

SAW Duplexer LTE Band 20

Series/type: B8677

Ordering code:

Date: October 21, 2015

Version: 1.0

© EPCOS AG 2015. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

Table of contents

1 Application	3
2 <u>Features</u>	
B Package	4
4 Pin configuration	
Matching circuit	
S Characteristics.	
7 Maximum ratings.	
3 Transmission coefficients	
9 Reflection coefficients	
10 EVM	
11 Packing material	
12 Soldering profile	
13 Annotations.	
14 <u>Cautions</u> and warnings	
15 Revision history	
Contact and Important notes	23

SAW Duplexer 806 / 847 MHz

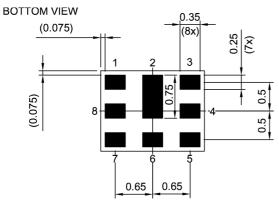
Preliminary data sheet

1 Application

- Multimode SAW duplexer for mobile telephone LTE Band 20 system.
- Low insertion attenuation.
- Low amplitude ripple.
- High TX band isolation.
- Usable pass bands: 30 MHz.

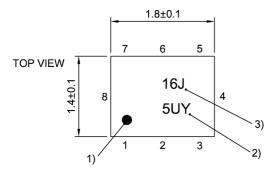
2 Features

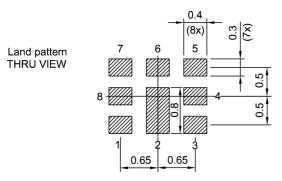
- Package size 1.8 mm × 1.4 mm.
- Max.package height 0.475 mm.
- Approximate weight 0.0042 g.
- RoHS compatible.
- Package for Surface Mount Technology (SMT).
- Ni, gold-plated terminals.
- Electrostatic Sensitive Device (ESD).
- Moisture Sensitivity Level 3 (MSL3).


Figure 1: Picture of component with example of marking.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet


3 Package


Pad and pitch tolerance ±0.05

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Landing pad tolerance -0.02

Figure 2: Drawing of package with package height A = 0.475 mm (max.). See Simplified drawings (p. 22).

- 1 RX
- 3 TX
- 6 ANT
- **2**, 4, 5, 7, Ground 8

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

5 Matching circuit

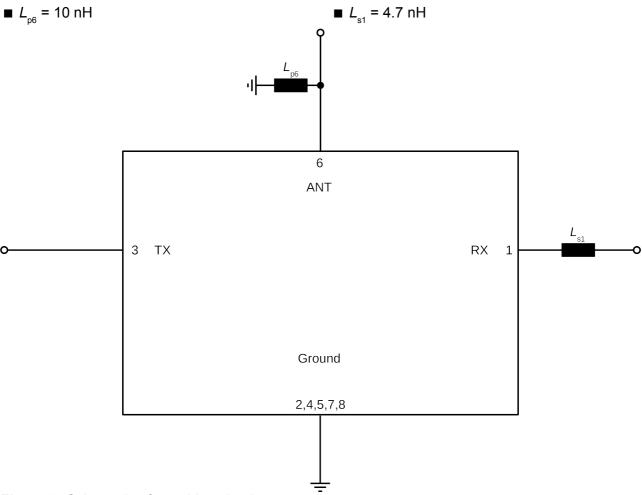


Figure 3: Schematic of matching circuit.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

6 Characteristics

6.1 TX - ANT

Temperature range for specification

TX terminating impedance

ANT terminating impedance RX terminating impedance

 $T = -30 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}$

 $Z_{\text{TX}} = 50 \ \Omega$

 Z_{ANT} = 50 Ω with par. 10 nH Z_{PX} = 50 Ω with ser. 4.7 nH

Characteristics TX – ANT				min.	typ. @+25 °C	max.	
Center frequency			f _C	_	847	_	MHz
Maximum insertion attenuation			$\alpha_{\sf max}$				
	832.34 861.66	MHz		_	2.5	3.01)	dB
	832.34 861.66	MHz		_	2.5	3.2	dB
Amplitude ripple (p-p)							
	832.34 861.66	MHz	Δα	_	1.3	2.1	dB
	832.34 861.66	MHz	$\Delta \alpha^{2)}$	_	1.3	2.0	dB
Maximum VSWR			VSWR _{max}				
@ TX port	832.34 861.66	MHz		_	1.7	2.0	
@ ANT port	832.34 862.66	MHz		_	1.8	2.1	
Maximum error vector magnitude			EVM _{max} ³⁾				
	834.4 859.6	MHz		_	4.8	5.5	%
Minimum attenuation			$\alpha_{_{min}}$				
	10 771	MHz		30	40	_	dB
	771 791	MHz		40	45	_	dB
	791 821	MHz		44	55	_	dB
	821 827	MHz		1	9	_	dB
	880 915	MHz		30	46	_	dB
	925 960	MHz		30	43	_	dB
	1559 1563	MHz		35	47	_	dB
	1565.42 1573.374	MHz		35	47	_	dB
	1573.374 1577.466	MHz		35	47	_	dB
	1577.466 1585.42	MHz		35	47	_	dB
	1597.551 1605.886	MHz		35	48	_	dB
	1664 1724	MHz		35	49	_	dB
	1710 1785	MHz		30	50	_	dB
	1805 1880	MHz		30	50	_	dB
	1884.5 1919.6	MHz		30	51	_	dB

SAW Duplexer 806 / 847 MHz

Characteristics TX – ANT		min.	typ. @+25 °C	max.	
2110 2170	MHz	30	57	_	dB
2400 2500	MHz	35	55	_	dB
2496 2586	MHz	35	43	_	dB
2500 2570	MHz	30	44	_	dB
2570 2620	MHz	40	54	_	dB
2620 2690	MHz	30	55	_	dB
3328 3448	MHz	20	46	_	dB
4160 4310	MHz	20	28	_	dB
4900 5950	MHz	10	14	_	dB

Valid for temperature $T = +25 \,^{\circ}\text{C}$ (max.).

²⁾ Over any channel with band width of 10 MHz.

³⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

6.2 ANT - RX

Temperature range for specification $T = -30 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$

TX terminating impedance $Z_{TX} = 50 \Omega$

ANT terminating impedance $Z_{\text{ANT}} = 50 \ \Omega$ with par. 10 nH RX terminating impedance $Z_{\text{RX}} = 50 \ \Omega$ with ser. 4.7 nH

Characteristics ANT – RX					typ. @+25 °C	max.	
Center frequency			f _C	_	806	_	MHz
Maximum insertion attenuation			α_{max}				
	791.34 820.66	MHz		_	2.9	4.5 ¹⁾	dB
	791.34 820.66	MHz		_	2.9	5.6	dB
Amplitude ripple (p-p)			Δα				
	791.34 820.66	MHz		_	1.7	4.7	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	791.34 820.66	MHz		_	1.5	2.0	
@ RX port	791.34 820.66	MHz		_	1.8	2.1	
Minimum attenuation			$\boldsymbol{\alpha}_{_{min}}$				
	10 760	MHz		35	37	_	dB
	41	MHz		50	70	_	dB
	760770	MHz		10	45	_	dB
	832 862	MHz		45	51	_	dB
	862 4000	MHz		25	34	_	dB
	880 915	MHz		35	36	_	dB
	1710 1785	MHz		31	43	_	dB
	2373 2463	MHz		31	35	_	dB
	2400 2500	MHz		31	35	_	dB
	2500 2570	MHz		31	35	_	dB
	4900 5950	MHz		20	24	_	dB
IMD product levels ²⁾							
IMD2							
Blocker 1	41	MHz		_	-77	-67	dBm
Blocker 3	1653	MHz		_	-117	-100	dBm
IMD3							
Blocker 2	888	MHz		_	-120	-105	dBm
Blocker 4	2500	MHz		_	-122	-112	dBm

Valid for temperature T = +25 °C (max.).

[@] f_{TX} = 847.0MHz, f_{RX} = 806.0MHz, f_{RX} - f_{TX} = 41 MHz, IMD product levels for power levels P_{TX} =

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

21.5 dBm (ANT port output power) and P_{blocker} = -15 dBm (ANT port input power).

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

6.3 TX - RX

T Z_{TX} $= -30 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$ Temperature range for specification

TX terminating impedance $= 50 \Omega$

 Z_{ANT} ANT terminating impedance = 50 Ω with par. 10 nH RX terminating impedance $Z_{_{\mathrm{RX}}}$ = 50 Ω with ser. 4.7 nH

Characteristics TX – RX	min.	typ. @+25 °C	max.			
Minimum isolation		α_{min}				
	791.34 820.66	MHz	53	56	_	dB
	832.34 861.66	MHz	51	54	_	dB
	1574 1577	MHz	40	56	_	dB
	1664 1724	MHz	20	56	_	dB
	2496 2568	MHz	20	52	_	dB

SAW Components B8677
SAW Duplexer 806 / 847 MHz

Preliminary data sheet

7 Maximum ratings

Storage temperature	$T_{\text{STG}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$	
DC voltage	$V_{DC} = 5.0 \text{ V (max.)}^{1)}$	
ESD voltage	$V_{ESD}^{2)} = 100 \text{ V (max.)}$	Machine model.
Input power	P _{IN}	
@ TX port: 832 862 MHz	28 dBm	5MHz LTE uplink signal 5000 h @ 50 °C.
@ TX port: other frequency range(s)	10 dBm	5MHz LTE uplink signal 5000 h @ 50 °C.

^{1) 168}h Damp Heat Steady State acc. IEC 60068-2-67 Cy.

²⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

8 Transmission coefficients

8.1 TX - ANT 0.0 α/dB 1.0 2.0 2.242 .296 3.0 4.0 5.0 830 840 850 860 870 f/MHz 0.0 20.0 40.0 60.0 80.0 750 775 875 900 800 850 925 825 *f*/MHz 0.0 20.0 40.0 60.0

Figure 4: Attenuation TX – ANT.

1000

2000

80.0

3000

4000

5000

f/MHz -

6000

SAW Duplexer

806 / 847 MHz

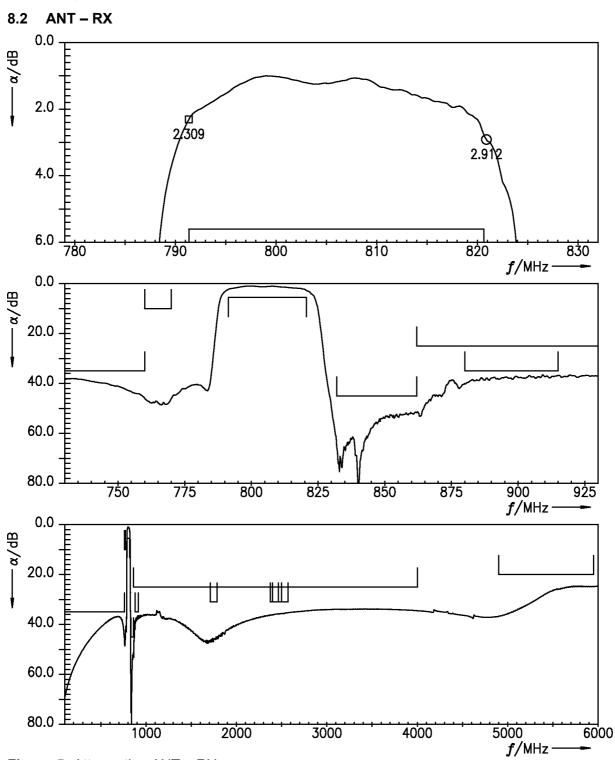
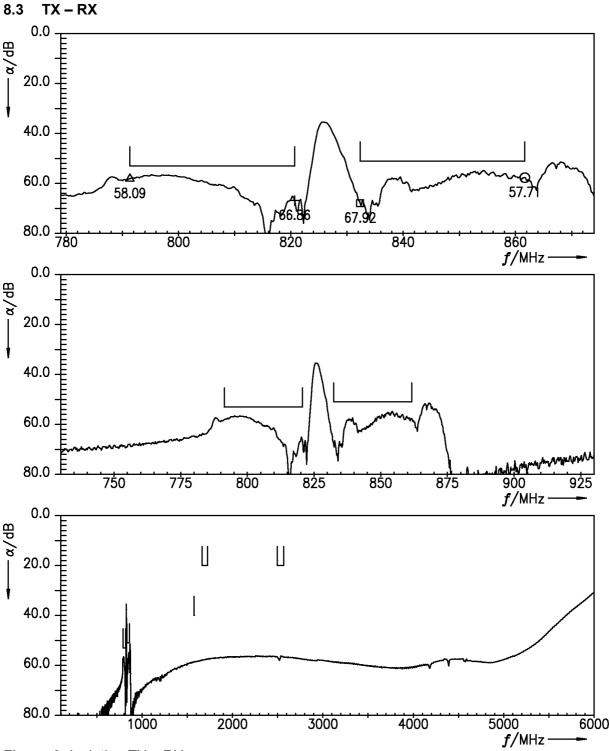
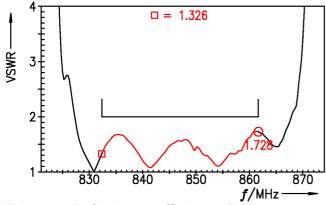


Figure 5: Attenuation ANT – RX.

SAW Duplexer 806 / 847 MHz




Figure 6: Isolation TX – RX.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

9 Reflection coefficients

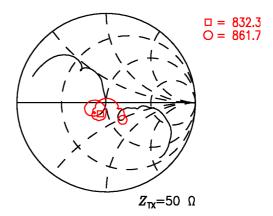
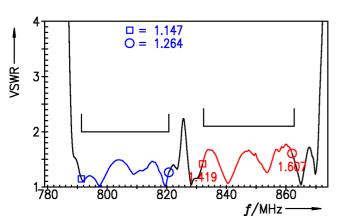



Figure 7: Reflection coefficient at TX port.

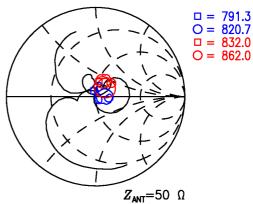
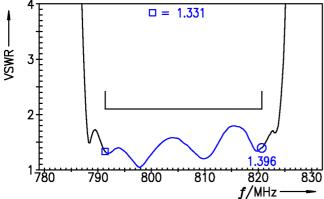



Figure 8: Reflection coefficient at ANT port (TX and RX frequencies).

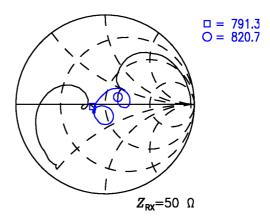


Figure 9: Reflection coefficient at RX port.

SAW Duplexer 806 / 847 MHz

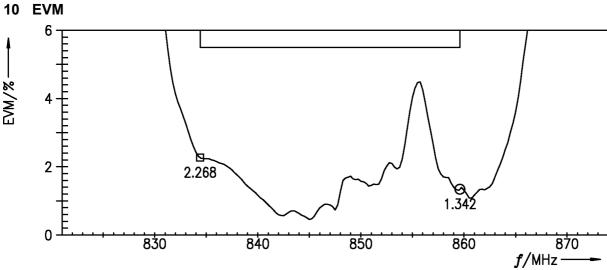
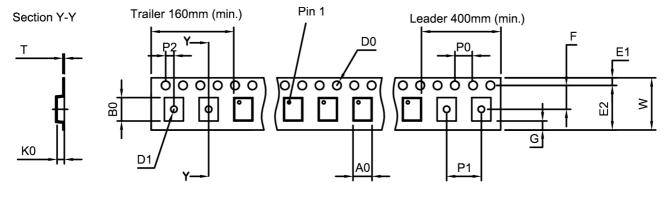


Figure 10: Error vector magnitude TX – ANT.



SAW Duplexer 806 / 847 MHz

Preliminary data sheet

11 Packing material

11.1 Tape

User direction of unreeling

Figure 11: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A_0	1.62±0.05 mm
B ₀	2.04±0.05 mm
D ₀	1.5±0.05 mm
D ₁	0.8±0.05 mm
E ₁	1.75±0.1 mm

E ₂	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.62±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0 _{±0.1} mm
P ₂	2.0±0.05 mm
Т	0.25±0.02 mm
W	8.0 _{±0.1} mm

Table 1: Tape dimensions.

11.2 Reel with diameter of 180 mm

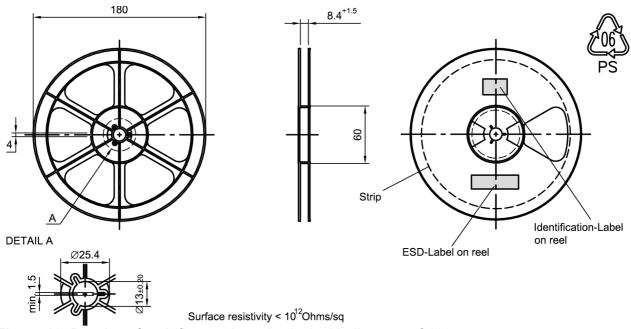


Figure 12: Drawing of reel (first-angle projection) with diameter of 180 mm.

SAW Duplexer 806 / 847 MHz

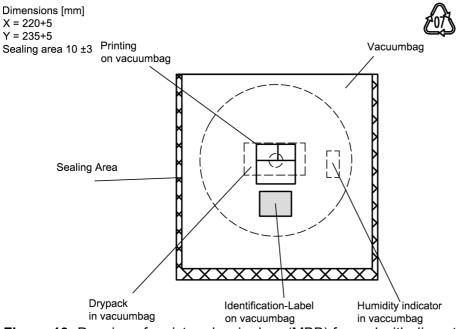


Figure 13: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

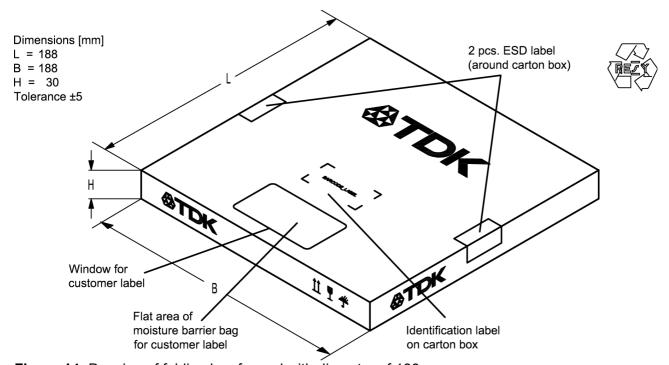


Figure 14: Drawing of folding box for reel with diameter of 180 mm.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

11.3 Reel with diameter of 330 mm

Figure 15: Drawing of reel (first-angle projection) with diameter of 330 mm.

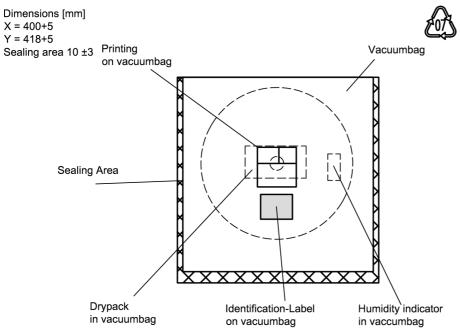


Figure 16: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

SAW Duplexer 806 / 847 MHz

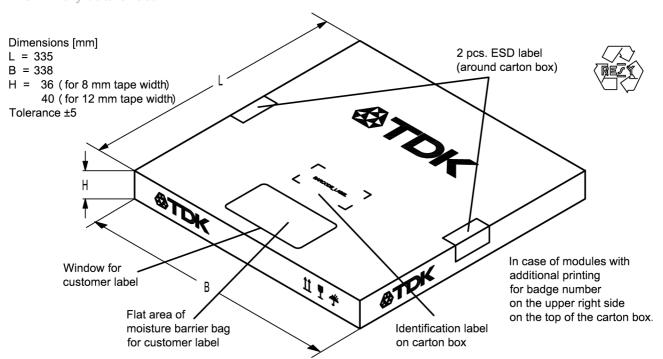


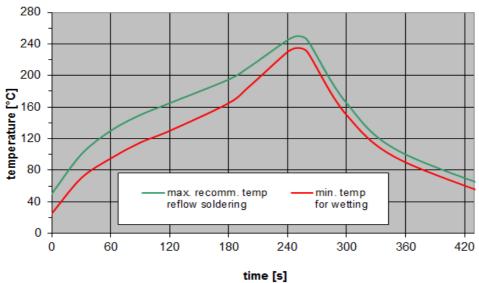
Figure 17: Drawing of folding box for reel with diameter of 330 mm.

SAW Components

B8677

SAW Duplexer

806 / 847 MHz


Preliminary data sheet

12 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	_
peak temperature T _{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 2: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 18: Recommended reflow profile for convection and infrared soldering – lead-free solder.

SAW Duplexer 806 / 847 MHz

Preliminary data sheet

13 Annotations

13.1 Matching coils

See TDK inductor pdf-catalog http://www.tdk.co.jp/tefe02/coil.htm#aname1 and Data Library for circuit simulation http://www.tdk.co.jp/etvcl/index.htm.

13.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local EPCOS sales office.

14 Cautions and warnings

14.1 Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

14.2 Moldability

Before using in overmolding environment, please contact your local EPCOS sales office.

14.3 Simplified drawings

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on EPCOS internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of EPCOS, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

SAW Components B8677
SAW Duplexer 806 / 847 MHz

Preliminary data sheet

15 Revision history

Changes compared to previously issued iteration.

Version	Originator	Detailed specification changes	Date
1.0	S. IC / JoelZhou	Initial release.	Oct 21, 2015

Contact and Important notes

For further information please contact your local EPCOS sales office or visit our web page at www.epcos.com.

Published by EPCOS AG Systems, Acoustics, Waves Business Group P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2015. This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
 - The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

单击下面可查看定价,库存,交付和生命周期等信息

>>RF360 / Qualcomm