General Purpose Transistor

PNP Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SC-70/SOT-323 package which is designed for low power surface mount applications.

Features

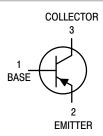
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-60	Vdc
Collector - Base Voltage	V _{CBO}	-60	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	I _C	-600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C	P _D	150	mW
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

www.onsemi.com

SC-70/SOT-323 CASE 419-04 STYLE 3

MARKING DIAGRAM

20 = Specific Device Code

M = Date Code

■ = Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2907AWT1G	SC-70 (Pb-Free)	3000 Tape & Reel
NSVMMBT2907AWT1G	SC-70 (Pb-Free)	3000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Charac	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS				•	
Collector – Emitter Breakdown Voltage (Note 2) (I _C = –10 mAdc, I _B = 0)		V _{(BR)CEO}	-60	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -10 \text{ mAdc}, I_E = 0)$		V _{(BR)CBO}	-60	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = -10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	-5.0	_	Vdc
Base Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -0.5 Vdc)		I _{BL}	_	-50	nAdc
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -0.5 Vdc)	I _{CEX}	_	-50	nAdc	
ON CHARACTERISTICS(3)		•			
DC Current Gain (Note 2) $ \begin{aligned} &(I_C = -0.1 \text{ mAdc, } V_{CE} = -10 \text{ Vdc)} \\ &(I_C = -1.0 \text{ mAdc, } V_{CE} = -10 \text{ Vdc)} \\ &(I_C = -10 \text{ mAdc, } V_{CE} = -10 \text{ Vdc)} \\ &(I_C = -150 \text{ mAdc, } V_{CE} = -10 \text{ Vdc)} \\ &(I_C = -500 \text{ mAdc, } V_{CE} = -10 \text{ Vdc)} \end{aligned} $		H _{FE}	75 100 100 100 50	- - - 340 -	-
Collector – Emitter Saturation Voltage (Note : $(I_C = -150 \text{ mAdc}, I_B = -15 \text{ mAdc})$ ($I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc})$	2)	V _{CE(sat)}	- -	-0.4 -1.6	Vdc
Base – Emitter Saturation Voltage (Note 2) (I _C = -150 mAdc, I _B = -15 mAdc) (I _C = -500 mAdc, I _B = -50 mAdc)		V _{BE(sat)}	- -	-1.3 -2.6	Vdc
SMALL-SIGNAL CHARACTERISTICS		<u> </u>		ı	
Current – Gain – Bandwidth Product (I _C = –50 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	200	_	MHz
Output Capacitance $(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	_	8.0	pF	
Input Capacitance (V _{EB} = -2.0 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	30	pF
SWITCHING CHARACTERISTICS					
Turn-On Time		t _{on}	_	45	
Delay Time	$(V_{CC} = -30 \text{ Vdc}, I_{C} = -150 \text{ mAdc}, I_{B1} = -15 \text{ mAdc})$	t _d	_	10	
Rise Time	, 51	t _r	_	40	200
Storage Time		t _s	_	80	ns
Fall Time	$(V_{CC} = -6.0 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$	t _f	_	30	
Turn-Off Time	5. 52,	t _{off}	_	100	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width $\leq 300 \, \mu s$, Duty Cycle $\leq 2.0\%$.

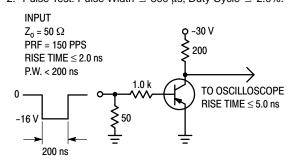


Figure 1. Delay and Rise Time Test Circuit

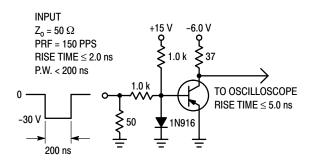


Figure 2. Storage and Fall Time Test Circuit

TYPICAL CHARACTERISTICS

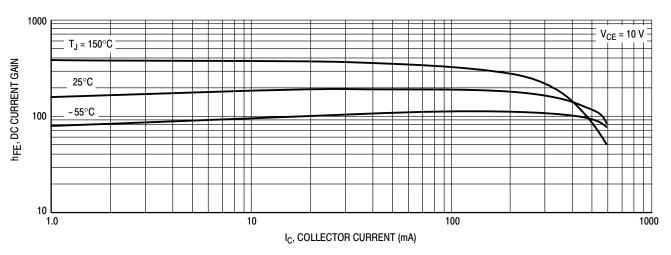


Figure 3. DC Current Gain

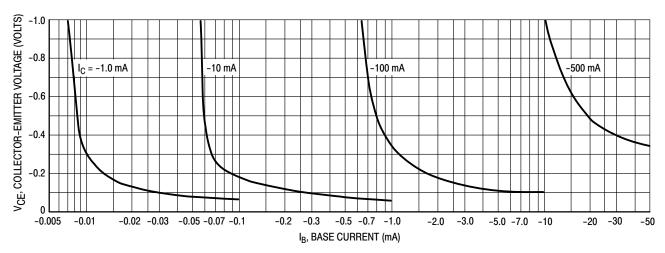


Figure 4. Collector Saturation Region

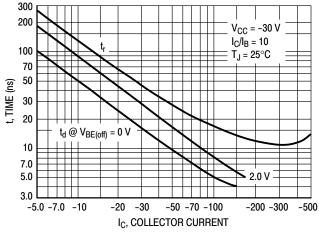


Figure 5. Turn-On Time

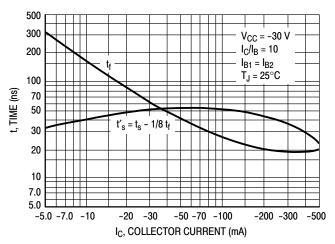


Figure 6. Turn-Off Time

TYPICAL SMALL-SIGNAL Characteristics NOISE FIGURE

 V_{CE} = 10 Vdc, T_A = 25°C

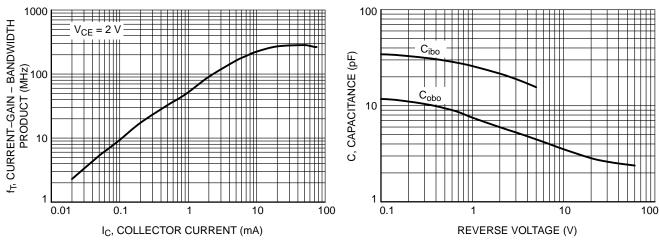


Figure 7. Current-Gain - Bandwidth Product

Figure 8. Capacitances

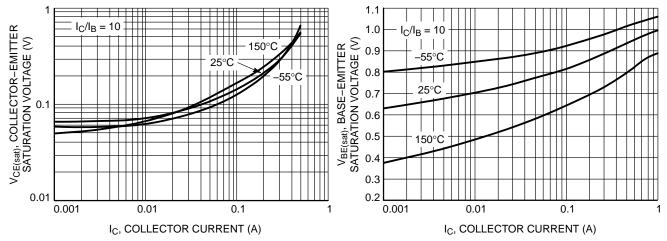


Figure 9. Collector Emitter Saturation Voltage vs. Collector Current

Figure 10. Base Emitter Saturation Voltage vs.
Collector Current

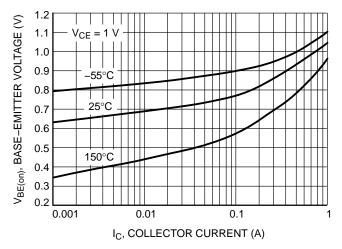
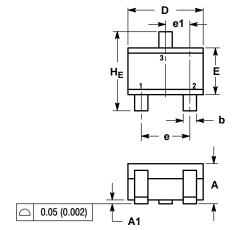



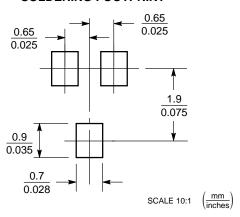
Figure 11. Base Emitter Voltage vs. Collector Current

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04

ISSUE N

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 REF		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC		0.026 BSC			
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

STYLE 3

- PIN 1. BASE 2. EMITTER

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)