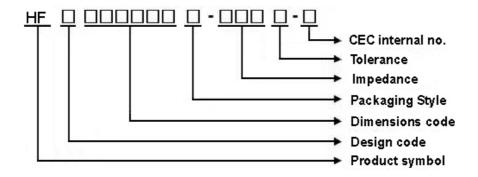


ISO9001 & ISO14001 & TS16949 CHILISIN ELECTRONICS CORP.

Halogen Free & RoHs Compliance

SPECIFICATION FOR APPROVAL


Customer:		
Customer P/N:		
Drawing No :		_
Quantity:	0 Pcs. Date:	2014/08/05
Chilisin P/N:	HFY160808T-	601Y-NP
	SPECIFICATION ACCEPTED BY:	
COMPONENT		
ENGINEER		
ELECTRICAL		
ENGINEER		
MECHANICAL		
ENGINEER		
APPROVED		
REJECTED		
奇力新電子股份有限公司 Chilisin Electronic sCorp No. 29, Alley 301, Tehhsin Rd. Hukou,Hsinchu 303, Taiwan TEL: +886-3-599-2646 FAX: +886-3-599-9176 E-mail: sales@chilisin.com.tw http://www.chilisin.com.tw	Chilisin Electronics (No. 78, Puxing Rd., Area, Qingxi Town, I Guangdong,China TEL: +86-769-8773	Dongguan) Co., Ltd. Yuliangwei Administration Dongguan City, -0251~3 3-0232
奇力新電子(河南)有限公 Chilisin Electronics (Henan) Co XiuWu Xian, industry gathering JiaoZuo, Henan China Postal Code:454350 TEL:+86-391-717-0682 FAX:+86-391-717-0666	o., Ltd.	Suzhou) Co., Ltd. Rd., Suzhou New District,
Drawn by 陳瑞揚 ryan.chen	Checked by 張 麗玲 II.chang	Approved by 陳瑞揚 ryan.chen

YG14800236

CHILISIN FLECTRONICS CORP.

HFY160808T Series Specification

- 1 Scope: This specification applies to MULTILAYER FERRITE CHIP BEADS
- 2 Part Numbering:

3 Rating:

Operating Temperature: $-5.5 \,^{\circ}\text{C} \sim 1.2.5 \,^{\circ}\text{C}$ (Including self - temperature rise)

Storage Temperature: $-5.5 \,^{\circ}\text{C} \sim 1.2.5 \,^{\circ}\text{C}$ (after PCB)

 $-5\,^{\circ}\text{C} \sim 4\,\,0\,^{\circ}\text{C}$, Humidity $4\,\,0\,\% \sim 7\,\,0\,\%$ (before PCB)

4 Marking:

No Marking

5 Standard Testing Condition


	Unless otherwise specified	In case of doubt
Temperature	Ordinary Temperature(15 to 35℃)	20±2 ℃
Humidity	Ordinary Humidity(25 to 85% RH)	60 to 70 % RH

ISO9001 & ISO14001 & TS16949 CHILISIN ELECTRONICS CORP.

HFY160808T Series Specification

6 Configuration and Dimensions:

 Dimensions in mm

 TYPE
 HF160808

 A
 1.6±0.20

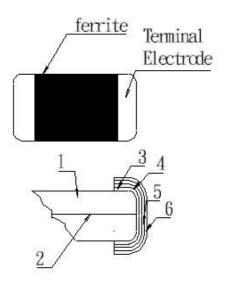
 B
 0.8±0.15

 C
 0.8±0.15

 D
 0.3±0.20

7 Electrical Characteristics:

Part No.	Impedance (Ω)±25%	Impedance (Ω)±40%	Test Freq. (MHZ)	RDC (Ω)Max.	Rated Current (mA)Max.
HFY160808T-331Y-NP	330	450	100/1000	0.21	500
HFY160808T-391Y-NP	390	520	100/1000	0.3	500
HFY160808T-471Y-NP	470	600	100/1000	0.21	500
HFY160808T-601Y-NP	600	700	100/1000	0.35	500
HFY160808T-102Y-NP	1000	1000	100/1000	0.5	450

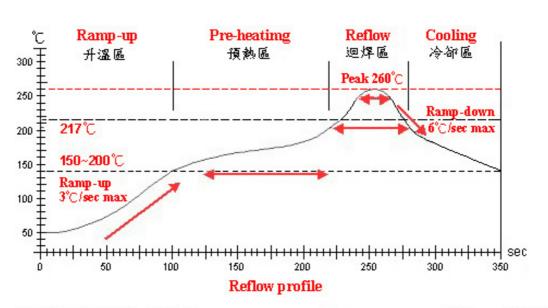

NOTE: tolerance Y=±25%

^{1.}Operating temperature range $-5\ 5\ ^{\circ}\text{C} \sim 1\ 2\ 5\ ^{\circ}\text{C}$ (Including self - temperature rise)

^{3.}Impedance Test OSC @200mV

[&]quot;-N" FOR COMPLETELY LEAD FREE TYPE(INCLUDING FERRITE BODY & SOLDER)

8 HFY160808T Series 8.1 Construction:


8.2 Material List:

NO	PART	MATERIAL
1	Ferrite Substance	NiO-CuO-ZnO-Ferrite
2	Silver electrode	Ag
3	Silver electrode	Ag
4	Cu plating	Cu
5	Ni plating	Ni
6	Sn plating	Sn

9 Reliability Of Ferrite Multilayer Chip Bead 1-1.Mechanical Performance

No	ltem	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260±5℃
		with solder.	Immersion Time: 10±1sec
		Impedance : within ±30% of	
		initial value	
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150°C, 1min
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		solder coating	Solder Temperature: 245±5°C(Pb-Free)
			Immersion Time: 4±1sec
1-1-5	Terminal Strength Test	No split termination	Test device shall be soldered on the substrate,
		Chip	then apply a force in the direction of the arrow.
		F F	Force : 5N
			Keeping Time: 10±1sec
		Mounting Pad	

No	Item	Specification		Test Method	•		
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:				
		Impedance: within±30% of	Step	Temperature (°ℂ)	Time (min)		
		initial value	1	-55±3	30		
			2	25±2	3		
			3	125±3	30		
			4	25±2	3		
			Total: 100c	ycles			
			Measured a	after exposure in the room co	ndition for 24hrs		
1-2-2	Humidity Resistance		Temperatu	re: 40±2℃			
			Relative Hu	umidity: 90 ~ 95% / Time: 100	0hrs		
			Measured a	after exposure in the room co	ndition for 24hrs		
1-2-3	High		Temperatu	re: 125±3°€ / Relative Humidi	ty: 0%		
	Temperature Resistance		Applied Cu	rrent: Rated Current /Time: 10	000hrs		
			Measured a	after exposure in the room co	ndition for 24hrs		
1-2-4	Low		Temperature: -55±3°C				
	Temperature Resistance		Relative Humidity: 0% / Time: 1000hrs				
			Measured after exposure in the room condition for 24hrs				

Lead-Free(LF) 標準溫度分析範圍

Refer to J-STD-020C

管制項目 Item.	升溫區 Ramp-up	預熱區 Pre-heatimg	迴焊區 Reflow	Peak Temp	冷卻區 Cooling
温度範圍 Temp.scope	R.T. ~150°C	150℃ ~ 200℃	217 ℃	260±5°C	Peak Temp. ~ 150°C
標準時間 Time spec.	_	60 ~ 180 sec	60 ~ 150 sec	20 ~ 40 sec	-
實際時間 Time result	_	75 ~ 100 sec	90 ~ 120 sec	20 ~ 35 sec	/

NOTE:

- 1. Re-flow possible times: within 2 times
- 2. Nitrogen adopted is recommended while in re-flow

ISO9001 & ISO14001 & TS16949 CHILISIN ELECTRONICS CORP.

HFY160808T Series Specification

10 Test Data for Pre-production Samples

N: HFY1	60808T	-601Y-N	P							
Z (Ω)	Z (Ω)	RDC (Ω)	A m/m	B m/m	C m/m	D m/m				
600±25%										
<u> </u>	700±40%	0.35+0	1.6±0.2	0.8±0.15	0.8±0.15	0.3±0.20				
200mV 100MHz	200mV 1000MHz									
532	758	0.226	1.63	0.89	0.9	0.35				
548	776	0.219	1.65	0.89	0.87	0.34				
568	807	0.234	1.66	0.87	0.88	0.38				
505	688	0.23	1.64	0.83	0.89	0.32				
569	809	0.234	1.64	0.85	0.85	0.34		Ţ	Ţ	
553	787	0.229	1.65	0.87	0.89	0.34				
553	785	0.234	1.65	0.89	0.84	0.35			T	
551	785	0.231	1.66	0.86	0.86	0.32		Ţ	Ţ	
519	736	0.231	1.63	0.85	0.85	0.34				
562	800	0.235	1.65	0.84	0.88	0.35			<u> </u>	
									<u> </u>	
!				!						
		_ 							T	
		<u></u>		<u> </u>						
546	773.1	0.2303	1.646	0.864	0.871	0.343				
64	121	0.016	0.03	0.06	0.06	0.06				
<u> </u>				<u> </u>						
<u> </u>				!						
	Z (Ω) 600±25% 200mV 100MHz 532 548 568 505 569 553 551 519 562	Z (Ω) Z (Ω) 600±25% 700±40% 200mV 100MHz 200mV 1000MHz 532 758 548 776 568 807 505 688 569 809 553 787 553 785 551 785 519 736 562 800 546 773.1	Z (Ω) Z (Ω) RDC (Ω) 600±25% 700±40% 0.35+0 200mV 100MHz 200mV 1000MHz 0.226 548 776 0.219 568 807 0.234 505 688 0.23 569 809 0.234 553 787 0.229 553 785 0.231 519 736 0.231 562 800 0.235 546 773.1 0.2303	(Ω) (Ω) (Ω) m/m 600±25% 700±40% 0.35+0 1.6±0.2 200mV 100MHz 200mV 1000MHz 1.65 532 758 0.226 1.63 548 776 0.219 1.65 568 807 0.234 1.66 505 688 0.23 1.64 559 809 0.234 1.64 553 787 0.229 1.65 551 785 0.234 1.66 519 736 0.231 1.63 562 800 0.235 1.65 546 773.1 0.2303 1.646	Z (Ω) Z (Ω) RDC (Ω) A m/m B m/m 600±25% 700±40% 0.35+0 1.6±0.2 0.8±0.15 200mV 100MHz 200mV 1000MHz 1.6±0.2 0.8±0.15 532 758 0.226 1.63 0.89 548 776 0.219 1.65 0.89 568 807 0.234 1.66 0.87 505 688 0.23 1.64 0.83 569 809 0.234 1.64 0.85 553 787 0.229 1.65 0.89 551 785 0.231 1.66 0.86 519 736 0.231 1.63 0.85 562 800 0.235 1.65 0.84 546 773.1 0.2303 1.646 0.864	Z (Ω) Z (Ω) RDC (Ω) A m/m B m/m C m/m 600±25% 700±40% 0.35+0 1.6±0.2 0.8±0.15 0.8±0.15 200mV 100MHz 200mV 1000MHz 1.63 0.89 0.9 548 776 0.219 1.65 0.89 0.87 568 807 0.234 1.66 0.87 0.88 505 688 0.23 1.64 0.83 0.89 569 809 0.234 1.64 0.85 0.85 553 787 0.229 1.65 0.89 0.84 551 785 0.231 1.66 0.86 0.86 519 736 0.231 1.63 0.85 0.85 562 800 0.235 1.65 0.84 0.88 546 773.1 0.2303 1.646 0.864 0.871	Z (Ω) Z (Ω) RDC (Ω) A m/m B m/m C m/m D m/m 600±25% 700±40% 0.35+0 1.6±0.2 0.8±0.15 0.8±0.15 0.3±0.20 200mV 100MHz 200mV 1000MHz 1.63 0.89 0.9 0.35 548 776 0.219 1.65 0.89 0.87 0.34 568 807 0.234 1.66 0.87 0.88 0.38 505 688 0.23 1.64 0.83 0.89 0.32 569 809 0.234 1.64 0.85 0.85 0.34 553 787 0.229 1.65 0.89 0.84 0.35 551 785 0.231 1.66 0.86 0.86 0.32 519 736 0.231 1.63 0.85 0.85 0.34 562 800 0.235 1.65 0.84 0.88 0.35 546 773.1 0.2303 1.646 0.864	Z (Ω) Z (Ω) RDC (Ω) A m/m B m/m C m/m D m/m 600±25% 700±40% 0.35+0 1.6±0.2 0.8±0.15 0.8±0.15 0.3±0.20 200mV 100MHz 200mV 1000MHz 1.63 0.89 0.9 0.35 548 776 0.219 1.65 0.89 0.87 0.34 568 807 0.234 1.66 0.87 0.88 0.38 505 688 0.23 1.64 0.83 0.89 0.32 569 809 0.234 1.64 0.85 0.85 0.34 553 787 0.229 1.65 0.87 0.89 0.34 553 785 0.234 1.65 0.89 0.84 0.35 551 785 0.231 1.66 0.86 0.86 0.32 519 736 0.231 1.63 0.85 0.85 0.34 562 800 0.235 1.65 0.84	Z (Ω) Z (Ω) RDC (Ω) A m/m B m/m C m/m D m/m 600±25% 700±40% 0.35+0 1.6±0.2 0.8±0.15 0.8±0.15 0.3±0.20 200mV 100MHz 200mV 1000MHz 1.63 0.89 0.9 0.35 548 776 0.219 1.65 0.89 0.87 0.34 568 807 0.234 1.66 0.87 0.88 0.38 505 688 0.23 1.64 0.83 0.89 0.32 569 809 0.234 1.64 0.85 0.85 0.34 553 787 0.229 1.65 0.87 0.89 0.34 551 785 0.234 1.66 0.86 0.86 0.32 519 736 0.231 1.66 0.86 0.86 0.32 519 736 0.231 1.65 0.84 0.88 0.35 562 800 0.235 1.65 0.84	Z (Ω) Z (Ω) RDC (Ω) A m/m B m/m C m/m D m/m 600±25% 700±40% 0.35+0 1.6±0.2 0.8±0.15 0.8±0.15 0.3±0.20 200mV 100MHz 200mV 1000MHz 1.65 0.89 0.9 0.35 548 776 0.219 1.65 0.89 0.87 0.34 568 807 0.234 1.66 0.87 0.88 0.38 505 688 0.23 1.64 0.83 0.89 0.32 569 809 0.234 1.64 0.85 0.85 0.34 553 787 0.229 1.65 0.87 0.89 0.34 553 785 0.234 1.65 0.89 0.84 0.35 551 785 0.231 1.66 0.86 0.86 0.32 519 736 0.231 1.63 0.85 0.85 0.34 562 800 0.235 1.65 0.84

Test Instrument

HP4291A RF IMPEDANCE / MATERIAL ANALYZER FOR Z CHEN HWA 502BC / HP4338B FOR RDC

Apperance and Dimensions:

SPEC: Refer to Item 6

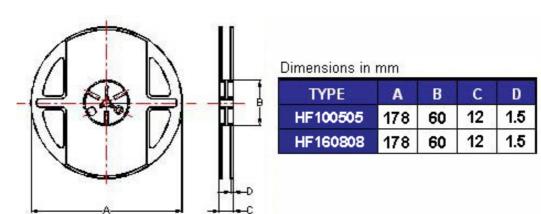
Test Method: Visual Inspection and Measured with Slide Calipers.

Test Conditions:

	Unless Otherwise Specified	In Case of Doubt
Temperature	Ordinary Temperature (15 to 35°C)	20 ± 2 ℃
Humidity	Ordinary Humidity (25 to 85 %RH)	60 to 70 %RH

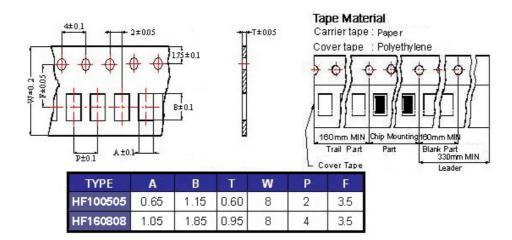
11 Packaging:

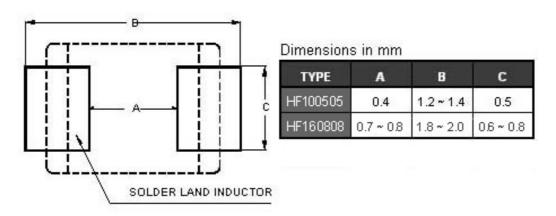
11.1 Packaging -Cover Tape


The force for tearing off cover tape is 10 to 100 grams in the arrow direction.

11.2 Packaging Quantity

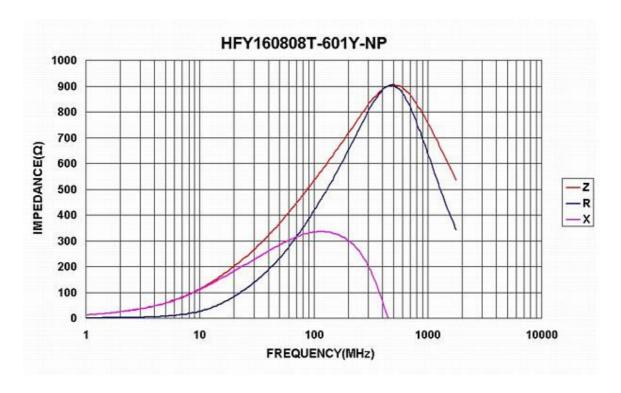
TYPE	BULK	PCS/REEL
HF100505	✓	10000
HF160808	✓	4000


11.3 Reel Dimensions



11 Packaging:

11.4 Tape Dimensions in mm


12 Recommended Land Pattern:

13 Note:

- 1. Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Do not knock nor drop.
- 3. All the items and parameters in this product specification have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment agreed upon between you and us. You are requested not to use our product deviating from such agreement.
- 4. Please keep the distance between transformer/coil and other components (refer to the standard IEC 950)

14 Graph:

A SB/PB/GB/NB/UPB/BAY/BAQ Reliability Of Ferrite Multilayer Chip Bead

В СІН Reliability Of Ceramic Multilayer Chip Inductor For High Freq.

C CL Reliability Of Ferrite Multilayer Chip Inductor

B SBH Reliability Of Ceramicr Multilayer Chip Bead

E NLC Reliability Of Ferrite Wire Wound Chip Inductor For High Current

F TFL Reliability Of Thin Filmr Chip Inductor For High Freq.
G Other Reliability Of Ferrite Wire Wound Power Inductor

H CMM Common Mode Choke / RELIABILITY TEST

A For SB/PB/GB/NB/UPB/BAY/B#11 開始 每一頁 46

1-1.Mechanical Performance

No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260±5℃
		with solder.	Immersion Time: 10±1sec
		Impedance : within ±30% of	
		initial value	
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150℃, 1min
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		solder coating	Solder Temperature: 245±5°C (Pb-Free)
			Immersion Time: 4±1sec
1-1-5	Terminal Strength Test	No split termination	Test device shall be soldered on the substrate,
		Chip	then apply a force in the direction of the arrow.
		F F	Force : 5N
			Keeping Time: 10±1sec
		Mounting Pad	

1-2.Environmental Performance

No	Item	Specification		Test Method	
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:		
		Impedance: within±30% of	Step	Temperature (°C)	Time (min)
		initial value	1	-55±3	30
			2	25±2	3
			3	125±3	30
			4	25±2	3
			Total: 100c	cycles	
			Measured a	after exposure in the room condi	tion for 24hrs
1-2-2	Humidity Resistance		Temperatu	re: 40±2°C	
			Relative Hu	umidity: 90 ~ 95% / Time: 1000h	rs
			Measured a	after exposure in the room condi	tion for 24hrs
1-2-3	High		Temperatu	re: 125±3°C / Relative Humidity:	0%
	Temperature Resistance		Applied Cu	rrent: Rated Current /Time: 1000)hrs
			Measured a	after exposure in the room condi	tion for 24hrs
1-2-4	Low		Temperatu	re: -55±3℃	
	Temperature Resistance		Relative Hu	umidity: 0% / Time: 1000hrs	

B For CLCN

1-1.Mechanical Performance

No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat		Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260±5°C
		with solder.	Immersion Time: 10±1sec
		Inductance: within ±15% of	
		initial value	
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150℃, 1min
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		solder coating	Solder Temperature: 245±5°C (Pb-Free)
			Immersion Time: 4±1sec

1-2 Environmental Performance

No	Item	Specification		Test Method	
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:		
		Inductance:within±10% of	Step	Temperature (°C)	Time (min)
		initial value	1	-40±3	30
			2	25±2	3
			3	85±3	30
			4	25±2	3
			Total: 100c	cycles	
			Measured	after exposure in the room cor	ndition for 24hrs
1-2-2	Humidity Resistance	7	Temperature: 40±2°C		
			Relative Hu	umidity: 90 ~ 95% / Time: 100	0hrs
			Measured	after exposure in the room cor	ndition for 24hrs
1-2-3	High	7	Temperatu	re: 85±3℃	
	Temperature Resistance		Relative Hu	umidity: 20%	
			Applied Cu	rrent: Rated Current / Time: 1	000hrs
			Measured	after exposure in the room cor	ndition for 24hrs
1-2-4	Low	7	Temperatu	re: -40±3℃	
	Temperature Resistance		Relative Hu	umidity: 0% / Time: 1000hrs	
			Measured a	after exposure in the room cor	ndition for 24hrs

C For CLP

1-1.Mechanical Performance

	iconamour i cironnanoc		
No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec

1-1-3	2 Vibration		*For 100505, substrate dimension is 100x40x0.8mm Test device shall be soldered on the substrate Oscillation Frequency: 10 to 55 to 10Hz for 1min Amplitude: 1.5mm Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-4	Resistance to Soldering Heat	More than 75% of the terminal	Pre-heating: 150°C, 1min Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free) Solder Temperature: 260±5°C Immersion Time: 10±1sec
1-1	Solder ability	The electrodes shall be at least 95% covered with new solder coating	Pre-heating: 150°C, 1min Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free) Solder Temperature: 245±5°C (Pb-Free) Immersion Time: 4±1sec

1-2.Environmental Performance

No	Item	Specification		Test Method	
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:		
		Inductance:within±10% of	Step	Temperature (°C)	Time (min)
		initial value	1	-40±3	30
			2	25±2	3
			3	105±3	30
			4	25±2	3
			Total: 100c	cycles	
			Measured	after exposure in the room cor	dition for 24hrs
1-2-2	Humidity Resistance		Temperature: 40±2°C		
			Relative Hu	umidity: 90 ~ 95% / Time: 1000)hrs
			Measured	after exposure in the room cor	dition for 24hrs
1-2-3	High		Temperatu	ıre: 85±3℃	
	Temperature Resistance		Relative Hu	umidity: 20%	
			Applied Cu	urrent: Rated Current / Time: 10	000hrs
			Measured	after exposure in the room cor	dition for 24hrs
1-2-4	Low		Temperatu	ıre: -40±3°C	
	Temperature Resistance		Relative H	umidity: 0% / Time: 1000hrs	
			Measured	after exposure in the room cor	dition for 24hrs

D For CL

1-1.Mechanical Performance

No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260 \pm 5 $^{\circ}$ C
		with solder.	Immersion Time: 10±1sec
		Inductance: within ±15% of	

		initial value Q: within ±30% of initial value Inductance: within ±20% of initial value	
1-1-4	Solder ability	least 95% covered with new	Pre-heating: 150°C, 1min Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free) Solder Temperature: 245±5°C (Pb-Free) Immersion Time: 4±1sec

1-2.Environmental Performance

No	Item	Specification	Test Method			
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:			
		Inductance:within±10% of	Step	Temperature (°C)	Time (min)	
		initial value	1	-40±3	30	
		Q change:within±30% of	2	25±2	3	
		initial value	3	125±3	30	
			4	25±2	3	
			Total: 10	00cycles		
			Measure	ed after exposure in the room conditi	on for 24hrs	
1-2-2	Humidity Resistance		Temperature: 40±2°C			
			Relative Humidity: 90 ~ 95% / Time: 1000hrs			
			Measure	ed after exposure in the room conditi	on for 24hrs	
1-2-3	High		Temperature: 85±3°C			
	Temperature Resistance		Relative	Humidity: 20%		
			Applied (Current: Rated Current / Time: 1000	hrs	
			Measure	ed after exposure in the room conditi	on for 24hrs	
1-2-4	Low		Tempera	ature: -40±3°C		
	Temperature Resistance		Relative	Humidity: 0% / Time: 1000hrs		
			Measure	ed after exposure in the room conditi	on for 24hrs	

E For CL100505

1-1.Mechanical Performance

No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260±5℃
		with solder.	Immersion Time: 10±1sec
		Inductance: within ±20% of	
		initial value	
		Q: within ±30% of initial value	
		Inductance: within ±20% of	
		initial value	
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150℃, 1min
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		solder coating	Solder Temperature: 245±5°C (Pb-Free)
			Immersion Time: 4±1sec

1-2. Environmental Performance

No	Item	Specification		Test Method	
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:		
		Inductance:within±20% of	Step	Temperature (°C)	Time (min)
		initial value	1	-40±3	30
		Q change:within±30% of	2	25±2	3
		initial value	3	125±3	30
			4	25±2	3
			Total: 100c	cycles	_
			Measured	after exposure in the room cond	ition for 24hrs
1-2-2	Humidity Resistance		Temperature: 40±2°C		
			Relative Hu	umidity: 90 ~ 95% / Time: 1000h	rs
			Measured	after exposure in the room cond	ition for 24hrs
1-2-3	High		Temperature: 85±3°C		
	Temperature Resistance		Relative Hu	umidity: 20%	
			Applied Cu	rrent: Rated Current / Time: 100	00hrs
			Measured	after exposure in the room cond	ition for 24hrs
1-2-4	Low		Temperatu	re: -40±3℃	
	Temperature Resistance		Relative Hu	umidity: 0% / Time: 1000hrs	
			Measured	after exposure in the room cond	ition for 24hrs

F For BEAD0603

1-1.Mechanical Performance

No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260±5℃
		with solder.	Immersion Time: 10±1sec
		Impedance : within ±30% of	
		initial value	
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150℃, 1min
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		solder coating	Solder Temperature: 245±5°C (Pb-Free)
			Immersion Time: 4±1sec
1-1-5	Terminal Strength Test	No split termination	Test device shall be soldered on the substrate,
		Chip	then apply a force in the direction of the arrow.
		F	Force : 2N
			Keeping Time: 10±1sec
		Mounting Pad	

1-2.Environmental Performance

No	Item	Specification		Test Method	
1-2-1	Temperature Cycle	Appearance: No damage	One cy	ycle:	
		Impedance: within±30% of	Step	Temperature (°C)	Time (min)
		initial value	1	-55±3	30
			2	25±2	3
			3	125±3	30
			4	25±2	3

	Total: 100cycles
	Measured after exposure in the room condition for 24hrs
1-2-2 Humidity Resistance	Temperature: 40±2°C
	Relative Humidity: 90 ~ 95% / Time: 1000hrs
	Measured after exposure in the room condition for 24hrs
1-2-3 High	Temperature: 125±3°C / Relative Humidity: 0%
Temperature Resistance	Applied Current: Rated Current /Time: 1000hrs
	Measured after exposure in the room condition for 24hrs
1-2-4 Low	Temperature: -55±3°C
Temperature Resistance	Relative Humidity: 0% / Time: 1000hrs
	Measured after exposure in the room condition for 24hrs

G For CP

1-1.Mechanical Performance

No	Item	Specification	Test Method
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate
		conditions must not damage	Substrate Dimension: 100x40x1.6mm
		the terminal electrode and the	Deflection: 2.0mm
		ferrite	Keeping Time: 30sec
			*For 100505, substrate dimension is 100x40x0.8mm
1-1-2	Vibration		Test device shall be soldered on the substrate
			Oscillation Frequency: 10 to 55 to 10Hz for 1min
			Amplitude: 1.5mm
			Time: 2hrs for each axis (X, Y & Z), total 6hrs
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min
		More than 75% of the terminal	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		electrode should be covered	Solder Temperature: 260±5°C
		with solder.	Immersion Time: 10±1sec
		Inductance: within ±20% of	
		initial value	
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150℃, 1min
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)
		solder coating	Solder Temperature: 245±5°C (Pb-Free)
			Immersion Time: 4±1sec

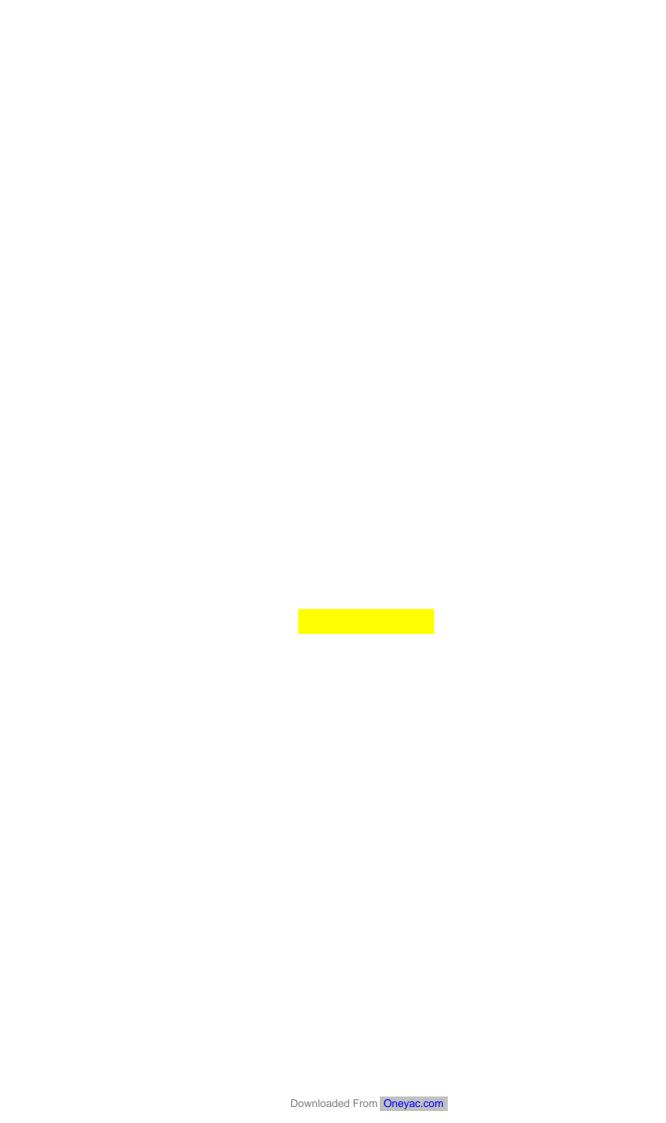
1-2.Environmental Performance

No	Item	Specification	Test Method		
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:		
		Inductance:within±20% of	Step	Temperature (°ℂ)	Time (min)
		initial value	1	-40±3	30
			2	25±2	3
			3	105±3	30
			4	25±2	3
			Total: 100cycles		
			Measured after exposure in the room condition for 24hrs		
1-2-2	Humidity Resistance		Temperature: 40±2°C		
			Relative Humidity: 90 ~ 95% / Time: 1000hrs		
			Measured after exposure in the room condition for 24hrs		
1-2-3	High		Temperature: 85±3°C		
	Temperature Resistance		Relative Humidity: 20%		
			Applied Current: Rated Current / Time: 1000hrs		
			Measured after exposure in the room condition for 24hrs		
1-2-4	Low		Temperature: -40±3°C		
	Temperature Resistance		Relative Humidity: 0% / Time: 1000hrs		
			Measured after exposure in the room condition for 24hrs		

H For CLH

1-1.Mechanical Performance

No	Item	Specification	Test Method		
1-1-1	Flexure Strength	The forces applied on the right	Test device shall be soldered on the substrate		
		conditions must not damage	Substrate Dimension: 100x40x1.6mm		
		the terminal electrode and the	Deflection: 2.0mm		
		ferrite	Keeping Time: 30sec		
			*For 100505, substrate dimension is 100x40x0.8mm		
1-1-2	Vibration		Test device shall be soldered on the substrate		
			Oscillation Frequency: 10 to 55 to 10Hz for 1min		
			Amplitude: 1.5mm		
			Time: 2hrs for each axis (X, Y & Z), total 6hrs		
1-1-3	Resistance to Soldering Heat	Appearance: No damage	Pre-heating: 150℃, 1min		
			Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)		
			Solder Temperature: 260±5℃		
			Immersion Time: 10±1sec		
1-1-4	Solder ability	The electrodes shall be at	Pre-heating: 150℃, 1min		
		least 95% covered with new	Solder Composition: Sn/Ag3.0/Cu0.5(Pb-Free)		
		solder coating	Solder Temperature: 245±5°C (Pb-Free)		
			Immersion Time: 4±1sec		


1-2. Environmental Performance

No	Item	Specification	Test Method		
1-2-1	Temperature Cycle	Appearance: No damage	One cycle:		
		Inductance:within±10% of	Step	Temperature (°C)	Time (min)
		initial value	1	-55±3	30
		Q change:within±30% of	2	25±2	3
		initial value	3	125±3	30
			4	25±2	3
			Total: 100cycles		
			Measured after exposure in the room condition for 24hrs		
1-2-2	Humidity Resistance		Temperature: $40\pm2^{\circ}$ C Relative Humidity: $90 \sim 95\%$ Time: 1000 hrs Measured after exposure in the room condition for 24hrs		
1-2-3	High		Temperature: 125±3℃		
	Temperature Resistance		Relative Humidity: 20%		
			Applied Current: Rated Current / Time: 1000hrs		
			Measured after exposure in the room condition for 24hrs		
1-2-4	Low		Temperature: -55±3°C		
	Temperature Resistance		Relative Humidity: 0% / Time: 1000hrs		
			Measured after exposure in the room condition for 24hrs		

DATA END

单击下面可查看定价,库存,交付和生命周期等信息

>>CHILISIN(奇力新)