

LOW EMI CURRENT SENSE HIGH SIDE SWITCH

Features

- Load current feedback
- Programmable over current shutdown
- Active clamp
- ESD protection
- Input referenced to Vcc
- Over temperature shutdown
- Switching time optimized for low EMI
- Reverse battery protection
- Lead-Free, Halogen-Free, RoHS compliant

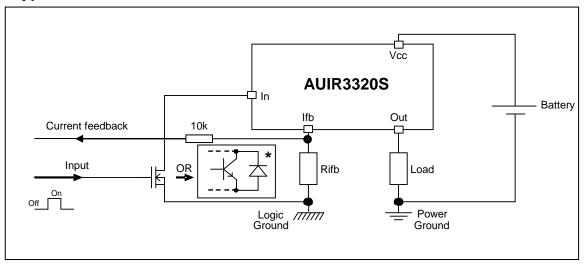
Description

The AUIR3320(S) is a fully protected 4 terminals high side switch. The input signal is referenced to Vcc. When the input voltage Vcc - Vin is higher than the specified threshold, the output power Mosfet is turned on. When the Vcc - Vin is lower than the specified Vil threshold, the output Mosfet is turned off. A current proportional to the power Mosfet current is sourced to the Ifb pin. Over current shutdown occurs when Vifb-Vin > 4.7V. The current shutdown threshold is adjusted by selecting the proper RIfb. Either over current and over temperature latches off the switch. The device is reset by pulling the input pin high. Other integrated protections (ESD, reverse battery, active clamp) make the switch very rugged in automotive environment.

Product Summary

Rds(on) 4 m Ω max. Vcc op. 6 to 26V Current Ratio 6000 Prog. Ishutdown 10 to 55A Vclamp 40V

Packages


D²Pak Pin 4 and 5 fused AUIR3320S

Ordering Information

Base Part Number Package Type		Standard Pack		0 1 1 5 1 1 1
		Form	Quantity	Complete Part Number
AUIR3320S	D2-Pak-5-Leads	Tape and reel left	800	AUIR3320STRL

Typical Connection

*The diode between the collector and the emitor is necessary for the reverse battery protection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to Vcc lead. (Tj=-40°..150°C, Vcc=6.26V Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vcc-Vin	Maximum Vcc voltage	-16	37	
Vcc-Vin cont.	Maximum continuous Vcc voltage	-16	26	V
Vcc-Vfb	Maximum Ifb voltage	-16	33	V
Vcc-Vout	Maximum output voltage	-0.3	37	
lds cont.	Maximum body diode continuous current Rth=60°C/W (1) Tambient=25°C	_	2.8	Α
lds pulsed	Maximum body diode pulsed current (1)	_	100	_ A
Pd	Maximum power dissipation Rth=60°C/W Tambient=25°C	_	2	W
Ti may	Maximum operating junction temperature	-40	150	°C
Tj max.	Maximum storage temperature	-55	150	C
Min Rfb	Minimum on the resistor on Ifb pin	0.3	_	kΩ
Ifb max.	Max. Ifb current	-50	50	mA

⁽¹⁾ Limited by junction temperature. Pulsed is also limited by wiring

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient D2-Pak Std footprint	60	_	
Rth2	Thermal resistance junction to ambient D2-Pak 1" sqrt. footprint	40	_	°C/W
Rth3	Thermal resistance junction to case D2-Pak	0.7	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
	Continuous output current			
lout	Tambient=85°C, Rth=5°C/W, Tj=150°C		45	Α
	Tambient=85°C, Rth=40°C/W, Tj=150°C		16	
Rifb	Recommended Ifb resistor (2)(3)	0.3	3.5	kΩ
Pulse min.	Minimum turn-on pulse width		_	ms
Fmax.	Maximum operating frequency	_	200	Hz

⁽²⁾ If Rifb is too low, the device can be damaged.

⁽³⁾ If Rifb is too high, the device may not switch on.

Protection Characteristics

Tj=-40°..150°C, Vcc=6..26V, Rifb=500 to 3.5kΩ. Typical value are given for Vcc=14V and Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Vifb-Vin@Isd	Over-current shutdown threshold	3.8	4.7	5.9	V	
Tsd	Over temperature threshold	_	165	_	ç	See fig. 5
OV	Over voltage protection (not latched)	26	29	33	V	
Isdf	Fixed over current shutdown	55	75	105	Α	Vifb <vifb-vin@isd< td=""></vifb-vin@isd<>
Isd_560	Programmable over current shutdown	34	50	71	A	Rifb=560Ω
Treset	Time to reset protection	_	50	500		See fig. 5
Min. pulse	Min. pulse width (no WAIT state)	_	900	2000	μs	Tj=25°C
WAIT	WAIT function timer	0.4	1	2	ms	See fig. 4 and 5
	Reverse battery On state resistance,		4	6		Vcc-Vin=-14V.
Rds(on) rev.	Tj=25°C		·		mΩ	lout=30A
	Tj=125°C	_	6	9		1001-307

Static Electrical Characteristics

Ti=-40°..150°C, Vcc=6..26V (unless otherwise specified). Typical value are given for Vcc=14V and Ti=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Vcc op.	Operating Voltage range	6	_	26	V	
Icc off	Supply leakage current	_	1.5	5	μA	Vin=Vcc, Vcc-Vout=14V, Vcc-Vifb=14V, Tj=25°C
lin, on	On state IN positive current	1.5	3	6	mA	Vcc-Vin=14V, Tj=25°C
Vih	High level Input threshold voltage (4)	_	5.4	6.3		
Vil	Low level Input threshold voltage (4)	4	4.9	5.8	V	
Vhyst	Input hysteresis Vih-Vil	0.2	0.4	1.5		
lout	Drain to source leakage current	_	1.2	5	μA	Vin=Vcc, Vcc-Vifb=0V, Vcc-Vout=14V, Tj=25°C
	On state resistance (5) Tj=25°C	_	3.3	4		Iout=30A, Vcc-Vin=14V
Rds(on)	On state resistance (5) Tj=25°C	_	3.5	5.5	mΩ	Iout=17A, Vcc-Vin=6V
	On state resistance (5)(6) Tj=150°C	_	5.5	6.5		Iout=30A, Vcc-Vin=14V
V clamp1	Vcc to Vout clamp voltage 1	36	39	43	W	lout=50mA
V clamp2	Vcc to Vout clamp voltage 2	_	40	_	\ \	Iout=30A, Tj=25°C

⁽⁴⁾ Input thresholds are measured directly between the input pin and the tab. Any parasitic resistance in common between the load current path and the input signal path can significantly affect the thresholds.

Switching Electrical Characteristics

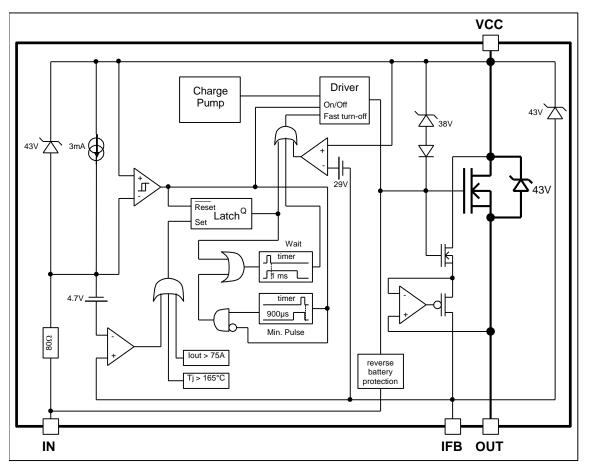
Vcc=14V, Resistive load=0.5Ω, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn on delay time to 10% Vcc	70	170	300		
tr1	Rise time to Vcc-Vout=5V	30	100	210	μs	
tr2	Rise time to Vcc-Vout=0.1Vcc	30	125	250		
Eon	Turn on energy	_	15	_	mJ	See figure 2
Tdoff	Turn off delay time	30	70	140	0	
Tf	Fall time to Vout=10% of Vcc	20	100	250	μs	
Eoff	Turn off energy	_	9	_	mJ	

2017-7-11

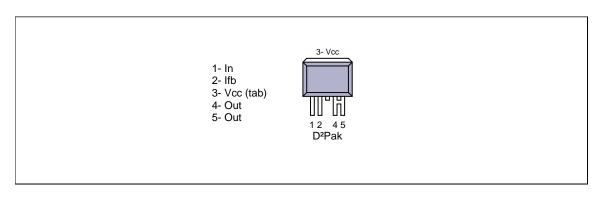
⁽⁵⁾ Rdson is measured between the tab and the Out pin, 5mm away from the package.

⁽⁶⁾ Guaranteed by design


Current Sense Characteristics

Tj=-40°..150°C, Vcc=6..26V (unless otherwise specified). Typical value are given for Vcc=14V and Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ratio	I Load/lifb current ratio	4900	6000	6600		Rifb=500Ω, Iout=30A
Ratio_TC	I Load/lifb variation over temperature (6)	-4	_	+4	%	Tj=-40°C to 150°C
Offset	Load current diagnostic offset	-0.4	0	+0.4	Α	lout=2A
Trst	Ifb response time (low signal)	_	1	_	μs	90% of the lout step


Functional Block Diagram

All values are typical

Lead Assignments

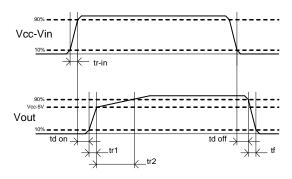
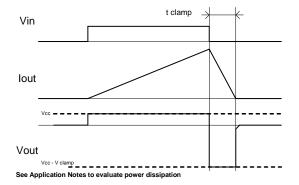



Figure 1 - Voltages and current definitions

Figure 2 - Switching time definitions

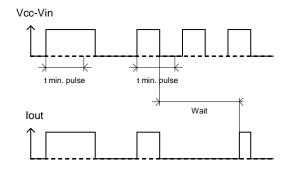


Figure 3 - Active clamp waveforms

Figure 4 - Min. pulse and Wait function

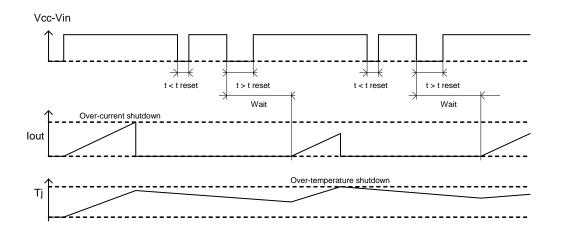


Figure 5 – Protection Timing Diagrams

7 2017-7-11

All curves are typical characteristics. Tj=25°C, Rifb=500ohm, Vcc=14V (unless otherwise specified).

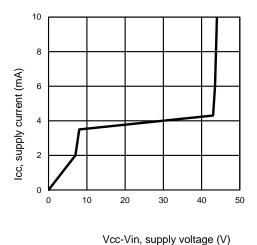


Figure 6 - Icc (mA) Vs Vcc-Vin (V)

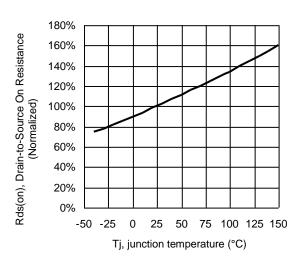
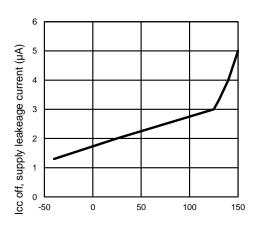
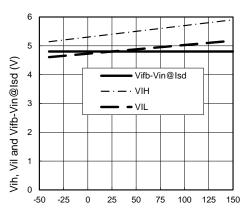
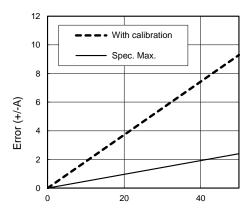




Figure 8 - Normalized Rds(on) (%) Vs Tj (°C)

Tj, junction temperature (°C)


Figure 7 – Icc off (µA) Vs Tj (°C)

Tj, junction temperature (°C)

Figure 9 - Vih, Vil and Vifb-Vin@lsd (V) Vs Tj (°C)

I load, load current (A)

Figure 10 - Error (+/- A) Vs I load (A)

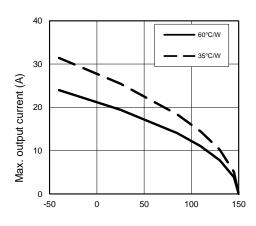
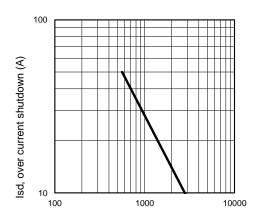



Figure 12 - Max. lout (A) Vs Tamb. (°C)

Tamb., ambient temperature (°C)

Rifb, feedback resistor (Ω)

Figure 11 – Ids (A) Vs Rifb (Ω)

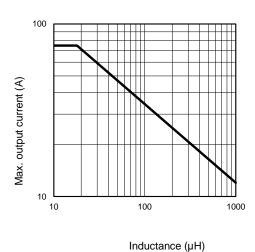
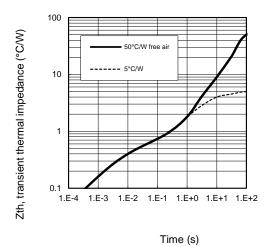
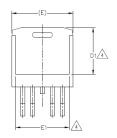
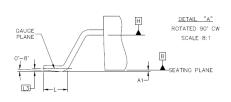
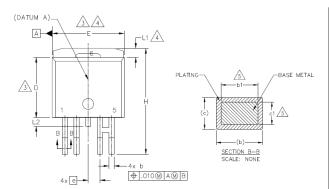
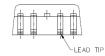
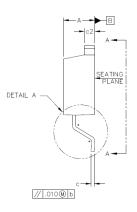


Figure 13 – Max. lout (A) Vs inductance (μH)

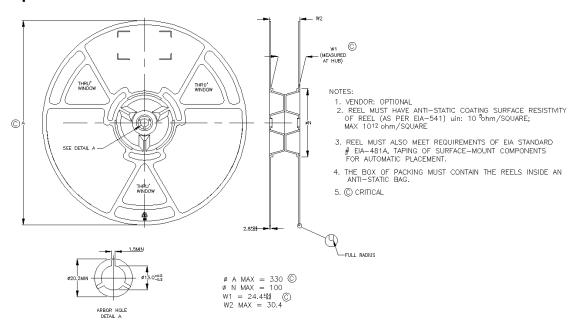





Figure 14 – Transient thermal impedance (°C/W) Vs time (s)


Case Outline - D2PAK - 5 Leads

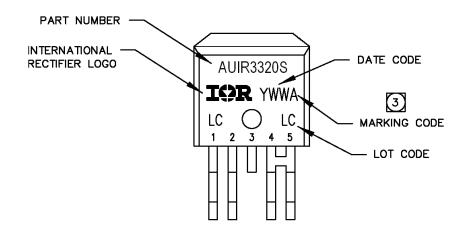


S					
S Y M		DIMEN	ISIONS		N
B	MILLIMETERS		INC	INCHES	
L	MIN.	MAX.	MIN.	MAX.	O T E S
Α	4.06	4.83	.160	.190	
A1	-	0.254	_	.010	
b	0.51	0.99	.020	.039	4
b1	0.51	0.89	.020	.035	
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	4
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	-	
Ε	9.65	10.67	.380	.420	3
E1	6.22	-	.245	-	
е	1.70	BSC	.067	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.68	-	.066	
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	



NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- AND ALL OF THE PROPERTY OF T
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263BA.



Tape & Reel - D2PAK - 5 leads

Part Marking Information

Qualification Information[†]

tuaiiiic	ation information			
Qualification Level		Automotive (per AEC-Q100)		
Qualificat	lion Level	Comments: This family of ICs has passed an Automotive qualification. Industrial and Consumer qualification level is granted by extension of higher Automotive level.		
Moisture	Sensitivity Level	D2PAK-5L	MSL1, 260°C (per IPC/JEDEC J-STD-020)	
	Machine Model	Class M3 (400V) (per AEC-Q100-003)		
ESD	Human Body Model	Class H2 (4,000 V) (per AEC-Q100-002)		
Charged Device Model		Class C4 (1000 V) (per AEC-Q100-011)		
IC Latch-Up Test		Class II, L (per AEC-Q		
RoHS Compliant		Yes		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury

14 2017-7-11

Revision History

Revision	Date	Notes/Changes
A7	June, 4 th 2012	Initial release
A8	August, 13rd 2012	-Update switching limits -Update Iratio max limit
A9	August, 30 th 2012	Update Tj max.
Rev1.0	July, 11 th 2017	- Page 'Case Outline - D2PAK - 5 Leads' updated - Page 'Ordering information' updated - Page 14 'Notice' updated

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)