

SAW multiplexer LTE band 1 + LTE band 3

Series/type:	M5001
Ordering code:	B39212M5001D310
Date:	June 02, 2016
Version:	1.0
Customer:	Qualcomm

© EPCOS AG 2016. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

Table of contents

1 Application	
2 Features	3
3 Package	
4 Pin configuration	
5 Matching circuit	_
6 Characteristics LTE B1	
7 Characteristics LTE B3	
8 Characteristics cross-isolations	
9 Maximum ratings	
10 Transmission coefficients LTE B1	
11 Reflection coefficients LTE B1	
12 Transmission coefficients LTE B3	21
13 Reflection coefficients LTE B3.	24
14 Transmission coefficients cross-isolations	
15 Packing material	
16 Soldering profile	
17 Annotations	04
18 Cautions and warnings	
19 Revision history	00
Important notes	

M5001

SAW components

SAW multiplexer

Preliminary data sheet

1 Application

- Low-loss SAW multiplexer for mobile telephone LTE Band 1 and Band 3 systems, also suitable for WCDMA applications.
- Usable pass bands: 60MHz for Band 1 and 75 MHz for Band 3.
- High out of band selectivity
- High TX-RX isolation
- Terminating impedance 50Ω
- Unbalanced to unbalanced operation

2 Features

- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.69 mm (max.)
- Approximate weight t.b.d.
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals

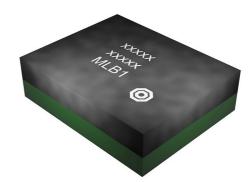
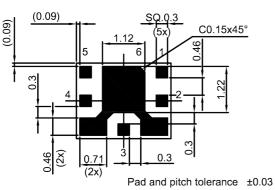


Figure 1: Picture of component with example of product marking.

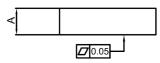
M5001

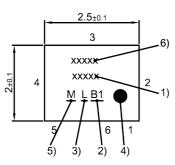

SAW components

SAW multiplexer

Preliminary data sheet

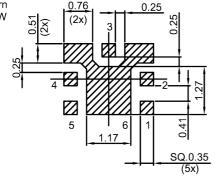
3 Package


BOTTOM VIEW

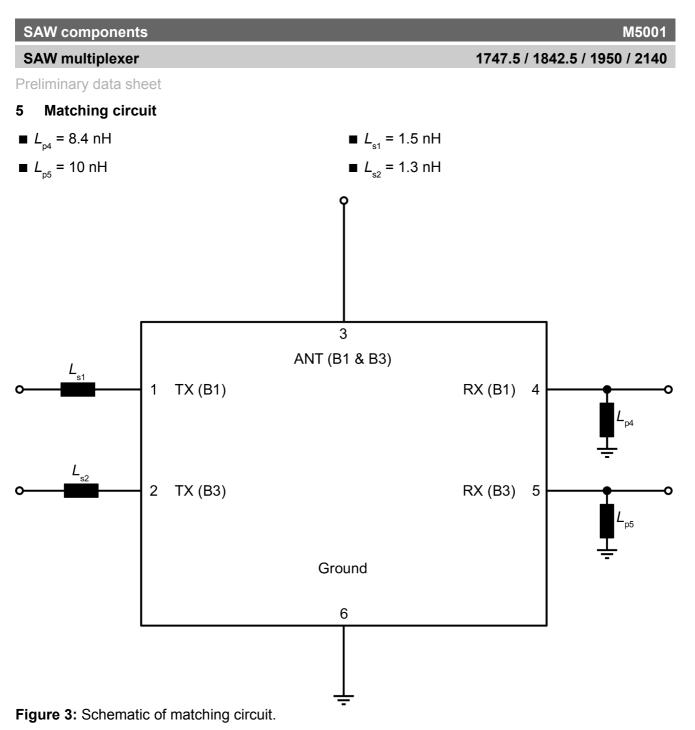

Pin configuration 4

- TX (B1) 1 **2** TX (B3)
- 3 ANT (B1 & B3)
- **4** RX (B1)
- RX (B3) **5**
- Ground 6

SIDE VIEW


TOP VIEW

6) Tracking ID (5 to 8 digits)


- 5) Indicating production site (M=Muc, C=Wxi)
- 4) Marking for pad number 1
- 3) Date code acc. EPCOS (day)
- 2) Date code acc. to EN60062 (year, month)
- 1) Position for type designation

Landing pad tolerance -0.02 Figure 2: Drawing of package, height A = 0.69mm (max.). See Sec. Package information (p. 32).

M5001

SAW components

SAW multiplexer

Preliminary data sheet

6 Characteristics LTE B1

6.1 TX – ANT

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
B1 TX terminating impedance	Z _{B1 TX}	= 50 Ω with ser. 1.5 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω
B1 RX terminating impedance	Z _{B1 RX}	= 50 Ω with par. 8.4 nH ¹⁾

				Development status ²⁾			DGL ³⁾		
Characteristics LTE B1 TX – Al				min. for $T_{_{ m SPEC}}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	min.	max.	
Center frequency			f _c		1950	—		_	MHz
Maximum insertion atte	enuation		$\alpha_{_{max}}$						
	1920 1980	MHz		_	2.5	3.0	—	2.8	dB
	1920.34 1979.66	MHz		—	2.5	3.0	—	2.8	dB
Amplitude ripple (p-p)			Δα						
	1920 1980	MHz		_	0.9	2.0		_	dB
Maximum VSWR			VSWR _{max}						
@ B1 TX port	1920 1980	MHz		—	1.5	2.0	—	_	
@ ANT port	1920 1980	MHz		_	1.6	2.0	_	_	
Minimum attenuation			α_{min}						
	10 1574	MHz		30	47	_	—	_	dB
	420 494	MHz		50	63	—	_	_	dB
	815 960	MHz		48	52	_	_	_	dB
	1226 1250	MHz		43	48	_	_	_	dB
	1447.9 1462.9	MHz		30	46	_	—	_	dB
	1475 1496	MHz		40	46	_	—	_	dB
	1496 1511	MHz		40	46	—	—	_	dB
	1559 1586	MHz		37	47	—	—	_	dB
	1597 1710	MHz		37	47	—	—	_	dB
	1710 1785	MHz		35	40	—	_	_	dB
	1805 1879.76	MHz		46	54	—	_	_	dB
	2010 2025	MHz		t.b.d.	13	—	—	_	dB
	2110 2170	MHz		45	57	—	_	_	dB
	2400 2496	MHz		36	49	—		-	dB
	2496 2690	MHz		40	46	—	_	-	dB
	3830 3960	MHz		35	45	—		-	dB
	4900 5740	MHz		20	27	—		-	dB
	5740 5950	MHz		20	25	—	_	_	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Values in columns min., typ., and max. indicate the development status of the current version.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

6.2 ANT – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B1 TX terminating impedance	Z _{B1 TX}	= 50 Ω with ser. 1.5 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω
B1 RX terminating impedance	Z _{B1 RX}	= 50 Ω with par. 8.4 nH ¹⁾

				Development status ²⁾			DC		
Characteristics LTE B1 ANT – RX			min. for $T_{_{ m SPEC}}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	min.	max.		
Center frequency			f _c	—	2140	—	—	_	MHz
Maximum insertion atte	nuation		α_{max}						
	2110 2170	MHz		_	2.4	3.0	—	2.8	dB
	2110.34 2169.66	MHz		_	2.4	3.0	_	2.8	dB
Amplitude ripple (p-p)			Δα						
	2110 2170	MHz		_	0.6	2.0	_	_	dB
Maximum VSWR			VSWR _{max}						
@ ANT port	2110 2170	MHz		_	1.5	2.0	—	_	
@ B1 RX port	2110 2170	MHz		_	1.5	2.0	—	_	
Minimum attenuation			$\alpha_{_{min}}$						
	10 1920	MHz		37	42	—	—	_	dB
	190	MHz		50	90	_	_		dB
	718 748	MHz		50	64	—	_	_	dB
	814 915	MHz		50	60		_	_	dB
	1427 1447	MHz		40	50	—	—	_	dB
	1447 1463	MHz		45	50	—	—	_	dB
	1710 1785	MHz		48	54	—	—	_	dB
	1920 1980	MHz		48	57	—	—	_	dB
	1980 2015	MHz		15	52	—	_	_	dB
	2015 2050	MHz		25	40	—	_	_	dB
	2050 2075	MHz		10	20	—		_	dB
	2255 2690	MHz		40	50	—		_	dB
	4030 4150	MHz		40	54	—		_	dB
	4220 4340	MHz		40	53	—	—	-	dB
	4340 5950	MHz		35	45	—	—	_	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Values in columns min., typ., and max. indicate the development status of the current version.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

6.3 TX – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B1 TX terminating impedance	Z _{B1 TX}	= 50 Ω with ser. 1.5 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω
B1 RX terminating impedance	Z _{B1 RX}	= 50 Ω with par. 8.4 nH ¹⁾

			Devel	Development status ²⁾			L ³⁾	
Characteristics LTE B1 TX – RX			min. for T _{SPEC}	typ. @+25 °C	max. for T _{SPEC}	min.	max.	
Minimum isolation		α _{mi}	1					
	1574 1577	MHz	40	65		—	—	dB
	1805.24 1879.76	MHz	40	60	_		_	dB
	1920 1980	MHz	52	59	_	—	—	dB
	1920.34 1979.66	MHz	52	59	_	—	—	dB
	2110 2170	MHz	50	59	_	—	—	dB
	2110.34 2169.66	MHz	50	59	_	—	—	dB
	3830 3970	MHz	20	58	—	—	—	dB
	5750 5950	MHz	20	62	_	_	—	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Values in columns min., typ., and max. indicate the development status of the current version.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

6.4 Linearity

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B1 TX terminating impedance	Z _{B1 TX}	= 50 Ω with ser. 1.5 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω
B1 RX terminating impedance	Z _{B1 RX}	= 50 Ω with par. 8.4 nH ¹⁾

			Devel	Development status ²⁾			DGL ³⁾	
haracteristics LTE B1 Linearity		min. for T_{SPEC}	typ. @+25 °C	max. for $T_{\rm SPEC}$	min.	max.		
IMD product levels4)								
IMD2								
Blocker 1	190	MHz	_	-123	—	—	_	dBm
Blocker 3	4030 4150	MHz	_	-116	—	_		dBm
IMD3								
Blocker 2	1730 1790	MHz	_	-116	—	_	_	dBm
Blocker 4	5950 6130	MHz	_	-123	—		_	dBm

1) See Sec. Matching circuit (p. 5).

2) Values in columns min., typ., and max. indicate the development status of the current version.

3)

Values in column design goal (DGL) indicate the target performance. @ $f_{TX} = 1920....1980$ MHz, $f_{RX} = 2110....2170$ MHz, IMD product levels for power levels $P_{TX} = 21$ dBm (ANT port output 4) power) and $P_{blocker} = -15$ dBm (ANT port input power).

M5001

SAW components

SAW multiplexer

Preliminary data sheet

7 **Characteristics LTE B3**

TX – ANT 7.1

Temperature range for specification	T _{SPEC}	= −30 °C +85 °C
B3 TX terminating impedance	Z _{B3 TX}	= 50 Ω with ser. 1.3 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω
B3 RX terminating impedance	Z _{b3 rx}	= 50 Ω with par. 10 nH ¹⁾

				Development status ²⁾			DG		
	Characteristics LTE B3 TX – ANT			min. for $T_{_{ m SPEC}}$	typ. @+25 °C	max. for T _{SPEC}	min.	max.	
Center frequency			f _c		_	_		_	MHz
Maximum insertion a	attenuation		$\alpha_{_{max}}$						
	1710.24 1784.76	MHz		—	2.6	t.b.d.4)	—	_	dB
	1710.24 1784.76	MHz		—	2.6	3.5 ⁵⁾	—	_	dB
Amplitude ripple (p-	p)		Δα						
	1710.24 1784.76	MHz		—	1.0	2.0 ⁶⁾	—		dB
Maximum VSWR			VSWR _{max}						
@ B3 TX port	1710.24 1784.76	MHz		_	1.4	2.0	_	_	
@ ANT port	1710.24 1784.76	MHz		_	1.4	2.0	—	_	
Minimum attenuation	n		α_{min}						
	10 1566	MHz		40	49	_	_	_	dB
	703 960	MHz		44	55	_	_	_	dB
	1226 1250	MHz		43	50	_	—	_	dB
	1496 1511	MHz		40	51	_	—	_	dB
	1559 1586	MHz		43	54	_	_		dB
	1597 1606	MHz		43	57	_	_	_	dB
	1805.24 1879.76	MHz		t.b.d4)	58	_	_	_	dB
	1805.24 1879.76	MHz		45 ⁵⁾	58	_	—	_	dB
	1920 1980	MHz		20	42	_	—	_	dB
	2110 2170	MHz		45	54	_	—	_	dB
	2400 2496	MHz		35	46	—	—	_	dB
	2496 2690	MHz		35	44	—	—	—	dB
	3420 3570	MHz		33	38	—	—	_	dB
	4900 5950	MHz		30	36	—	—	_	dB
	5100 5385	MHz		32	38	_	—	_	dB

1) See Sec. Matching circuit (p. 5).

2) Values in columns min., typ., and max. indicate the development status of the current version.

- 3) Values in column design goal (DGL) indicate the target performance. Valid for temperature $T_{_{\rm SPEC}}$ = -30 °C...+25 °C.
- 4)
- 5) Valid for temperature T_{SPEC} = +25 °C...+85 °C.

6) Over any 5MHz in-band.

Please read Cautions and warnings and Important notes at the end of this document.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

7.2 ANT – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B3 TX terminating impedance	Z _{B3 TX}	= 50 Ω with ser. 1.3 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω
B3 RX terminating impedance	Z _{B3 RX}	= 50 Ω with par. 10 nH ¹⁾

				Development status ²⁾			DG	3 L ³⁾	
Characteristics LTE B3 ANT – R	X			min. for $T_{_{ m SPEC}}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	min.	max.	
Center frequency			f _c	_	_			_	MHz
Maximum insertion atte	nuation		$\alpha_{_{max}}$						
	1805.24 1879.76	MHz		_	3.0	3.5 ⁴⁾	_		dB
	1805.24 1879.76	MHz		_	3.0	4.0	_	_	dB
Amplitude ripple (p-p)			Δα						
	1805.24 1879.76	MHz		_	1.2	t.b.d.	—	_	dB
Maximum VSWR			$VSWR_{max}$						
@ ANT port	1805.24 1879.76	MHz		_	1.6	2.0 ⁴⁾	—	_	
@ B3 RX port	1805.24 1879.76	MHz		_	1.5	2.0	_		
Minimum attenuation			$\alpha_{_{min}}$						
	1.0 1710	MHz		35	47	—	—	_	dB
	95	MHz		50	90	_	_		dB
	718 915	MHz		40	58	—	_		dB
	1447 1463	MHz		40	48	—	_	_	dB
	1615 1690	MHz		40	48	—	—	_	dB
	1710.24 1784.76	MHz		t.b.d	50	—	45	_	dB
	1785 1790	MHz		10	38	—	—	_	dB
	1920 1980	MHz		40	48	—	—	_	dB
	1980 2400	MHz		30	39	—	—	—	dB
	2400 2570	MHz		40	53	—	—	_	dB
	2570 3515	MHz		35	46	—	—	—	dB
	3515 3665	MHz		45	51	—	—	_	dB
	3665 3760	MHz		40	52	—	—	_	dB
	3760 4900	MHz		15	44	—	—	—	dB
	4900 5950	MHz		30	43	—	—	_	dB

1)

See Sec. Matching circuit (p. 5). Values in columns min., typ., and max. indicate the development status of the current version. Values in column design goal (DGL) indicate the target performance. Valid for temperature $T_{\text{SPEC}} = +25 \text{ °C...}+85 \text{ °C.}$ 2)

3)

4)

SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet

7.3 TX – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B3 TX terminating impedance	Z _{B3 TX}	= 50 Ω with ser. 1.3 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω
B3 RX terminating impedance	Z _{b3 rx}	= 50 Ω with par. 10 nH ¹⁾

			Development status ²⁾			DGL ³⁾		
Characteristics LTE B3 TX – RX			min. for $T_{\rm SPEC}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	min.	max.	
Minimum isolation		α _{min}						
	1710.24 1784.76 MH	lz	t.b.d.	56		52	_	dB
	1805.24 1879.76 MH	lz	t.b.d.	59	—	50	_	dB
	2110.34 2169.66 MH	lz	40	62	—	_	_	dE

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Values in columns min., typ., and max. indicate the development status of the current version.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

7.4 Linearity

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
B3 TX terminating impedance	Z _{B3 TX}	= 50 Ω with ser. 1.3 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω
B3 RX terminating impedance	Z _{b3 rx}	= 50 Ω with par. 10 nH ¹⁾

			Devel	Development status ²⁾			DGL ³⁾	
Characteristics LTE B3 Linearity			min. for T _{SPEC}	typ. @+25 °C	max. for T _{SPEC}	min.	max.	
IMD product levels4)								
IMD2								
Blocker 1	95	MHz	_	-124	_	_	_	dBm
Blocker 3	3515 3665	MHz	—	-114	_	_	_	dBm
IMD3								
Blocker 2	1615 1690	MHz	_	-105	_	_	_	dBm
Blocker 4	5225 5450	MHz	_	-116	_	—	_	dBm

1) See Sec. Matching circuit (p. 5).

2) Values in columns min., typ., and max. indicate the development status of the current version.

3)

Values in column design goal (DGL) indicate the target performance. @ $f_{TX} = 1710....1785$ MHz, $f_{RX} = 1805....1880$ MHz, IMD product levels for power levels $P_{TX} = 21$ dBm (ANT port output 4) power) and $P_{blocker} = -15$ dBm (ANT port input power).

M5001

SAW components

SAW multiplexer

Preliminary data sheet

8 **Characteristics cross-isolations**

8.1 LTE B1 TX – LTE B3 RX

Temperature range for specification	T _{SPEC}	= −30 °C +85 °C
B1 TX terminating impedance	Z _{B1 TX}	= 50 Ω with ser. 1.5 nH ¹⁾
B3 RX terminating impedance	Z _{b3 rx}	= 50 Ω with par. 10 nH ¹⁾

	Devel	opment s	tatus ²⁾	DG	3L ³⁾	
Characteristics cross-isolation LTE B1 TX – LTE B3 RX	min. for $T_{_{ m SPEC}}$	typ. @+25 °C	max. for T _{SPEC}	min.	max.	
Minimum cross-isolation amin						
1805.24 1879.76 MHz	50	54	_	—	_	dB
1920 1980 MHz	t.b.d.	55	_	50	_	dB
1920.34 1979.66 MHz	t.b.d.	55	—	50	_	dB

1) See Sec. Matching circuit (p. 5).

Values in columns min., typ., and max. indicate the development status of the current version. Values in column design goal (DGL) indicate the target performance. 2)

3)

SAW components

SAW multiplexer

Preliminary data sheet

8.2 LTE B3 TX – LTE B1 RX

Temperature range for specification

B3 TX terminating impedance B1 RX terminating impedance T_{SPEC} = -30 °C ... +85 °C

 $Z_{\text{B3 TX}}$ = 50 Ω with ser. 1.3 nH¹

 $Z_{\text{B1 RX}}$ = 50 Ω with par. 8.4 nH¹

			Devel	opment s	tatus ²⁾	DG	3L ³⁾	
Characteristics cross-isolation LTE B3 TX – LTE B1 RX		min. for $T_{\rm SPEC}$	typ. @+25 °C	max. for $T_{\rm SPEC}$	min.	max.		
Minimum cross-isolation		$\alpha_{_{min}}$						
1710.24 1784.76	MHz		53	58	—	_	_	dB
2110 2170	MHz		50	57	—	—	_	dB
2110.34 2169.66	MHz		50	57	—	—	_	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Values in columns min., typ., and max. indicate the development status of the current version.

³⁾ Values in column design goal (DGL) indicate the target performance.

M5001

SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet

9 **Maximum ratings**

Operable temperature	<i>T</i> _{OP} = −30 °C +85 °C	
Storage temperature	<i>T</i> _{STG} = -40 °C +85 °C	
DC voltage	$V_{\rm DC} = 0 V (max.)$	
ESD voltage		
	$V_{\rm ESD}^{1}$ = t.b.d V (max.)	Machine model.
	$V_{\text{ESD}}^{2)}$ = t.b.d V (max.)	Human body model.
	$V_{\text{ESD}}^{3)}$ = t.b.d V (max.)	Charged device model.
Input power	P _{IN}	
@ B1 TX port: 1920 1980 MHz	t.b.d dBm	Continuous wave for 5000 h @ 55 °C.
@ B3 TX port: 1710.24 1784.76 MHz	t.b.d dBm	Continuous wave for 5000 h @ 55 °C.

1)

2)

According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse. According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses. 3)

SAW components

SAW multiplexer

M5001

Preliminary data sheet

10 Transmission coefficients LTE B1

10.1 TX - ANT

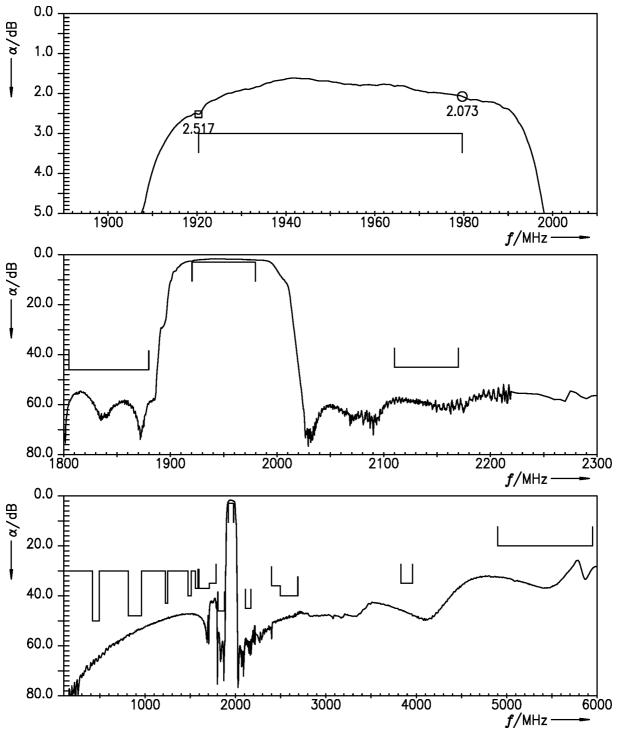


Figure 4: Attenuation LTE B1 TX – ANT.

SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet

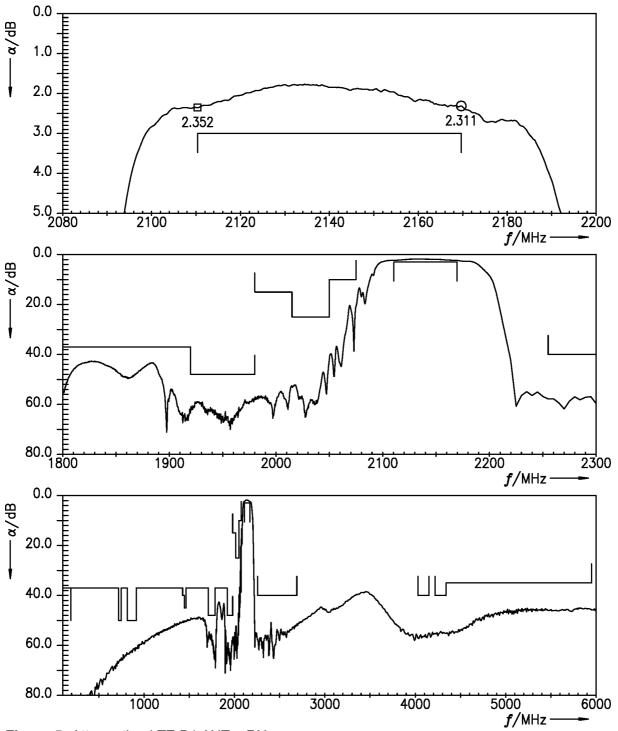
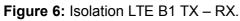


Figure 5: Attenuation LTE B1 ANT – RX.

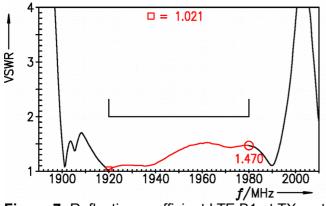



SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet


SAW components

SAW multiplexer

M5001

Preliminary data sheet

11 Reflection coefficients LTE B1

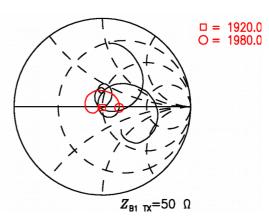


Figure 7: Reflection coefficient LTE B1 at TX port.

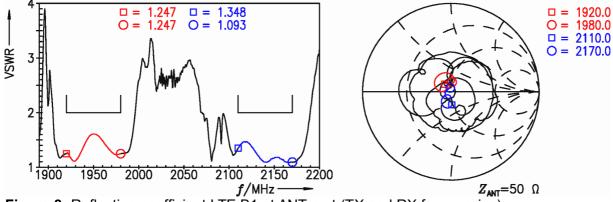
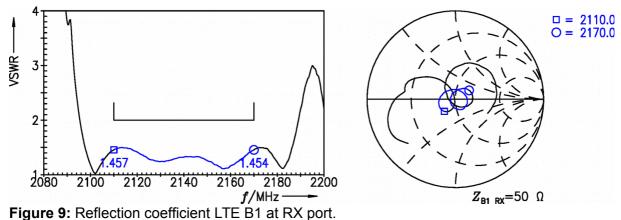



Figure 8: Reflection coefficient LTE B1 at ANT port (TX and RX frequencies).

3

SAW components

SAW multiplexer

M5001

Preliminary data sheet

12 Transmission coefficients LTE B3

12.1 TX – ANT

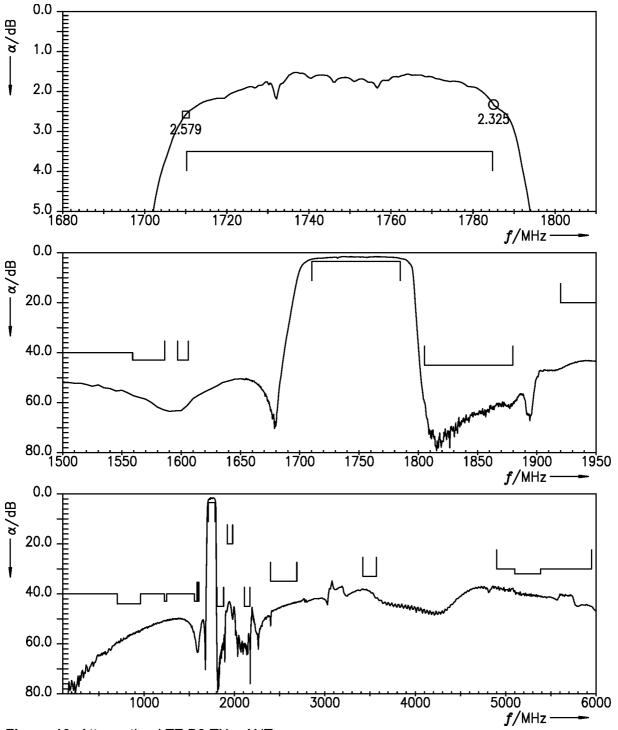


Figure 10: Attenuation LTE B3 TX – ANT.

SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet

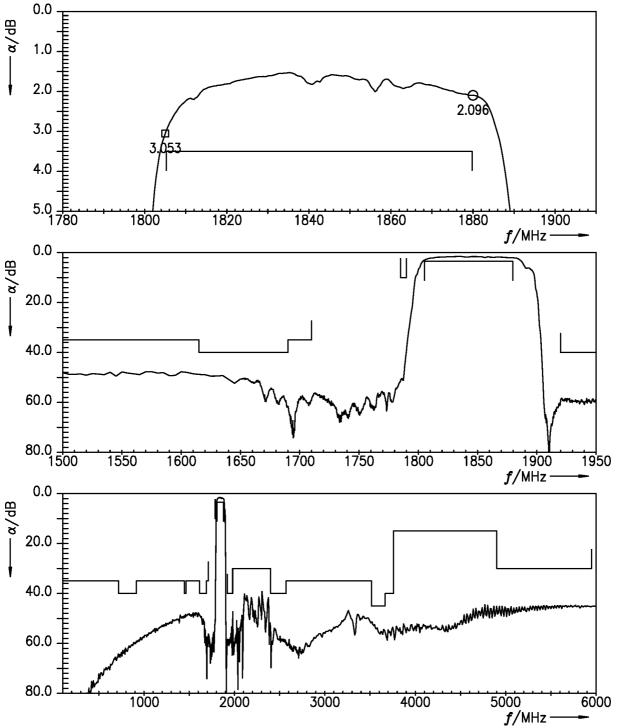
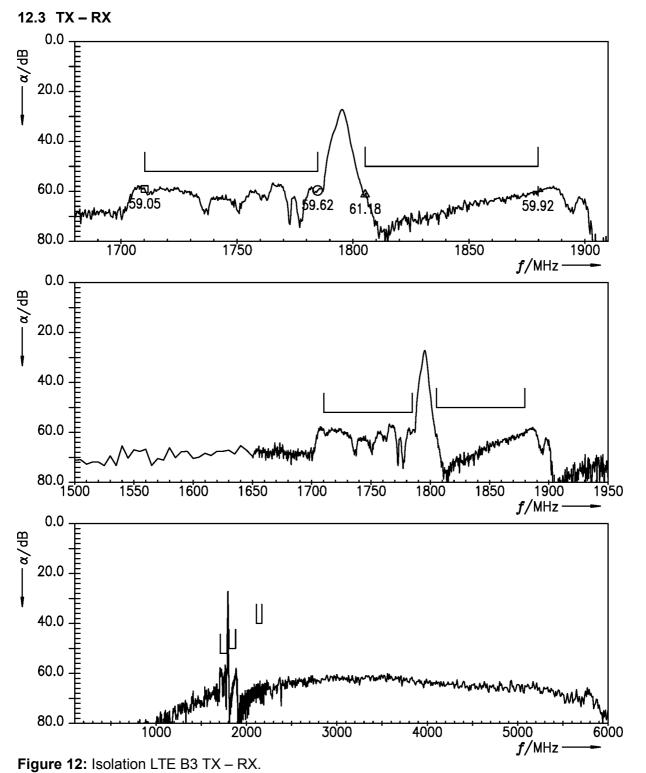


Figure 11: Attenuation LTE B3 ANT – RX.

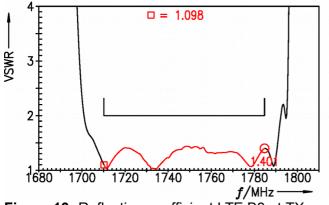


SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet


SAW components

SAW multiplexer

M5001

Preliminary data sheet

13 Reflection coefficients LTE B3

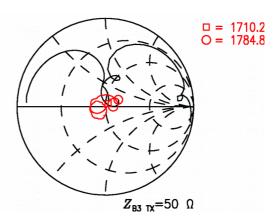


Figure 13: Reflection coefficient LTE B3 at TX port.

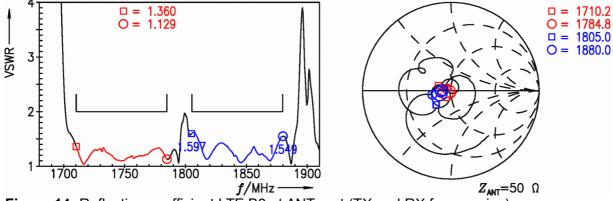


Figure 14: Reflection coefficient LTE B3 at ANT port (TX and RX frequencies).

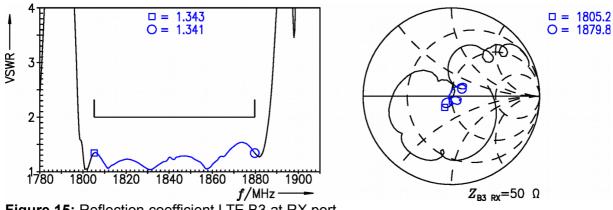


Figure 15: Reflection coefficient LTE B3 at RX port.

SAW components

SAW multiplexer

M5001

Preliminary data sheet

14 Transmission coefficients cross-isolations

14.1 LTE B1 TX - LTE B3 RX

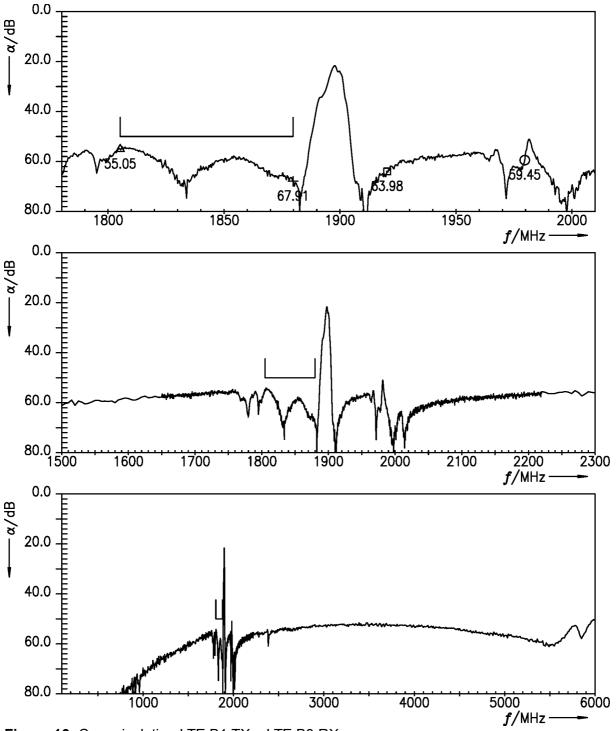


Figure 16: Cross-isolation LTE B1 TX – LTE B3 RX.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

14.2 LTE B3 TX - LTE B1 RX

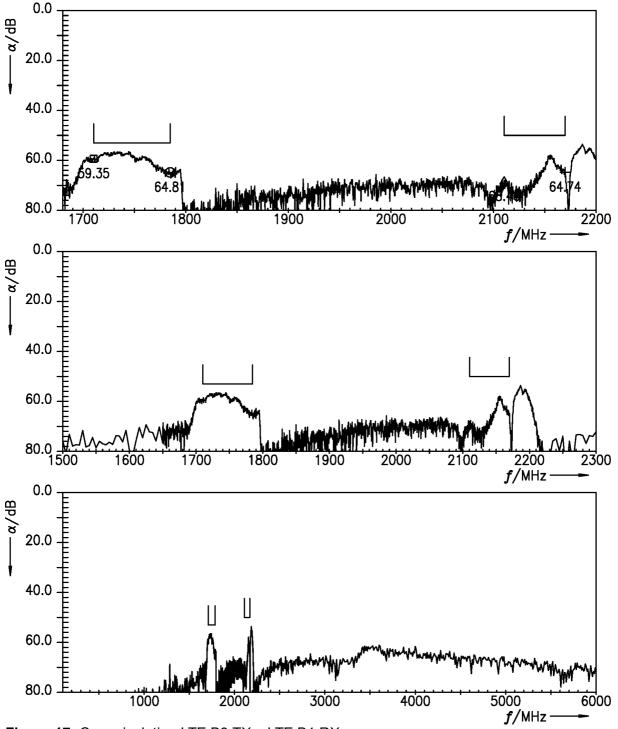
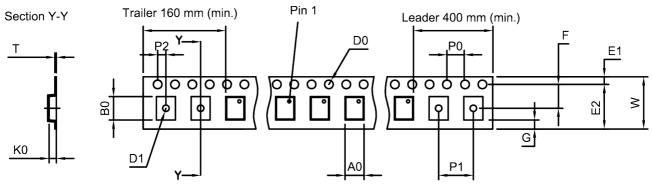


Figure 17: Cross-isolation LTE B3 TX – LTE B1 RX.

⊗TDK

SAW components

SAW multiplexer


M5001

1747.5 / 1842.5 / 1950 / 2140

Preliminary data sheet

15 Packing material

15.1 Tape

User direction of unreeling

Figure 18: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	2.25±0.05 mm
B₀	2.75±0.05 mm
D ₀	1.5+0.1/-0 mm
D ₁	1.0 mm (min.)
E1	1.75±0.1 mm

E2	10.25 mm (min.)
F	5.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.84±0.1 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.3±0.03 mm
W	12.0+0.3/-0.1 mm

Table 1: Tape dimensions.

15.2 Reel with diameter of 180 mm

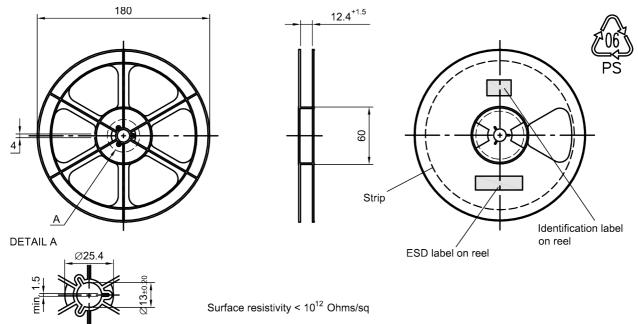


Figure 19: Drawing of reel (first-angle projection) with diameter of 180 mm.

⊗TDK

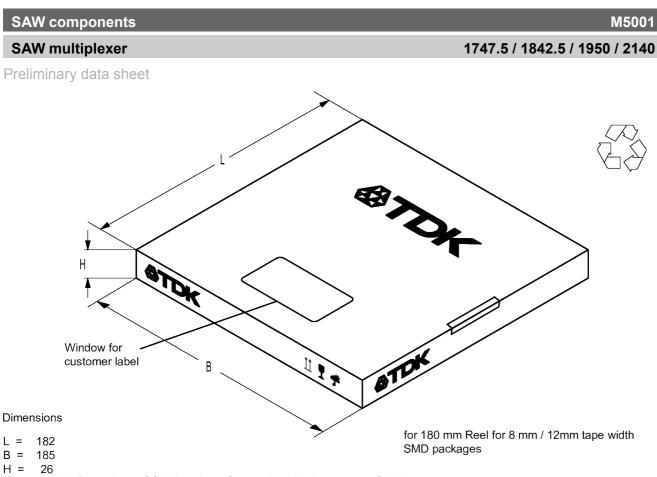
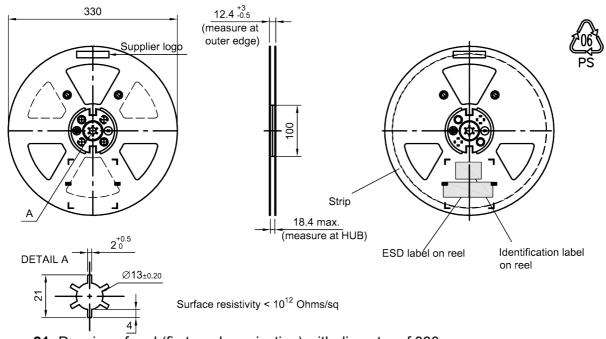




Figure 20: Drawing of folding box for reel with diameter of 180 mm.

15.3 Reel with diameter of 330 mm

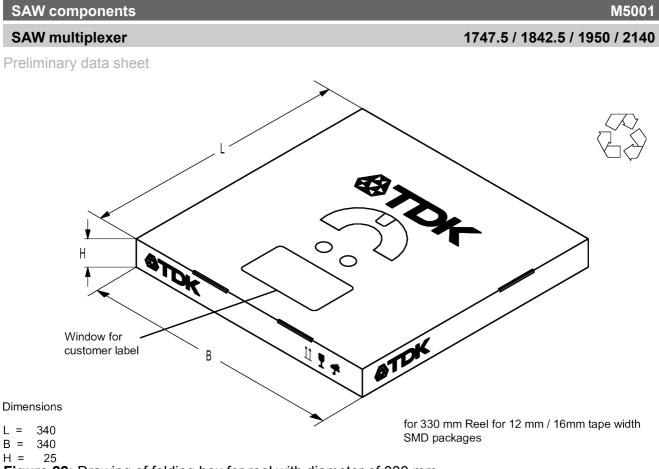
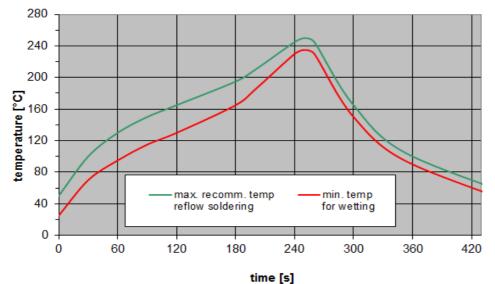


Figure 22: Drawing of folding box for reel with diameter of 330 mm.

SAW multiplexer

M5001

1747.5 / 1842.5 / 1950 / 2140


Preliminary data sheet

16 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T _{peak}	250 °C +0/-5 °C
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads
	l.

 Table 2: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 23: Recommended reflow profile for convection and infrared soldering – lead-free solder.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

17 Annotations

17.1 Matching coils

See TDK inductor pdf-catalog <u>http://www.tdk.co.jp/tefe02/coil.htm#aname1</u> and Data Library for circuit simulation <u>http://www.tdk.co.jp/etvcl/index.htm</u>.

17.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

17.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local EPCOS sales office.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

18 Cautions and warnings

18.1 Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <u>www.epcos.com/orderingcodes</u>.

18.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

18.3 Moldability

Before using in overmolding environment, please contact your local EPCOS sales office.

18.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on EPCOS internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of EPCOS, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

M5001

SAW components

SAW multiplexer

Preliminary data sheet

19 Revision history

Changes compared to previously issued iteration.

Version	Originator	Detailed specification changes	Date
1.0	J. Seow	Preliminary Datasheet.	Jun 02, 2016

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

单击下面可查看定价,库存,交付和生命周期等信息

>>RF360 / Qualcomm