


# Sensitive high immunity 0.25 A SCR Thyristor

Datasheet - production data



### **Features**

- I<sub>T(RMS)</sub> 0.25 A
- Low 200 μA gate current
- High noise immunity 200 V/µs
- ECOPACK®2 compliant component

## **Applications**

- Standby mode power supplies
- Smoke detectors
- DC 24/48 V proximity sensors
- Gate driver for large Thyristors
- Overvoltage crowbar protection
- Capacitive ignition circuit

### Description

Thanks to highly sensitive triggering levels, the 0.25 A P0102BL SCR Thyristor is suitable for all applications where available gate current is limited. Its high immunity makes it ideal for high electric noise circuits.

The surface mount SOT23-3L package allows compact SMD based designs for automated manufacturing.

**Table 1: Device summary** 

| Symbol                             | Value | Unit |
|------------------------------------|-------|------|
| I <sub>T(RMS)</sub>                | 0.25  | Α    |
| V <sub>DRM</sub> /V <sub>RRM</sub> | 200   | V    |
| I <sub>GT</sub>                    | 200   | μA   |
| T <sub>i</sub> max.                | 125   | °C   |

Characteristics P0102BL

## 1 Characteristics

Table 2: Absolute maximum ratings (limiting values), Tj = 25 °C unless otherwise specified

| Symbol                                       | Parameter                                                                                                        | Value                    | Unit                    |                  |      |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|------------------|------|
| I <sub>T(RMS)</sub>                          | RMS on-state current (180 ° conduction angle)                                                                    | T <sub>amb</sub> = 36 °C | 0.25                    | А                |      |
| I <sub>T(AV)</sub>                           | Average on-state current (180 ° conduction angle)                                                                | Tamb = 30 C              | 0.16                    | A                |      |
| l=a                                          | Non repetitive surge peak on-state cur                                                                           | rent                     | $t_p = 8.3 \text{ ms}$  | 7                | ٨    |
| $ T_{\rm SM} $ $ T_{\rm j} $ initial = 25 °C |                                                                                                                  | $t_p = 10 \text{ ms}$    | 6                       | A                |      |
| l <sup>2</sup> t                             | I <sup>2</sup> t value for fusing                                                                                | $t_p = 10 \text{ ms}$    | 0.18                    | A <sup>2</sup> s |      |
| dl/dt                                        | Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$ , $t_r \le 100 \text{ ns}$ $f = 60 \text{ Hz}$ |                          | T <sub>j</sub> = 125 °C | 50               | A/µs |
| V <sub>DRM</sub> /V <sub>RRM</sub>           | Repetitive peak off-state voltage                                                                                |                          | T <sub>j</sub> = 125 °C | 200              | V    |
| I <sub>GM</sub>                              | Peak gate current $t_p = 20 \mu s$                                                                               |                          | T <sub>j</sub> = 125 °C | 0.5              | Α    |
| P <sub>G(AV)</sub>                           | Average gate power dissipation                                                                                   | 0.02                     | W                       |                  |      |
| T <sub>stg</sub>                             | Storage junction temperature range                                                                               | -40 to +150              | °C                      |                  |      |
| Tj                                           | Operating junction temperature                                                                                   | -40 to +125              | °C                      |                  |      |

Table 3: Electrical characteristics (Tj = 25 °C unless otherwise specified)

| Symbol           | Test conditions                                                                         |  | Value | Unit |          |
|------------------|-----------------------------------------------------------------------------------------|--|-------|------|----------|
| lgт              | IGT V 40 V D 440 O                                                                      |  | Max.  | 200  | μΑ       |
| V <sub>G</sub> T | $V_D = 12 \text{ V}, R_L = 140 \Omega$                                                  |  |       | 0.8  | <b>V</b> |
| $V_{GD}$         | $V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, R_{GK} = 1000 \Omega$ $T_j = 125 \text{ °C}$ |  |       | 0.1  | ٧        |
| $V_{RG}$         | $I_{RG} = 10 \mu\text{A}$                                                               |  |       | 8    | V        |
| lμ               | $I_T$ = 50 mA, $R_{GK}$ = 1000 $\Omega$                                                 |  |       | 6    | mA       |
| IL               | $I_G = 1.2 \text{ x } I_{GT}, R_{GK} = 1000 \Omega$                                     |  |       | 7    | mA       |
| dV/dt            | $V_D = 67 \% V_{DRM}, R_{GK} = 1000 \Omega$ $T_j = 125 °C$                              |  |       | 200  | V/µs     |

**Table 4: Static characteristics** 

| Symbol                             | Test conditions                                            |                         |      |      | Unit |
|------------------------------------|------------------------------------------------------------|-------------------------|------|------|------|
| V <sub>TM</sub>                    | $I_{TM} = 0.4 \text{ A}, t_p = 380 \ \mu \text{s}$         | T <sub>j</sub> = 25 °C  | Max. | 1.7  | V    |
| $V_{TO}$                           | Threshold voltage                                          | T <sub>j</sub> = 125 °C | Max. | 1    | V    |
| R₀                                 | Dynamic resistance                                         | T <sub>j</sub> = 125 °C | Max. | 1000 | mΩ   |
| 1 /                                | V V .V D -4000 O                                           | T <sub>j</sub> = 25 °C  |      | 1    |      |
| I <sub>DRM</sub> /I <sub>RRM</sub> | $V_D = V_{DRM}$ ; $V_R = V_{RRM}$ , $R_{GK} = 1000 \Omega$ | T <sub>j</sub> = 125 °C | Max. | 100  | μΑ   |

**Table 5: Thermal parameters** 

| Symbol               | Parameter                                                        |     | Unit |
|----------------------|------------------------------------------------------------------|-----|------|
| R <sub>th(j-a)</sub> | Junction to ambient (Mounted on FR4 with recommended pad layout) | 400 | °C/W |

47/

2/8 DocID030705 Rev 2

P0102BL Characteristics

## 1.1 Characteristics (curves)

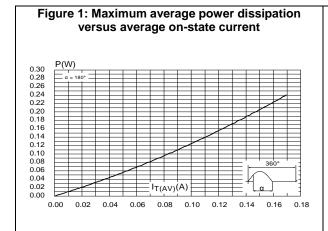



Figure 2: Average and DC on-state current versus ambient temperature

0.30 | T(AV)(A) | 0.25 | 0.20 | 0.15 | 0.10 | 0.15 | 0.10 | 0.05 | 0.00 | 0.05 | 0.00 | 0.25 | 50 | 75 | 100 | 125

junction to ambient versus pulse duration

K=[Zth(j-a)/Rth(j-a)]

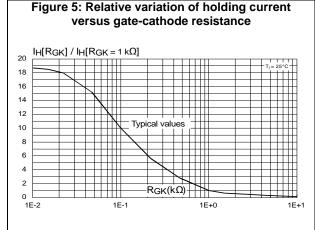
0.10

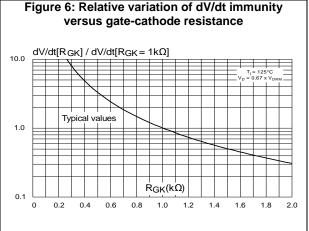
tp(s)

1E+0

1E+1

1E+2


5E+2


1F-2

1F-1

Figure 3: Relative variation of thermal impedance

Figure 4: Gate trigger, holding, and latching currents with gate trigger voltage versus junction temperature  $\mathsf{I}_{\mathsf{GT}},\,\mathsf{V}_{\mathsf{GT}},\,\mathsf{I}_{\mathsf{H}},\,\mathsf{I}_{\mathsf{L}}[\mathsf{T}_j]/\mathsf{I}_{\mathsf{GT}},\,\mathsf{V}_{\mathsf{GT}},\,\mathsf{I}_{\mathsf{H}},\,\mathsf{I}_{\mathsf{L}}[\mathsf{T}_j=25\;^{\circ}\mathsf{C}]$ Relative variations 5.0 4.0 3.0 I<sub>H</sub> and I<sub>L</sub> (R<sub>GK</sub> =1 KΩ) Ϋgт -40 40 60 80 100 120 140





**Characteristics** P0102BL

Figure 7: Relative variation of dV/dt immunity versus gate-cathode capacitance  $dV/dt[C_{GK}] \ / \ dV/dt[R_{GK} = 1k\Omega, \ C_{GK} = 0 \ F]$ 

C<sub>GK</sub>(nF) 3 5 6

number of cycles  $I_{\mathsf{TSM}}(\mathsf{A})$ 5 3 2 Number of cycles 0 1000 10

Figure 8: Surge peak on-state current versus

Figure 9: Non-repetitive surge peak on-state current for sinusoidal pulse (tp< 10 ms)

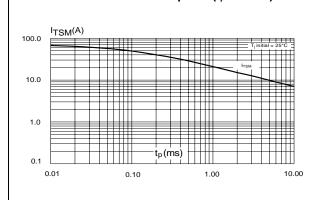



Figure 10: On-state characteristics

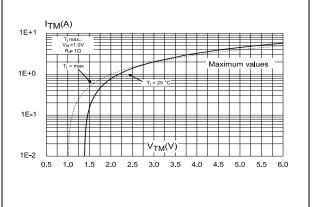
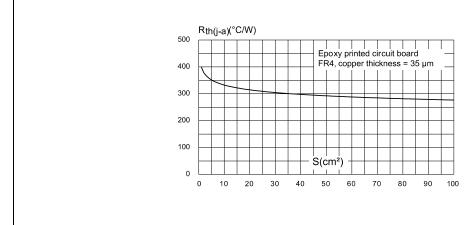




Figure 11: Thermal resistance junction to ambient versus copper surface under tab



4/8 DocID030705 Rev 2

P0102BL Package information

#### **Package information** 2

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

- Lead-free package
- Halogen free molding resin
- Epoxy meets UL94, V0

#### **SOT23-3L** package information 2.1

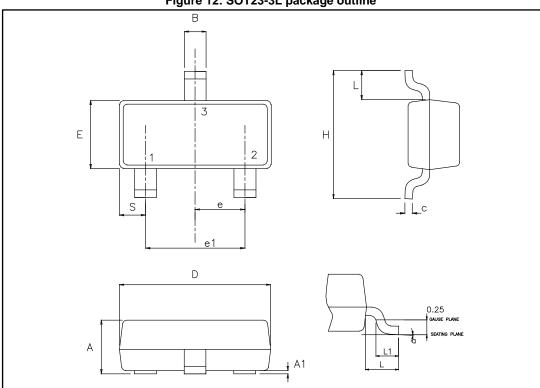



Figure 12: SOT23-3L package outline

This package drawing may slightly differ from the physical package. However, all the specified dimensions in the following table are guaranteed.

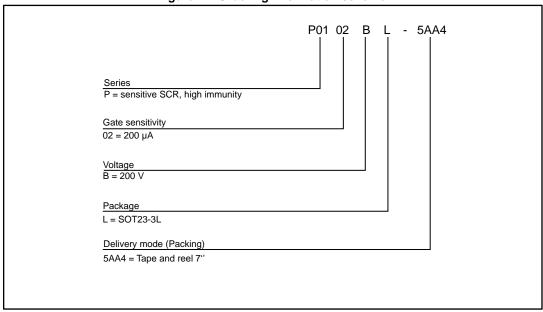
Table 6: SOT23-3L package mechanical data

|      | Dimensions  |      |                       |        |        |        |
|------|-------------|------|-----------------------|--------|--------|--------|
| Ref. | Millimeters |      | Inches <sup>(1)</sup> |        |        |        |
|      | Min.        | Тур. | Max.                  | Min.   | Тур.   | Max.   |
| А    | 0.89        |      | 1.40                  | 0.0350 |        | 0.0551 |
| A1   | 0.00        |      | 0.10                  | 0.0000 |        | 0.0039 |
| В    | 0.30        |      | 0.51                  | 0.0118 |        | 0.0201 |
| С    | 0.085       |      | 0.18                  | 0.0033 |        | 0.0071 |
| D    | 2.75        |      | 3.04                  | 0.1083 |        | 0.1197 |
| е    | 0.85        |      | 1.05                  | 0.0335 |        | 0.0413 |
| e1   | 1.70        |      | 2.10                  | 0.0669 |        | 0.0827 |
| Е    | 1.20        |      | 1.75                  | 0.0472 |        | 0.0689 |
| Н    | 2.10        |      | 3.00                  | 0.0827 |        | 0.1181 |
| L    |             | 0.60 |                       |        | 0.0236 |        |
| S    | 0.35        |      | 0.65                  | 0.0138 |        | 0.256  |
| L1   | 0.25        |      | 0.55                  | 0.0098 |        | 0.0217 |
| а    | 0°          |      | 8°                    | 0°     |        | 8°     |

#### Notes:

0.97 0.48 0.95 2.89 0.99

Figure 13: SOT23-3L footprint in mm


This drawing may not be in scale; however, all the specified dimensions are guaranteed.

 $<sup>\</sup>ensuremath{^{(1)}}\mbox{Dimension}$  in inches are given for reference only.

P0102BL Ordering information

# 3 Ordering information

Figure 14: Ordering information scheme



**Table 7: Ordering information** 

| Order code   | Marking | Package  | Weight | Base qty. | Delivery mode    |
|--------------|---------|----------|--------|-----------|------------------|
| P0102BL 5AA4 | P2B     | SOT23-3L | 0.01 g | 3000      | Tape and reel 7" |

# 4 Revision history

**Table 8: Document revision history** 

| Date        | Revision | Changes                        |
|-------------|----------|--------------------------------|
| 05-Jun-2017 | 1        | Initial release.               |
| 09-Aug-2017 | 2        | Updated drawing in cover page. |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

8/8

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved



单击下面可查看定价,库存,交付和生命周期等信息

>>STMicroelectronics(意法半导体)