

# **General Description**

The QN3103M6N is the highest performance trench N-Channel MOSFET with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

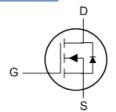
The QN3103M6N meet the RoHS and Green Product requirement with full function reliability approved.

#### **Features**

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Green Device Available

#### **Product Summary**




| BVDSS | RDSON<br>(VGS=10V) | ID<br>(Tc=25°C) |
|-------|--------------------|-----------------|
| 30V   | $6.3 m\Omega$      | 68A             |

# **Applications**

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

## **PRPAK 5X6 Pin Configuration**





## **Absolute Maximum Ratings**

| Symbol                                | Parameter                                                    | Rating | Units |
|---------------------------------------|--------------------------------------------------------------|--------|-------|
| $V_{DS}$                              | Drain-Source Voltage 30                                      |        | V     |
| $V_{GS}$                              | Gate-Source Voltage                                          | ±20    | V     |
| I <sub>D</sub> @T <sub>C</sub> =25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 68     | Α     |
| I <sub>D</sub> @T <sub>C</sub> =100°C | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 43     | Α     |
| I <sub>D</sub> @T <sub>A</sub> =25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 14     | Α     |
| I <sub>D</sub> @T <sub>A</sub> =70°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 11     | Α     |
| I <sub>DM</sub>                       | Pulsed Drain Current <sup>2</sup>                            | 136    | Α     |
| EAS                                   | Single Pulse Avalanche Energy <sup>3</sup>                   | 51.5   | mJ    |
| I <sub>AS</sub>                       | Avalanche Current                                            | 32.1   | Α     |
| P <sub>D</sub> @T <sub>C</sub> =25°C  | Total Power Dissipation <sup>4</sup>                         | 46     | W     |
| P <sub>D</sub> @T <sub>A</sub> =25°C  | Total Power Dissipation <sup>4</sup>                         | 2.0    | W     |
| T <sub>STG</sub>                      | Storage Temperature Range -55 to 15                          |        | °C    |
| T <sub>J</sub>                        | Operating Junction Temperature Range -55 to 150              |        | °C    |

## **Thermal Data**

| Symbol          | Parameter                                        | Тур. | Max. | Unit |
|-----------------|--------------------------------------------------|------|------|------|
| $R_{\theta JA}$ | Thermal Resistance Junction-Ambient <sup>1</sup> |      | 62   | °C/W |
| $R_{	heta JC}$  | Thermal Resistance Junction-Case <sup>1</sup>    |      | 2.7  | °C/W |



# Electrical Characteristics (T<sub>J</sub>=25 °C, unless otherwise noted)

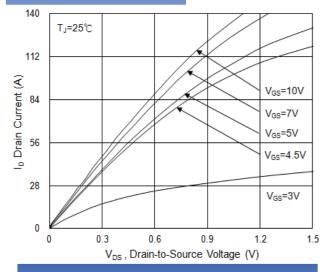
| Symbol                               | Parameter                                      | Conditions                                                         | Min. | Тур. | Max. | Unit  |
|--------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------|------|------|-------|
| BV <sub>DSS</sub>                    | Drain-Source Breakdown Voltage                 | V <sub>GS</sub> =0V , I <sub>D</sub> =250uA                        | 30   |      |      | V     |
| $\triangle BV_{DSS}/\triangle T_{J}$ | BVDSS Temperature Coefficient                  | Reference to 25°C , I <sub>D</sub> =1mA                            |      | 0.01 |      | V/°C  |
| В                                    | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =10V , I <sub>D</sub> =30A                         |      | 5.0  | 6.3  | mΩ    |
| R <sub>DS(ON)</sub>                  |                                                | V <sub>GS</sub> =4.5V , I <sub>D</sub> =15A                        |      | 6.9  | 9.0  |       |
| V <sub>GS(th)</sub>                  | Gate Threshold Voltage                         | \/ -\/   -250\                                                     | 1.2  |      | 2.5  | V     |
| $\triangle V_{GS(th)}$               | V <sub>GS(th)</sub> Temperature Coefficient    | $V_{GS}=V_{DS}$ , $I_D=250uA$                                      |      | -4.0 |      | mV/°C |
|                                      | Drain Source Lookage Current                   | V <sub>DS</sub> =24V , V <sub>GS</sub> =0V , T <sub>J</sub> =25°C  |      |      | 1    | uA    |
| I <sub>DSS</sub>                     | Drain-Source Leakage Current                   | V <sub>DS</sub> =24V , V <sub>GS</sub> =0V , T <sub>J</sub> =55°C  |      |      | 5    |       |
| I <sub>GSS</sub>                     | Gate-Source Leakage Current                    | V <sub>GS</sub> =±20V , V <sub>DS</sub> =0V                        |      |      | ±100 | nA    |
| gfs                                  | Forward Transconductance                       | V <sub>DS</sub> =5V , I <sub>D</sub> =15A                          |      | 28.1 |      | S     |
| $R_g$                                | Gate Resistance                                | V <sub>DS</sub> =0V , V <sub>GS</sub> =0V , f=1MHz                 |      | 1.3  |      | Ω     |
| Qg                                   | Total Gate Charge (10V)                        | V <sub>DS</sub> =15V , V <sub>GS</sub> =4.5V , I <sub>D</sub> =15A |      | 15.8 |      |       |
| Qg                                   | Total Gate Charge (4.5V)                       |                                                                    |      | 8.1  |      | nC    |
| Q <sub>gs</sub>                      | Gate-Source Charge                             |                                                                    |      | 2.4  |      | nC    |
| Q <sub>gd</sub>                      | Gate-Drain Charge                              |                                                                    |      | 3.3  |      |       |
| T <sub>d(on)</sub>                   | Turn-On Delay Time                             | $V_{DD}$ =15V , $V_{GS}$ =10V , $R_{G}$ =3.3 $\Omega$              |      | 7    |      |       |
| Tr                                   | Rise Time                                      |                                                                    |      | 43   |      |       |
| T <sub>d(off)</sub>                  | Turn-Off Delay Time                            |                                                                    |      | 16   |      | ns    |
| T <sub>f</sub>                       | Fall Time                                      |                                                                    |      | 6    |      |       |
| Ciss                                 | Input Capacitance                              | V <sub>DS</sub> =15V , V <sub>GS</sub> =0V , f=1MHz                |      | 850  |      |       |
| C <sub>oss</sub>                     | Output Capacitance                             |                                                                    |      | 512  |      | pF    |
| C <sub>rss</sub>                     | Reverse Transfer Capacitance                   |                                                                    |      | 68   |      |       |

## **Guaranteed Avalanche Characteristics**

| Symbol | Parameter                                  | Conditions                                            | Min.  | Тур. | Max. | Unit |
|--------|--------------------------------------------|-------------------------------------------------------|-------|------|------|------|
| EAS    | Single Pulse Avalanche Energy <sup>5</sup> | V <sub>DD</sub> =25V , L=0.1mH , I <sub>AS</sub> =23A | 26.45 |      |      | mJ   |

## **Diode Characteristics**

| Symbol          | Parameter                                | Conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------|-----------------------------------------------------------------|------|------|------|------|
| I <sub>S</sub>  | Continuous Source Current <sup>1,6</sup> | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current              |      |      | 68   | Α    |
| I <sub>SM</sub> | Pulsed Source Current <sup>2,6</sup>     |                                                                 |      |      | 136  | Α    |
| $V_{SD}$        | Diode Forward Voltage <sup>2</sup>       | V <sub>GS</sub> =0V , I <sub>S</sub> =1A , T <sub>J</sub> =25°C |      |      | 1.2  | ٧    |
| trr             | Reverse Recovery Time                    | -IF=15A , dI/dt=100A/μs , Tյ=25°C                               |      | 34.9 |      | nS   |
| Qrr             | Reverse Recovery Charge                  |                                                                 |      | 16.8 |      | nC   |


#### Note:

- 1.The data tested by surface mounted on a 1 inch<sup>2</sup> FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width  $\leq$  300us , duty cycle  $\leq$  2%
- 3.The EAS data shows Max. rating . The test condition is  $V_{\text{DD}}\text{=-}25\text{V}, V_{\text{GS}}\text{=-}10\text{V}, L\text{=-}0.1\text{mH}$
- 4.The power dissipation is limited by 150  $^{\circ}\text{C}\,$  junction temperature
- 5.The Min. value is 100% EAS tested guarantee.
- $6. The \ data \ is \ theoretically \ the \ same \ as \ I_D \ and \ I_{DM} \ , \ in \ real \ applications \ , \ should \ be \ limited \ by \ total \ power \ dissipation.$

Rev A.01 D121616



# **Typical Characteristics**



## Fig.1 Typical Output Characteristics

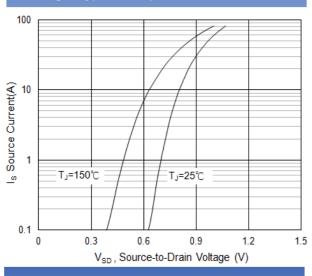



Fig.3 Forward Characteristics of Reverse

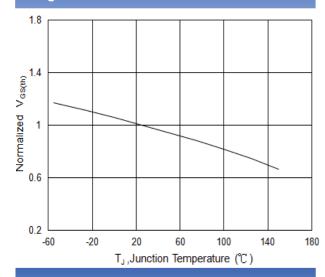



Fig.5 Normalized V<sub>GS(th)</sub> vs. T<sub>J</sub>

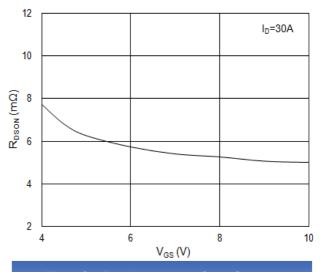



Fig.2 On-Resistance vs. Gate-Source

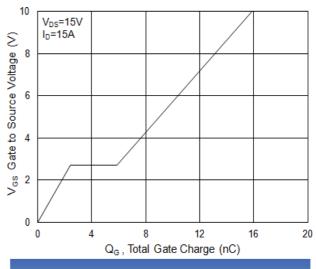



Fig.4 Gate-Charge Characteristics

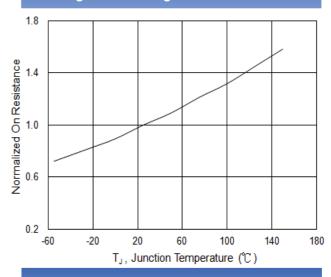
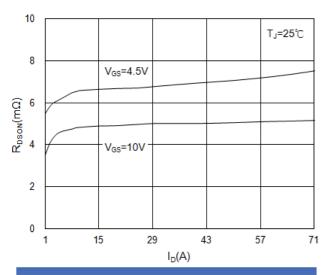




Fig.6 Normalized R<sub>DSON</sub> vs. T<sub>J</sub>





#### Fig.7 Drain-Source On-State Resistance

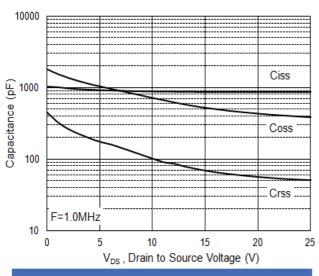
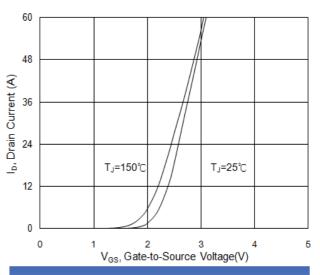




Fig.9 Capacitance



**Fig.8 Transfer Characteristics** 

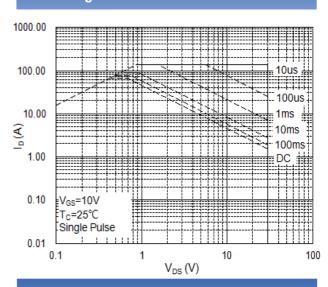
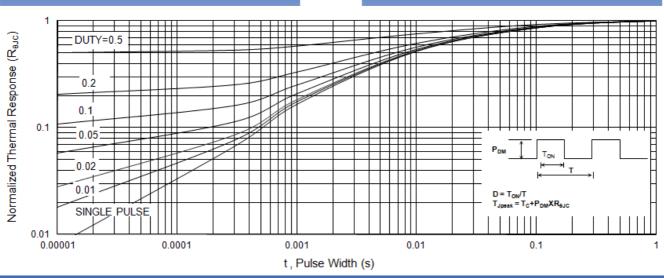




Fig.10 Safe Operating Area



**Fig.11 Transient Thermal Impedance** 

单击下面可查看定价,库存,交付和生命周期等信息

>>UBIQ(台湾力详)