

General Description

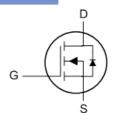
The QN3103M3N is the highest performance trench N-Channel MOSFET with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The QN3103M3N meet the RoHS and Green Product requirement with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Green Device Available

Product Summary


BVDSS	RDSON (VGS=10V)	ID (Tc=25°C)	
30V	5.9mΩ	55A	

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

PRPAK 3X3 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	55	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	34	А
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	13	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	10	А
I _{DM}	Pulsed Drain Current ²	110	А
EAS	Single Pulse Avalanche Energy ³	54	mJ
I _{AS}	Avalanche Current	32.9	Α
P _D @T _C =25°C	Total Power Dissipation⁴	27.7	W
P _D @T _A =25°C	Total Power Dissipation⁴	1.6	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	ů

Thermal Data

Symbol	Parameter		Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-Ambient ¹		75	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		4.5	°C/W

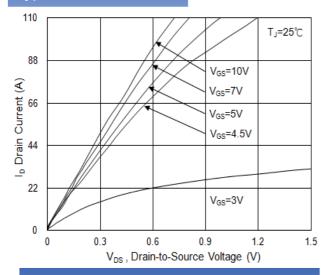
Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.011		V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =15A		4.7	5.9	m()
R _{DS(ON)}	Static Dialii-Source On-Resistance	V _{GS} =4.5V , I _D =10A		6.9	9.0	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	1.2		2.5	٧
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =250uA		-4.2		mV/°C
less	Drain Source Lookage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	- uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		20		S
R_g	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		1.3		Ω
Q_g	Total Gate Charge (10V)	V _{DS} =15V , V _{GS} =10V , I _D =10A		15.2		
Qg	Total Gate Charge (4.5V)			7.7		nC
Q _{gs}	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =10A		2.2		nC
Q _{gd}	Gate-Drain Charge			3.1		
T _{d(on)}	Turn-On Delay Time			7.0		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω		39.0		
T _{d(off)}	Turn-Off Delay Time	I _D =10A		15.5		ns
T _f	Fall Time			5.8		
Ciss	Input Capacitance			837		
C _{oss}	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		475		pF
C _{rss}	Reverse Transfer Capacitance			63		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V , L=0.1mH , I _{AS} =24A	28.8			mJ

Diode Characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	\/ -\/ -0\/ Force Current			55	Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			110	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
trr	Reverse Recovery Time	IF=10A , dI/dt=100A/µs , Tյ=25°C		28.7		nS
Qrr	Reverse Recovery Charge	11-10A, αl/αl-100A/μs, 13-25 C		12.3		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3.The EAS data shows Max. rating . The test condition is $\rm V_{DD} = 25V, V_{GS} = 10V, L = 0.1 mH$
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

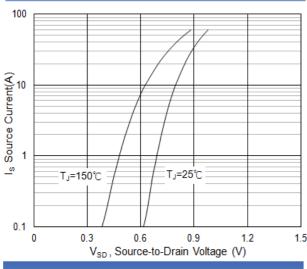


Fig.3 Forward Characteristics of Reverse

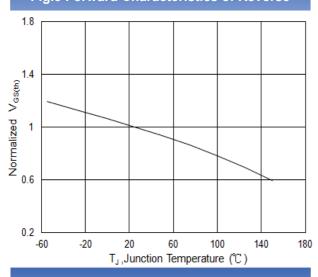


Fig.5 Normalized $V_{GS(th)}$ vs. T_J

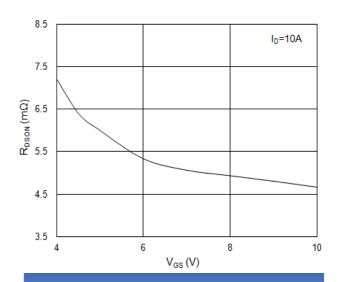


Fig.2 On-Resistance vs. Gate-Source

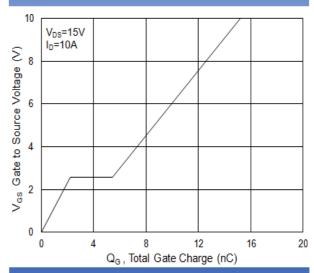


Fig.4 Gate-Charge Characteristics

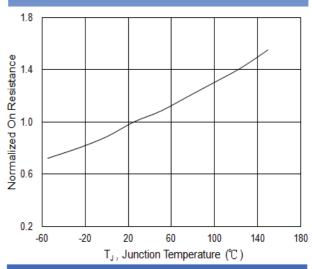
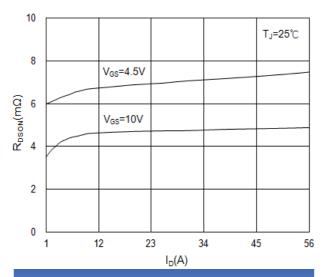
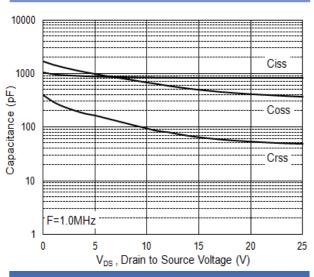




Fig.6 Normalized R_{DSON} vs. T_J

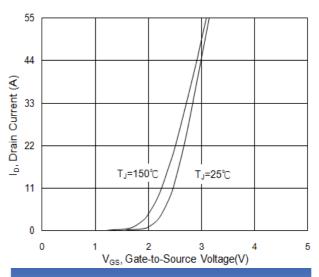


Fig.7 Drain-Source On-State Resistance

Fig.9 Capacitance

Fig.8 Transfer Characteristics

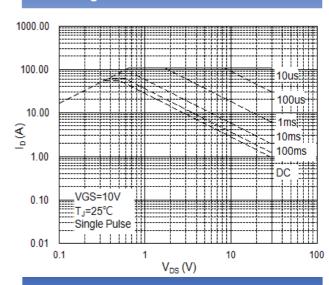


Fig.10 Safe Operating Area

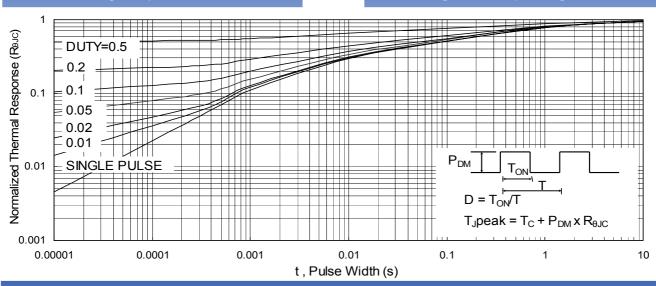
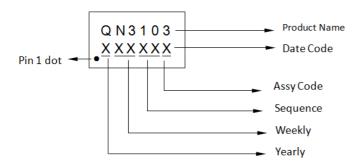
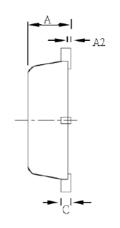
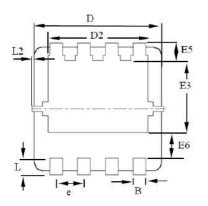
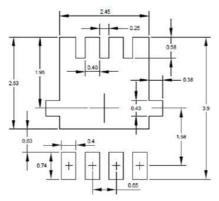




Fig.11 Transient Thermal Impedance




Top Marking



PRPAK3X3 Package Outline Drawing

SYMBOLS-	Millimeters				
STMDOLS.	MIN	NOM	MAX		
A	0.65	0.80	0.90		
A2	0.00	-	0.05		
В	0.23	0.30	0.40		
C	0.10	0.15	0.25		
D	2.90	3.00	3.40		
D2	1.90	2.35	2.60		
E	2.65	3.00	3.20		
E2	3.10	3.20	3.50		
E3	1.40	1.75	1.98		
E5	0.18	0.43	0.48		
E6	0.59	0.63	0.79		
L	0.25	0.40	0.56		
L2	0.00		0.15		
e		0.65			

LAND PATTERN RECOMMENDATION (Unit: mm)

Note:

Confidential

- 1. ALL DIMENSIONS LISTED ON THE DRAWING MEETING JEDEC STANDARD.
- 2. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- 3. RECOMMENDED LAND PATTERN DESIGN IS ONLY FOR REFERENCE

Important Notice

UBIQ and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

UBIQ products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment. However, no responsibility is assumed by UBIQ or its subsidiaries for its use or application of any product or circuit; nor for any infringements of patents or other rights of third parties which may result from its use or application, including but not limited to any consequential or incidental damages. No UBIQ components are designed, intended or authorized for use in military, aerospace, automotive applications nor in systems for surgical implantation or life-sustaining. No license is granted by implication or otherwise under any patent or patent rights of UBIQ or its subsidiaries.

UBIQ Semiconductor Corp.

Headquarter

9F., No.5, Taiyuan 1st St. Zhubei City,

Hsinchu Taiwan, R.O.C.

TEL: 886.3.560.1818 FAX: 886.3.560.1919

Sales Branch Office

12F-5, No. 408, Ruiguang Rd. Neihu District,

Taipei Taiwan, R.O.C.

TEL: 886.2.8751.2062 FAX: 886.2.8751.5064

© by UBIQ Semiconductor Corp., All Rights reserved.

单击下面可查看定价,库存,交付和生命周期等信息

>>UBIQ(台湾力详)