{V_{VSEN_{OVP}}}{V_{OUT}} \times \frac{N_{s}}{N_{AUX}}} \times R_{VSENU}}$$
$$= \frac{\frac{1.45V}{12V} \times \frac{10}{11}}{1 - \frac{1.45V}{12V} \times \frac{10}{11}}$$
$$= 13.574 k\Omega$$

 $\frac{V_{\text{VSEN}_{OVP}}}{X}$ N_s_ $\frac{V_{\text{OVP}}}{V_{\text{OVP}}} \times \frac{1}{N_{\text{AUX}}} \times R_{\text{VSENU}}$ $R_{\text{VSEND}} \ge \frac{1}{1 - \frac{V_{\text{VSEN}} \text{OVP}}{V_{\text{VSEN}} \times \frac{1}{2}}} \times \frac{1}{2}$ Ns N_{AUX} V_{OVP} $=\frac{\frac{1.45V}{16V} \times 1}{1-\frac{1.45V}{16V} \times 1} \times 110 \text{k}\Omega$ =9.876kΩ

 $R_{\mbox{\scriptsize VSEND}}$ is set to

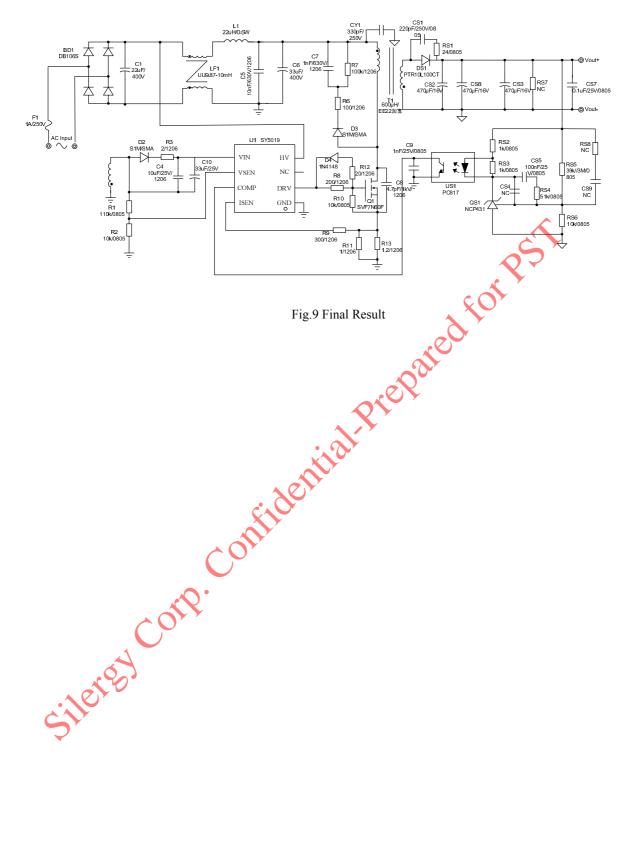
 $R_{VSEND} = 10k\Omega$

$R_{VSEND} = 10 k\Omega$			
#9. Design RCl	D snubber	05×	
Refer to Power	Device Design		cort
Conditions			
V _{OUT}	12V	ΔV_{S}	750
N _{PS}	7	L_K/L_M	1%
P _{OUT}	24W		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

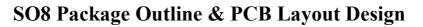
The power loss of the snubber is

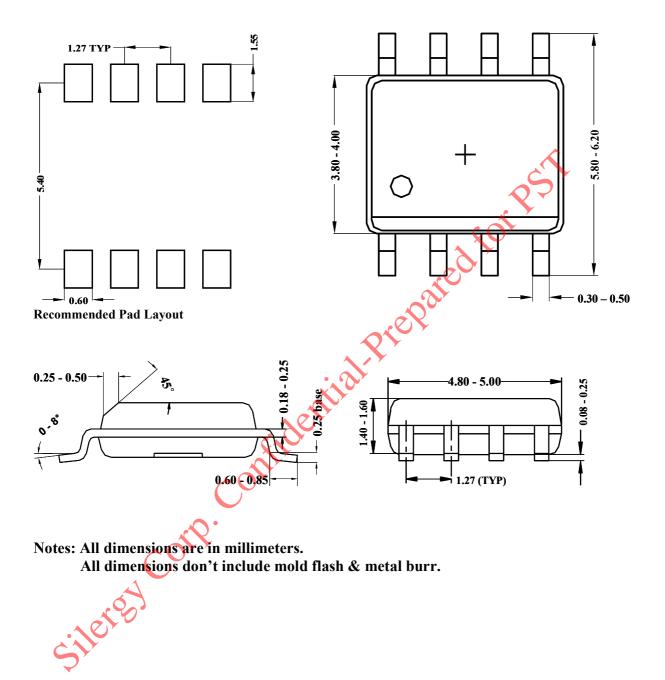
$$P_{RCD} = \frac{N_{PS} \times (V_{OUT} + V_{D_F}) + \Delta V_S}{\Delta V_S} \times \frac{L_K}{L_M} \times P_{OUT}$$

$$= \frac{7 \times (12V + 1V) + 75V}{75V} \times 0.01 \times 24W$$


$$= 0.53W$$
The resistor of the snubber is
$$R_{RCD} = \frac{\left[N_{PS} \times (V_{OUT} + V_{D_F}) + \Delta V_S\right]^2}{P_{RCD}}$$

$$= \frac{\left[7 \times (12V + 1V) + 75V\right]^4}{0.53W}$$
The capacitor of the snubber is
$$C_{RCD} = \frac{N_{PS} \times (V_{OUT} + V_{D_F}) + \Delta V_S}{R_{RCD} f_{S_MIN} \Delta V_{C_RCD}}$$


$$= \frac{7 \times (12V + 1V) + 75V}{53k\Omega \times 60kHz \times 25V}$$


$$= 2.08nF$$

单击下面可查看定价,库存,交付和生命周期等信息

>>SILERGY(矽力杰)