International TOR Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET®TRANSISTORS SURFACE MOUNT (LCC-18)

JANTX2N6792U JANTXV2N6792U JANTXV2N6792U REF:MIL-PRF-19500/555 400V, N-CHANNEL

Product Summary

Part Number	Bvdss	RDS(on)	ΙD
IRFE320	400V	1.8Ω	1.8A

The leadless chip carrier (LCC) package represents the logical next step in the continual evolution of surface mount technology. Desinged to be a close replacement for the TO-39 package, the LCC will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the LCC package to meet the specific needs of the power market by increasing the size of the bottom source pad, thereby enhancing the thermal and electrical performance. The lid of the package is grounded to the source to reduce RF interference.

Features:

- Surface Mount
- Small Footprint
- Alternative to TO-39 Package
- Hermetically Sealed
- Dynamic dv/dt Rating
- Avalanche Energy Rating
- Simple Drive Requirements
- Light Weight

Absolute Maximum Ratings

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	1.8	
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	1.13	Α
IDM	Pulsed Drain Current ①	7.2	
P _D @ T _C = 25°C	Max. Power Dissipation	14	W
	Linear Derating Factor	0.11	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	0.242	mJ
IAR	Avalanche Current ①	2.2	Α
EAR	Repetitive Avalanche Energy ①	1.4	mJ
dv/dt Peak Diode Recovery dv/dt 3		4.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG Storage Temperature Range			°C
	Pckg. Mounting Surface Temp.	300 (for 5 S)	
	Weight	0.42 (typical)	g

For footnotes refer to the last page

www.irf.com 1 08/06/07

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	400	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.37	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State	_	_	1.8		V _{GS} = 10V, I _D = 1.13A@
	Resistance	_	_	1.9	Ω	VGS =10V, ID = 1.8A @
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	V _{DS} = V _{GS} , I _D = 250μA
9fs	Forward Transconductance	1.0	_	_	S	V _{DS} > 15V, I _{DS} = 1.13A@
IDSS	Zero Gate Voltage Drain Current	_	_	25		V _{DS} = 320V, V _{GS} = 0V
		_	_	250	μΑ	$V_{DS} = 320V$
						$V_{GS} = 0V$, $T_{J} = 125$ °C
GSS	Gate-to-Source Leakage Forward	_	_	100	nA	V _{GS} =20V
GSS	Gate-to-Source Leakage Reverse	_	_	-100	11/4	VGS = -20V
Qg	Total Gate Charge	_	_	22		VGS = 10V, ID = 1.8A
Qgs	Gate-to-Source Charge	_	_	3.0	nC	$V_{DS} = 200V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	14		
^t d(on)	Turn-On Delay Time	_	_	40		$V_{DD} = 125V, I_{D} = 1.8A$
t _r	Rise Time	_	_	35	ns	$V_{GS} = 10V$, $R_{G} = 7.5\Omega$
^t d(off)	Turn-Off Delay Time	_	_	60	115	
tf	Fall Time	_	_	35		
L _{S+} L _D	Total Inductance	_	6.1	_	nH	Measured from the center of drain pad to center of source pad
C _{iss}	Input Capacitance	_	350			VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	100	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		45			

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	1.8	Α	
ISM	Pulse Source Current (Body Diode) ①		_	_	7.2	^	
VSD	Diode Forward Voltage		_	_	1.4	V	$T_j = 25^{\circ}C$, $I_S = 1.8A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time		_	_	650	ns	T_j = 25°C, IF = 1.8A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		_	_	5.0	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction to Case	_	_	8.93	°C/W	
RthJ-PCB	Junction to PC Board	_	_	26		Soldered to a copper clad PC board

Note: Corresponding Spice and Saber models are available on International Rectifier Website.

For footnotes refer to the last page

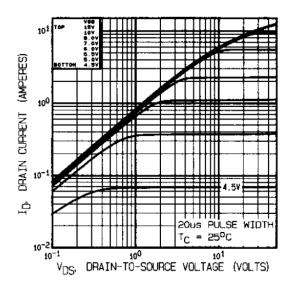


Fig 1. Typical Output Characteristics

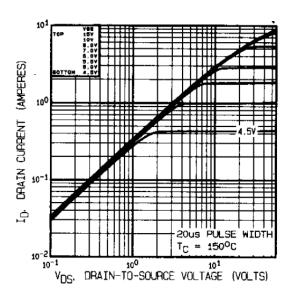
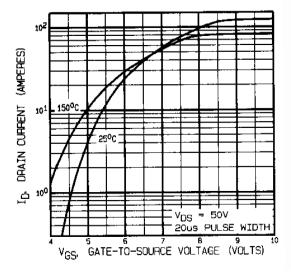
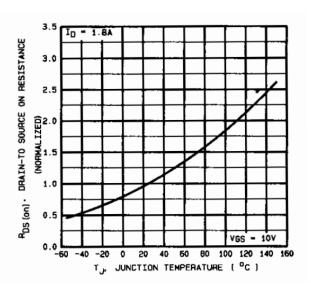
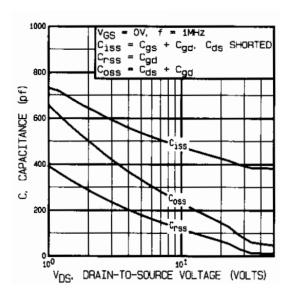
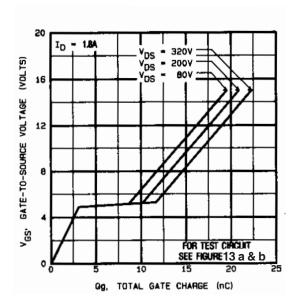


Fig 2. Typical Output Characteristics


Fig 3. Typical Transfer Characteristics

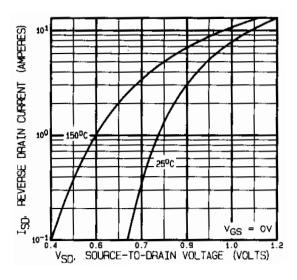

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

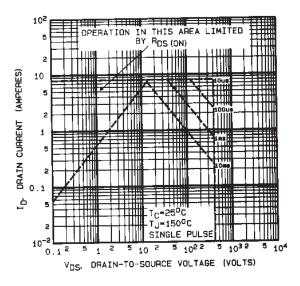
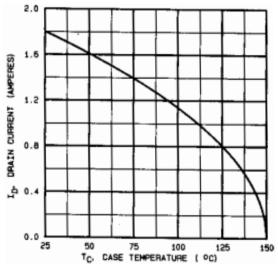



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

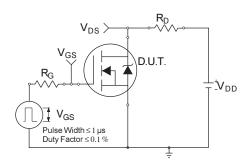


Fig 10a. Switching Time Test Circuit

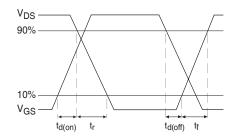


Fig 10b. Switching Time Waveforms

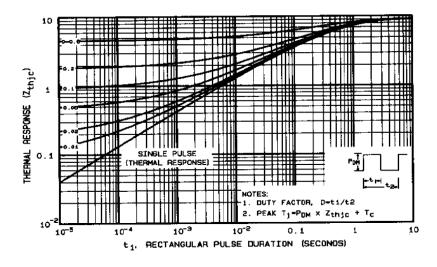


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

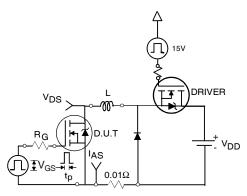


Fig 12a. Unclamped Inductive Test Circuit

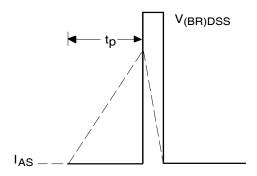


Fig 12b. Unclamped Inductive Waveforms

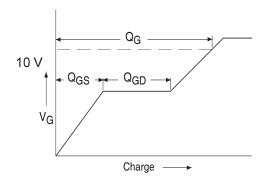
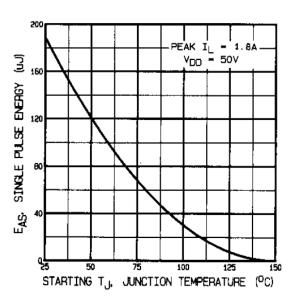



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

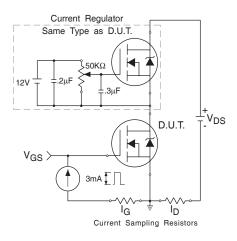
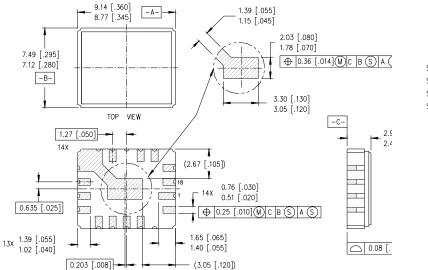
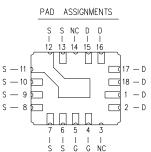


Fig 13b. Gate Charge Test Circuit

International TOR Rectifier


IRFE320, JANTX2N6792U, JANTXV2N6792U


Foot Notes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 50V$, starting $T_J = 25$ °C, Peak $I_I = 2.2A$, $L = 100\mu H$

- $\$ ISD \le 1.8A, di/dt \le 65A/ μ s, VDD \le 400V, TJ \le 150°C Suggested RG =7.5 Ω
- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%

Case Outline and Dimensions — LCC-18

LEGEND G = GATE D = DRAIN S = SOURCE NC = NO CONNECTION

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 08/2007

单击下面可查看定价,库存,交付和生命周期等信息

>>Infineon Technologies(英飞凌)