Vishay Dale

Wirewound Resistors, Commercial Power, Silicone Coated, Axial Lead

STANDARD ELECTRICAL SPECIFICATIONS

DESIGN SUPPORT TOOLS

click logo to get started

Models Available

FEATURES

- · High performance for low cost
- High temperature silicone coating
- Complete welded construction Excellent stability in operation
- High power to size ratio
- Material categorization:
- for definitions of compliance please www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

see

FREE GREEN <u>(5-2008)</u> Available

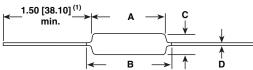
GLOBAL MODEL	HISTORICAL MODEL	POWER RATING ⁽¹⁾ P _{25 °C} W CHARACTERISTIC U +250 °C	$\begin{array}{ c c c c c } W & POWER RATING {}^{(1)}P_{25} {}^\circ C W \\ CHARACTERISTIC V \\ +350 {}^\circ C \end{array} RESISTANCE RANGE \\ \Omega \\ \end{array}$		TOLERANCE ± % ⁽²⁾	WEIGHT (max.) g
CW1/2	CW-1/2	0.5	-	0.1 to 1.77K	5, 10	0.21
CW001	CW-1	1.0	-	0.1 to 6.37K	5, 10	0.34
CW01M	CW-1M	1.0	-	0.1 to 3.3K	5, 10	0.3
CW002	CW-2	4.0	5.5	0.1 to 28.7K	5, 10	2.1
CW02M	CW-2M	3.0	3.75	0.1 to 12K	5, 10	0.65
CW02B	CW-2B	3.0	3.75	0.1 to 15K	5, 10	0.7
CW02B13	CW-2B-13	4.0	6.0	0.1 to 10.89K ⁽³⁾	5, 10	0.9
CW02C	CW-2C	2.5	3.25	0.1 to 19.9K	5, 10	1.8
CW02C14	CW-2C-14	2.5	3.25	0.1 to 19.9K	5, 10	1.2
CW005	CW-5	5.0	6.5	0.1 to 58.5K	5, 10	4.2
CW0052	CW-5-2	4.0	5.0	0.1 to 40.3K	5, 10	4.2
CW0053	CW-5-3	5.0	6.5	0.1 to 58.5K	5, 10	4.2
CW007	CW-7	7.0	9.0	0.1 to 95.2K	5, 10	4.7
CW010	CW-10	10.0	13.0	0.1 to 167K	5, 10	9.0
CW0103	CW-10-3	10.0	13.0	0.1 to 167K	5, 10	9.0

Vishay Dale CW models have two power ratings, depending on operating temperature and stability requirements 3 % tolerance available

(2) (3)

Higher values available on request				
TECHNICAL SPECIFICATIONS				
PARAMETER	UNIT	CW RESISTOR CHARACTERISTICS		
Temperature Coefficient	ppm/°C	\pm 30 for 10 Ω and above, \pm 50 for 1.0 Ω to 9.9 Ω , \pm 90 for 0.5 Ω to 0.99 Ω		
Dielectric Withstanding Voltage	V _{AC}	1000		
Short Time Overload	-	5 x rated power for 5 s for 3.75 W size and smaller, 10 x rated power for 5 s for 4 W size and greater		
Terminal Strength	lb	10 minimum		
Maximum Working Voltage	V	$(P \times R)^{1/2}$		
Operating Temperature Range	°C	Characteristic U = -65 to +250, characteristic V = -65 to +350		
Power Rating	_	Characteristic U = +250 °C max. hot spot temperature, \pm 0.5 % max. Δ R in 2000 h load life Characteristic V = +350 °C max. hot spot temperature, \pm 3.0 % max. Δ R in 2000 h load life		

G	LOBAL PA		K INFORMA I	ION					
G	Global Part Numbering example: CW02C10K00JB1214								
C W 0 2 C 1 0 K 0 0 J B 1 2 1 4									
GL	OBAL MODEL	VALUE	TOLERANCE			PACKAGING			SPECIAL
$\begin{array}{ c c c c c c c c }\hline \hline (see Standard \\ Electrical \\ Specifications \\\hline \hline {\bf H} = decimal \\ {\bf H} = \pm 3.0 \ \% \\ {\bf H} = \pm 3.0 \ \% \\ {\bf J} = \pm 5.0 \ \% \\ {\bf H} = \pm 10.0 \ \% \\\hline \hline {\bf H} = \pm 10.0 \ \% \\ \hline \hline {\bf H} = \pm 10.0 \ \% \\ \hline \hline {\bf H} = \pm 10.0 \ \% \\ \hline \hline {\bf H} = \pm 10.0 \ \% \\ \hline \hline {\bf H} = \pm 10.0 \ \% \\ \hline \hline {\bf H} = \pm 10.0 \ \% \\ \hline \hline$		E70 = lead (Pb)-free, tape / reel, 1K pcs (smaller than CW005) E73 = lead (Pb)-free, tape/reel, 500 pcs E12 = lead (Pb)-free, bulk					(dash number) (up to 3 digits) from 1 to 999		
Global Model column for $\mathbf{1K500} = 1.5 \text{ k}\Omega$			D18 = lead (Pb)-free, R1R80 tape/reel CW02B13 pack code for Europe use only					as applicable	
	options)					, tape / reel, 1K pcs (smaller t = tin / lead, tape / reel, 500 p B12 = tin / lead, bulk		W005)	
Hi	Historical Part Numbering example: CW-2C-14 10 kΩ 5 % B12								
[CW-2C	-14	10	ι Ω	[5 %			B12
	HISTORICAL	MODEL	RESISTANC	CE VALUE		TOLERANCE CODE		PAG	CKAGING


Revision: 15-Nov-17

Document Number: 30215

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFI Downloaded From Oneyac.com w.vishay.com/doc?91000

DIMENSIONS in inches (millimeters)

MODEL	DIMENSIONS in inches [millimeters]					
MODEL	A	B [MAXIMUM] ⁽²⁾	С	D		
CW1/2	0.250 ± 0.031 [6.35 ± 0.787]	0.281 [7.14]	0.085 ± 0.020 [2.16 ± 0.508]	0.020 ± 0.002 [0.508 ± 0.051]		
CW001	0.406 ± 0.031 [10.31 ± 0.787]	0.437 [11.10]	0.094 ± 0.031 [2.39 ± 0.787]	0.020 ± 0.002 [0.508 ± 0.051]		
CW01M	0.270 ± 0.031 [6.86 ± 0.787]	0.311 [7.90]	0.110 ± 0.015 [2.79 ± 0.381]	0.020 ± 0.002 [0.508 ± 0.051]		
CW002	0.625 ± 0.062 [15.87 ± 1.57]	0.765 [19.43]	0.250 ± 0.032 [6.35 ± 0.813]	0.040 ± 0.002 [1.02 ± 0.051]		
CW02M	0.500 ± 0.062 [12.70 ± 1.57]	0.562 [14.27]	0.185 ± 0.032 [4.70 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		
CW02B	0.562 ± 0.062 [14.27 ± 1.57]	0.622 [15.80]	0.188 ± 0.032 [4.78 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		
CW02B13	0.500 ± 0.062 [12.70 ± 1.57]	0.563 [14.30]	0.188 ± 0.032 [4.78 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		
CW02C	0.500 ± 0.062 [12.70 ± 1.57]	0.593 [15.06]	0.218 ± 0.032 [5.54 ± 0.813]	0.040 ± 0.002 [1.02 ± 0.051]		
CW02C14	0.500 ± 0.062 [12.70 ± 1.57]	0.593 [15.06]	0.218 ± 0.032 [5.54 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		
CW005	0.875 ± 0.062 [22.22 ± 1.57]	1.0 [25.40]	0.312 ± 0.032 [7.92 ± 0.813]	$0.040 \pm 0.002 \ [1.02 \pm 0.051]$		
CW0052	0.875 ± 0.062 [22.22 ± 1.57]	1.0 [25.40]	0.250 ± 0.032 [6.35 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		
CW0053	0.875 ± 0.062 [22.22 ± 1.57]	1.0 [25.40]	0.312 ± 0.032 [7.92 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		
CW007	1.218 ± 0.062 [30.94 ± 1.57]	1.281 [32.54]	0.312 ± 0.032 [7.92 ± 0.813]	0.040 ± 0.002 [1.02 ± 0.051]		
CW010	1.781 ± 0.062 [45.24 ± 1.57]	1.875 [47.62]	0.375 ± 0.032 [9.52 ± 0.813]	0.040 ± 0.002 [1.02 ± 0.051]		
CW0103	1.781 ± 0.062 [45.24 ± 1.57]	1.875 [47.62]	0.375 ± 0.032 [9.52 ± 0.813]	0.032 ± 0.002 [0.813 ± 0.051]		

Notes

⁽¹⁾ On some standard reel pack methods, the leads may be trimmed to a shorter length than shown

⁽²⁾ B (maximum) dimension is clean lead to clean lead

MATERIAL SPECIFICATIONS

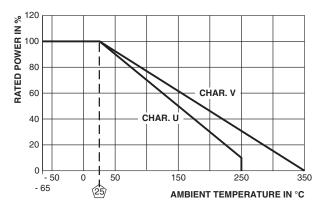
Element: copper-nickel alloy or nickel-chrome alloy, depending on resistance value

Core: ceramic: steatite or alumina, depending on physical size

Coating: special high temperature silicone

Standard Terminals: tinned Copperweld®

(CW02B...13 is tinned copper)


End Caps: stainless steel

Part Marking: DALE, model, wattage (1), value, tolerance, date code

Note

⁽¹⁾ Wattage marked on resistor will be "V" characteristic, CW1/2 will not be marked with wattage.

DERATING

PERFORMANCE		
TEST	CONDITIONS OF TEST	TEST LIMITS ⁽¹⁾ (CHARACTERISTIC V)
Thermal Shock	Rated power applied until thermally stable, then a minimum of 15 min at -55 °C	\pm (2.0 % + 0.05 Ω) Δ <i>R</i>
Short Time Overload	5x rated power (3.75 W and smaller), 10 x rated power (4 W and larger) for 5 s	\pm (2.0 % + 0.05 Ω) ΔR
Dielectric Withstanding Voltage	1000 V _{rms} , 1 min	± (0.1 % + 0.05 Ω) ΔR
Low Temperature Storage	-65 °C for 24 h	\pm (2.0 % + 0.05 Ω) Δ <i>R</i>
High Temperature Exposure	250 h at +350 °C	\pm (4.0 % + 0.05 Ω) Δ <i>R</i>
Moisture Resistance	MIL-STD-202 Method 106, 7b not applicable	± (2.0 % + 0.05 Ω) Δ <i>R</i>
Shock, Specified Pulse	MIL-STD-202 Method 213, 100 g's for 6 ms, 10 shocks	\pm (0.2 % + 0.05 Ω) ΔR
Vibration, High Frequency	Frequency varied 10 Hz to 2000 Hz, 20 g peak, 2 directions 6 h each	\pm (0.2 % + 0.05 Ω) ΔR
Load Life	2000 h at rated power, + 25 °C, 1.5 h "ON", 0.5 h "OFF"	\pm (3.0 % + 0.05 Ω) ΔR
Terminal Strength	5 s to 10 s 10 pound pull test; torsion test - 3 alternating directions, 360° each	\pm (1.0 % + 0.05 Ω) Δ <i>R</i>

Note

All ΔR figures shown are maximum, based upon testing requirements per MIL-PRF-26 at a maximum operating temperature of +350 °C. ΔR maximum figures are considerably lower when tested at a maximum operating temperature of +250 °C (1)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>Vishay(威世)

>>点击查看相关商品