

RF360 Europe GmbH
A Qualcomm – TDK Joint Venture

Data sheet

SAW duplexer LTE band 1 + LTE band 3

Series/type: B1203

Ordering code: B39212B1203L210

Date: November 07, 2018

Version: 2.0

DCN: 80-PA243-264 Rev. A

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2018 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Table of contents

1 Application	
2 Features	
3 Package	_
4 Pin configuration	5
5 Matching circuit	_
6 Characteristics LTE B1	
7 Characteristics LTE B3	
8 Maximum ratings	
9 Transmission coefficients LTE B1	
10 Transmission coefficient (LTE) LTE B1	
11 Reflection coefficients LTE B1	18
12 Transmission coefficients LTE B3	19
13 Transmission coefficient (LTE) LTE B3	22
14 Reflection coefficients LTE B3	23
15 Packing material	24
16 <u>Marking</u>	28
17 Soldering profile	29
18 Annotations	0.0
19 Cautions and warnings	31
20 Important notes	32

1 Application

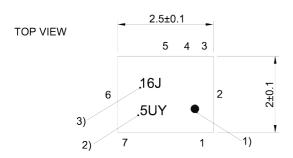
- Low-loss SAW multiplexer for mobile telephone LTE Band 1 and Band 3 systems, also suitable for WCDMA applications
- Usable pass bands: 60 MHz for Band 1 and 75 MHz for Band 3
- High out of band selectivity
- High TX-RX isolation
- Unbalanced to unbalanced operation
- \blacksquare Terminating impedances 50 Ω

2 Features

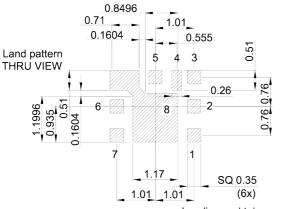
- Package size 2.5±0.05 mm × 2.0±0.05 mm
- Package height 0.7 mm (max.)
- Approximate weight 9 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

3 Package

BOTTOM VIEW SQ 0.3 (6x) 0.1344 x 45° 7 1.12 0.1344 x 45° 9,0.555 9,0.555 9,0.555 9,0.555 9,0.555 9,0.555 9,0.555


4 Pin configuration

- 1 TX (B1)
- 2 TX (B3)
- 3 ANT (B1)
- 5 ANT (B3)
- 6 RX (B1)
- 7 RX (B3)
- 4, 8 Ground


SIDE VIEW

Pad and pitch tolerance ±0.05

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Landing pad tolerance -0.02

Figure 1: Drawing of package with package height A = 0.7 mm (max.). See Sec. Package information (p. 31).

5 Matching circuit

■ L_{n1} = 7.3 nH

■ L_{p3} = 2.7 nH

■ L_{p5} = 2.6 nH

■ L_{p6} = 10.3 nH

■ L_{p7} = 12.5 nH

■ L_{s2} = 2.2 nH

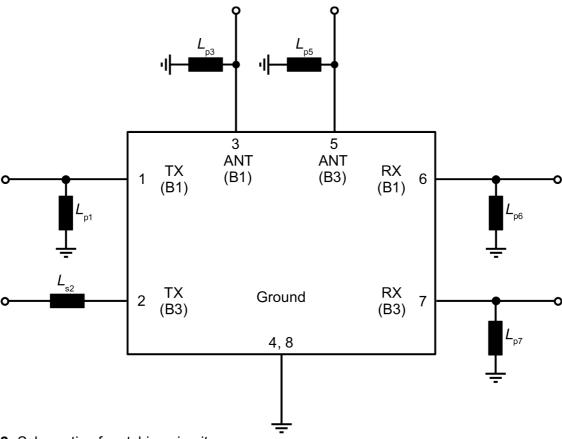


Figure 2: Schematic of matching circuit.

External shunt inductor for ESD protection is recommended at any ports towards antenna.

6 Characteristics LTE B1

6.1 TX - ANT

Temperature range for specification $T_{\text{SPEC}} = -30\,^{\circ}\text{C} \dots +85\,^{\circ}\text{C}$ B1 TX terminating impedance $Z_{\text{B1 TX}} = 50\,\Omega$ with par. 7.3 nH¹⁾ B1 RX terminating impedance $Z_{\text{B1 ANT}} = 50\,\Omega$ with par. 2.7 nH¹⁾ $Z_{\text{B1 RX}} = 50\,\Omega$ with par. 10.3 nH¹⁾

Characteristics LTE B1 TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	1950	_	MHz
Maximum insertion attenuation			α_{max}				
	1920.25 1979.75	MHz		_	1.5	2.1 ²⁾	dB
	1920.25 1979.75	MHz		_	1.5	2.3	dB
Amplitude ripple (p-p)			$\Delta\alpha_{\text{INT}}^{ 3)}$				
	1920 1980	MHz		_	0.3	1.0	dB
Maximum VSWR			$VSWR_{max}$				
@ B1 TX port	1920.25 1979.75	MHz		_	1.2	1.8	
@ B1 ANT port	1920.25 1979.75	MHz		_	1.4	2.0	
Minimum attenuation							
	699 960	MHz	$\boldsymbol{\alpha}_{\text{min}}$	35	45	_	dB
	1427 1511	MHz	$\boldsymbol{\alpha}_{\text{min}}$		38	_	dB
	1559 1605.89	MHz	$\boldsymbol{\alpha}_{\text{min}}$		39	_	dB
	1710 1880	MHz	$\boldsymbol{\alpha}_{\text{min}}$	10	24	_	dB
	2010 2025	MHz	$\boldsymbol{\alpha}_{\text{min}}$	10 ²⁾	11	_	dB
	2010 2025	MHz	$\boldsymbol{\alpha}_{\text{min}}$		11	_	dB
	2010 2025	MHz	$\boldsymbol{\alpha}_{\text{min}}$		11	_	dB
	2110 2170	MHz	$\alpha_{\text{INT,min}}^{ 5)}$	45	49	_	dB
	2400 2483	MHz	α_{min}	28	32	_	dB
	2500 2690	MHz	α_{min}	24	28	_	dB
	3840 3960	MHz	α_{min}		31	_	dB
	5150 5950	MHz	α _{min}	7	10	_	dB
	5760 5940	MHz	α_{min}	7	10	_	dB

See Sec. Matching circuit (p. 6).

²⁾ Valid for typical temperature T = +25 °C.

Integrated attenuation α_{INT} : Averaged power $|S_{ii}|^2$ over the center 18 MHz of LTE 20 MHz (100 RB) channels.

Valid for temperature $T = +15 \,^{\circ}\text{C...} + 85 \,^{\circ}\text{C.}$

Integrated attenuation α_{INT} : Averaged power $|S_{ii}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

6.2 ANT - RX

 $\begin{array}{lll} \mbox{Temperature range for specification} & T_{\mbox{SPEC}} & = -30\ ^{\circ}\mbox{C}\ ...\ +85\ ^{\circ}\mbox{C} \\ \mbox{B1 TX terminating impedance} & Z_{\mbox{B1 RX}} & = 50\ \Omega\ \mbox{with par.}\ 7.3\ \mbox{nH}^{1)} \\ \mbox{B1 RX terminating impedance} & Z_{\mbox{B1 RX}} & = 50\ \Omega\ \mbox{with par.}\ 10.3\ \mbox{nH}^{1)} \\ \end{array}$

Characteristics LTE B1 ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	2140	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	2110.25 2169.75	MHz		_	1.6	2.1 ²⁾	dB
	2110.25 2169.75	MHz		_	1.6	2.5	dB
Amplitude ripple (p-p)			$\Delta\alpha_{\text{INT}}^{ 3)}$				
	2110 2170	MHz		_	0.2	1.0	dB
Maximum VSWR			$VSWR_{max}$				
@ B1 ANT port	2110.25 2169.75	MHz		_	1.5	2.0	
@ B1 RX port	2110.25 2169.75	MHz		_	1.5	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	190	MHz		50	92	_	dB
	699 960	MHz		35	52	_	dB
	1427 1511	MHz		35	45	_	dB
	1559 1605.89	MHz		40	44	_	dB
	1710 1910	MHz		35	44	_	dB
	1920.25 1979.75	MHz		45	53	_	dB
	2400 2483	MHz		35	41	_	dB
	2500 2690	MHz		35	42	_	dB
	5150 5950	MHz		27	34	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

Valid for typical temperature T = +25 °C.

Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 18 MHz of LTE 20 MHz (100 RB) channels.

6.3 TX - RX

 $\begin{array}{lll} \mbox{Temperature range for specification} & T_{\rm SPEC} & = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C} \\ \mbox{B1 TX terminating impedance} & Z_{\rm B1~TX} & = 50~\Omega~\mbox{with par. }7.3~\mbox{nH}^{1)} \\ \mbox{B1 ANT terminating impedance} & Z_{\rm B1~ANT} & = 50~\Omega~\mbox{with par. }2.7~\mbox{nH}^{1)} \\ \mbox{B1 RX terminating impedance} & Z_{\rm B1~RX} & = 50~\Omega~\mbox{with par. }10.3~\mbox{nH}^{1)} \\ \end{array}$

Characteristics LTE B1 TX – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Minimum isolation							
	1574 1577	MHz	α_{min}	40	65	_	dB
	1805.15 1879.85	MHz	α_{min}	55	66	_	dB
	1920 1980	MHz	$\alpha_{\text{INT,min}}^{2)}$	52	56	<u> </u>	dB
	2110 2170	MHz	$\alpha_{\text{INT,min}}^{2)}$	50	57	_	dB
	3830 3970	MHz	α_{min}	20	66	_	dB
	5750 5950	MHz	α_{min}	20	35	<u> </u>	dB

¹⁾ See Sec. Matching circuit (p. 6).

Integrated attenuation $\alpha_{_{|\!|\!|}NT}$: Averaged power $|S_{_{|\!|\!|}}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

7 Characteristics LTE B3

7.1 TX - ANT

Temperature range for specification $T_{\rm SPEC} = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C}$ B3 TX terminating impedance $Z_{\rm B3~TX} = 50~\Omega$ with ser. 2.2 nH¹⁾ B3 ANT terminating impedance $Z_{\rm B3~RX} = 50~\Omega$ with par. 2.6 nH¹⁾ B3 RX terminating impedance $Z_{\rm B3~RX} = 50~\Omega$ with par. 12.5 nH¹⁾

Characteristics LTE B3 TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency				101 7 _{SPEC}	1747.5	SPEC	MHz
•			f _C	_	1747.5	_	IVITZ
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	1710.15 1784.85	MHz		_	1.9	$2.9^{2)}$	dB
	1710.15 1784.85	MHz		_	1.9	3.3	dB
Amplitude ripple (p-p)			$\Delta\alpha_{INT}^{~3)}$				
	1710 1785	MHz		_	0.4	2.0	dB
Maximum VSWR			$VSWR_{max}$				
@ B3 TX port	1710.15 1784.85	MHz		_	1.7	2.0	
@ B3 ANT port	1710.15 1784.85	MHz		_	1.5	2.0	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	699 960	MHz		35	41	_	dB
	1427 1511	MHz		35	40	_	dB
	1559 1605.89	MHz		30	40	_	dB
	1805.15 1879.85	MHz		45 ⁴⁾	50	_	dB
	1805.15 1879.85	MHz		40	50	_	dB
	1920 2170	MHz		25	28	_	dB
	2300 2400	MHz		32	40	_	dB
	2400 2483	MHz		33	38	_	dB
	2500 2690	MHz		30	37	_	dB
	3420 3570	MHz		30	37	_	dB
	5130 5355	MHz		15	23	_	dB
	5150 5950	MHz		10	13	_	dB

See Sec. Matching circuit (p. 6).

²⁾ Valid for typical temperature T = +25 °C.

Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 18 MHz of LTE 20 MHz (100 RB) channels.

Valid for temperature $T = 0 \, ^{\circ}\text{C...} + 85 \, ^{\circ}\text{C.}$

7.2 ANT - RX

 $\begin{array}{lll} \mbox{Temperature range for specification} & T_{\mbox{SPEC}} & = -30\ ^{\circ}\mbox{C}\ ...\ +85\ ^{\circ}\mbox{C} \\ \mbox{B3 TX terminating impedance} & Z_{\mbox{B3 RX}} & = 50\ \Omega\ \mbox{with ser. 2.2 nH}^{\mbox{1}} \mbox{} \\ \mbox{B3 RX terminating impedance} & Z_{\mbox{B3 RX}} & = 50\ \Omega\ \mbox{with par. 2.6 nH}^{\mbox{1}} \mbox{} \\ \mbox{} \end{array}$

Characteristics LTE B3 ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C		1842.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	1805.15 1879.85	MHz		_	2.7	3.6 ²⁾	dB
	1805.15 1879.85	MHz		_	2.7	4.5	dB
Amplitude ripple (p-p)			$\Delta\alpha_{\text{INT}}^{ 3)}$				
	1805 1880	MHz		_	0.5	2.2	dB
Maximum VSWR			$VSWR_{max}$				
@ B3 ANT port	1805.15 1879.85	MHz		_	1.6	2.0	
@ B3 RX port	1805.15 1879.85	MHz		_	1.7	2.24)	
	1805.15 1879.85	MHz		_	1.7	2.5	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	95	MHz		50	107	_	dB
	699 960	MHz		40	48	<u> </u>	dB
	1427 1511	MHz		35	42	<u> </u>	dB
	1559 1605.89	MHz		36	43	_	dB
	1710.15 1784.85	MHz		45	56	_	dB
	1920 2170	MHz		35	42	_	dB
	2300 2400	MHz		35	39	_	dB
	2400 2483	MHz		37	47	_	dB
	2500 2690	MHz		40	48	_	dB
	5150 5950	MHz		34	41	_	dB

See Sec. Matching circuit (p. 6).

Valid for typical temperature T = +25 °C.

Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 18 MHz of LTE 20 MHz (100 RB) channels.

⁴⁾ Valid for temperature $T = -10 \,^{\circ}\text{C...} + 85 \,^{\circ}\text{C.}$

7.3 TX - RX

 $\begin{array}{lll} \mbox{Temperature range for specification} & T_{\mbox{SPEC}} & = -30\ ^{\circ}\mbox{C}\ ...\ +85\ ^{\circ}\mbox{C} \\ \mbox{B3 TX terminating impedance} & Z_{\mbox{B3 RX}} & = 50\ \Omega\ \mbox{with ser. 2.2 nH}^{1)} \\ \mbox{B3 RX terminating impedance} & Z_{\mbox{B3 RX}} & = 50\ \Omega\ \mbox{with par. 2.6 nH}^{1)} \\ \mbox{B3 RX terminating impedance} & Z_{\mbox{B3 RX}} & = 50\ \Omega\ \mbox{with par. 12.5 nH}^{1)} \\ \end{array}$

Characteristics LTE B3 TX – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Minimum isolation							
	1710 1785	MHz	$\alpha_{\text{INT,min}}^{2)}$	53	58	_	dB
	1710.15 1784.85	MHz	α_{min}	53 ³⁾	58	<u> </u>	dB
	1710.15 1784.85	MHz	α_{min}	52	58	_	dB
	1805 1880	MHz	$\alpha_{\text{INT,min}}^{2)}$	51	54	<u> </u>	dB
	1805.15 1879.85	MHz	$\alpha_{_{min}}$	50	54	<u> </u>	dB
	2110.25 2169.75	MHz	$\alpha_{_{min}}$	58	68	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

³⁾ Valid for typical temperature T = +25 °C.

8 **Maximum ratings**

Storage temperature	T _{STG} ¹⁾ = −40 °C +85 °C	
DC voltage	$ V_{DC} ^{2} = 0 \text{ V (max.)}$	
ESD voltage		
	$V_{\rm ESD}^{3)} = 100 \text{ V (max.)}$	Machine model.
	$V_{\rm ESD}^{4)} = 250 \text{ V (max.)}$	Human body model.
	$V_{\rm ESD}^{5)} = 600 \text{V (max.)}$	Charged device model.
Input power	P _{IN}	
@ B1 TX port: 1920.25 1979.75 MHz	30 dBm	Continuous wave for 3000 h @ 50 °C.
@ B1 TX port: other frequency ranges	10 dBm	Continuous wave for 3000 h @ 50 °C.
@ B3 TX port: 1710.15 1784.85 MHz	30 dBm	Continuous wave for 5000 h @ 50 °C.
@ B3 TX port: other frequency ranges	10 dBm	Continuous wave for 5000 h @ 50 °C.

¹⁾ Not valid for packaging material. Storage temperature for packaging material is −25 °C to +40 °C.

²⁾

In case of applied DC voltage blocking capacitors are mandatory.

According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. 3)

According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

According to JESD22-C101C (CDM - Field Induced Charged Device Model), 3 negative & 3 positive pulses.

9 Transmission coefficients LTE B1

9.1 TX - ANT 0.0 1.0 1.231 1.453 2.0 3.0 4.0 5.0 1900 1920 2000 19'40 1960 1980 f/MHz0.0 20.0 40.0 60.0 80.0 <u>F.</u> 1800 1900 2000 2200 2100 2300 *f*/MHz 0.0 20.0 40.0 60.0 80.0 1000 2000 3000 4000 5000 6000 f/MHz

Figure 3: Attenuation TX – ANT.

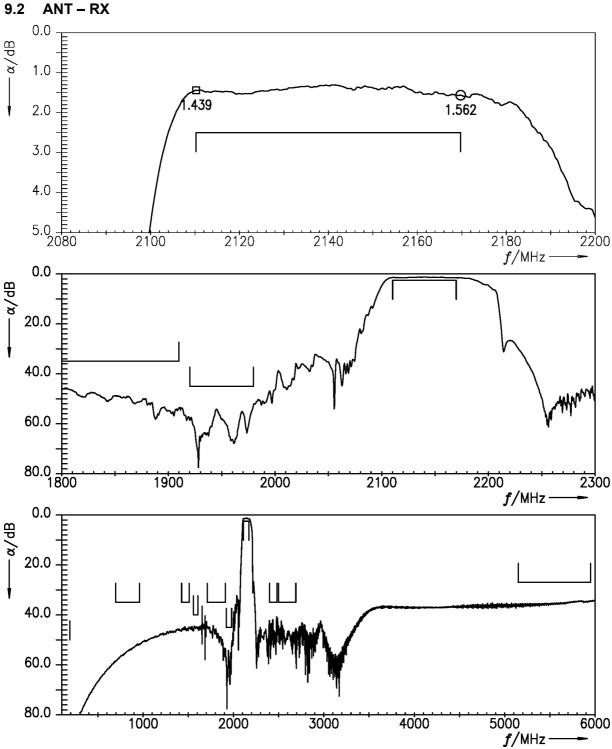


Figure 4: Attenuation ANT – RX.

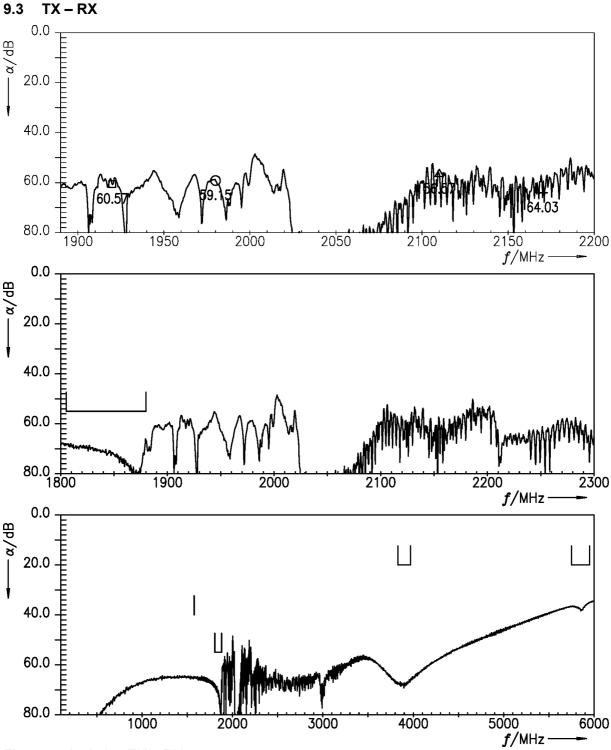


Figure 5: Isolation TX – RX.

10 Transmission coefficient (LTE) LTE B1

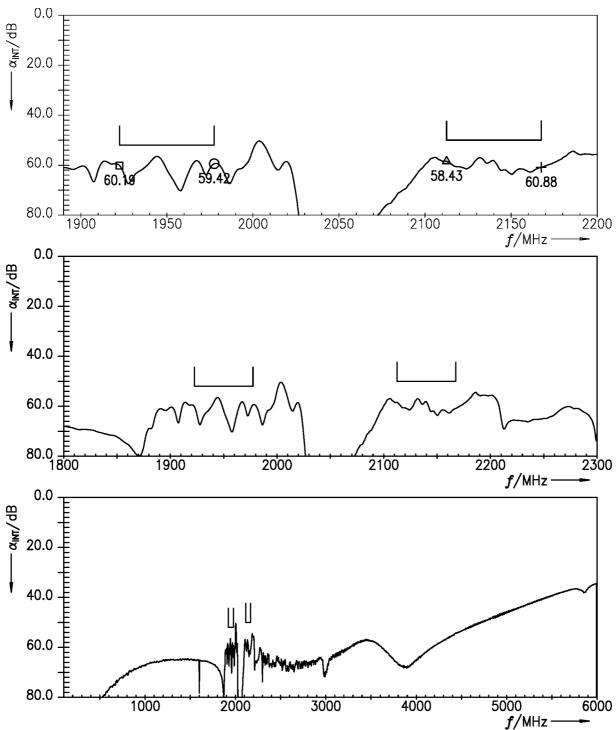
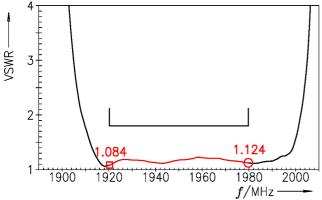
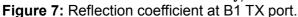
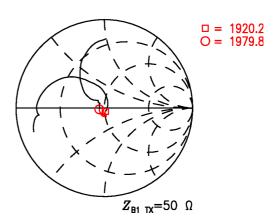





Figure 6: Isolation (LTE) (integration window = 5 MHz) LTE B1.

11 Reflection coefficients LTE B1

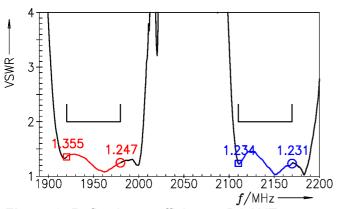
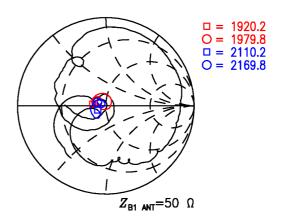



Figure 8: Reflection coefficient at B1 ANT port.

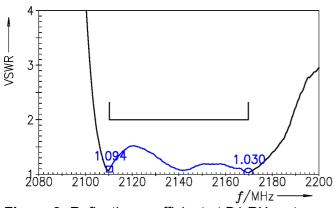
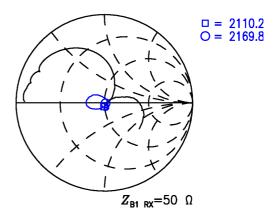



Figure 9: Reflection coefficient at B1 RX port.

12 Transmission coefficients LTE B3

12.1 TX - ANT

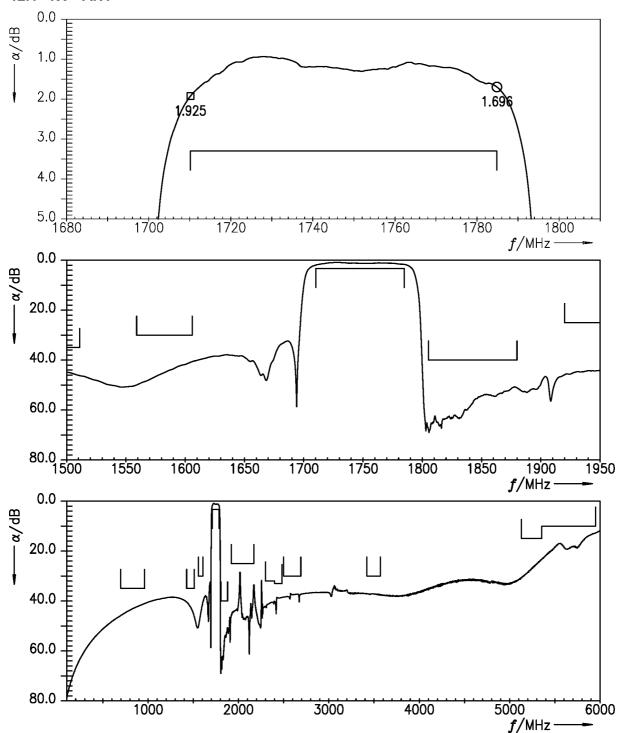
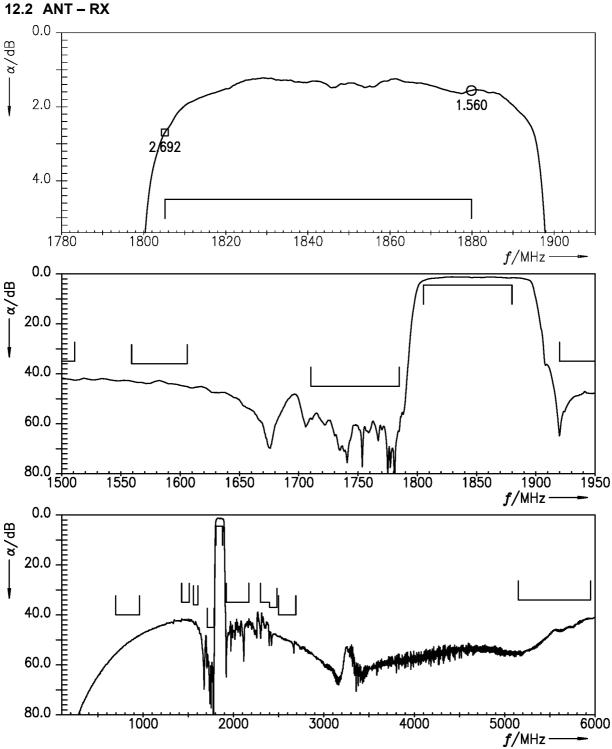



Figure 10: Attenuation TX – ANT.

Figure 11: Attenuation ANT – RX.

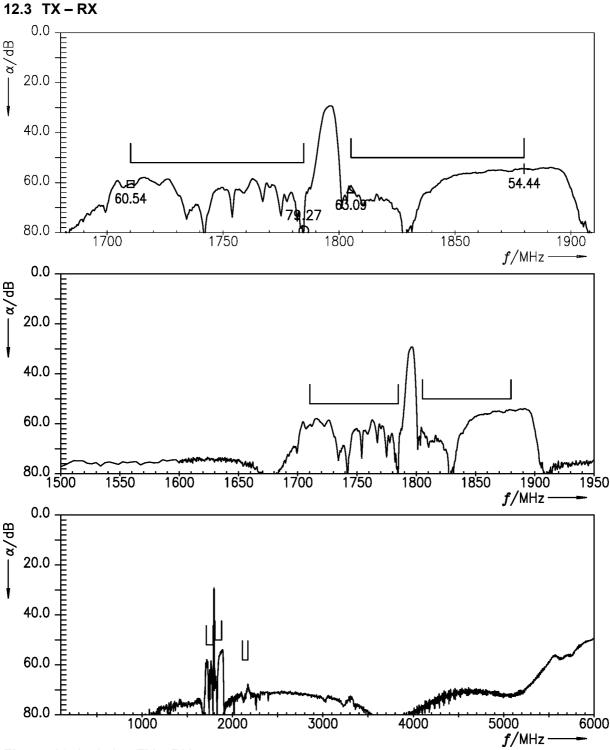


Figure 12: Isolation TX – RX.

13 Transmission coefficient (LTE) LTE B3

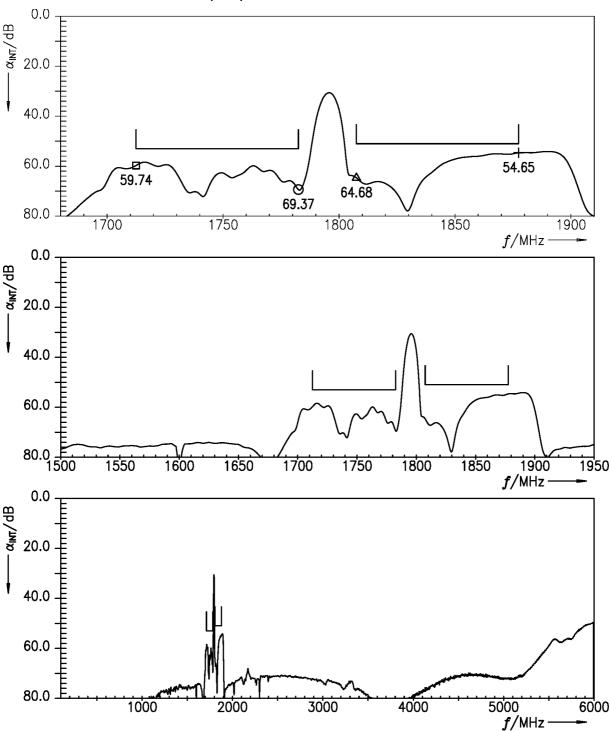


Figure 13: Isolation (LTE) (integration window = 5 MHz) LTE B3.

14 Reflection coefficients LTE B3

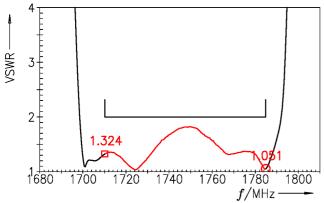
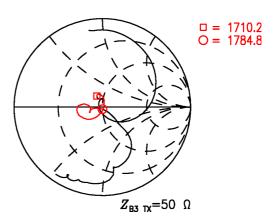



Figure 14: Reflection coefficient at B3 TX port.

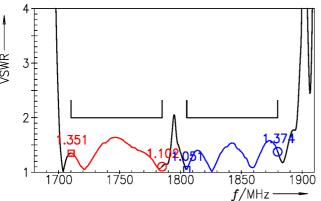
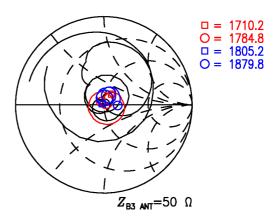



Figure 15: Reflection coefficient at B3 ANT port.

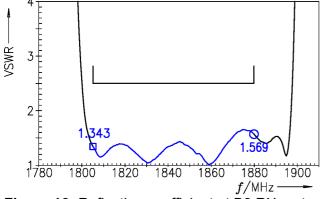
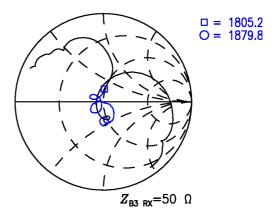
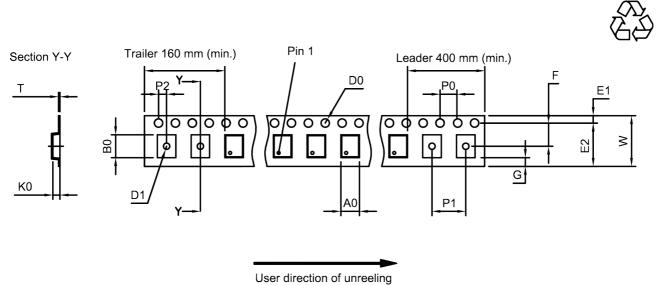




Figure 16: Reflection coefficient at B3 RX port.

15 Packing material

15.1 Tape

Figure 17: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	2.3±0.05 mm	E ₂	6.25 mm (min.)	P ₁	4.0 _{±0.1} mm
B ₀	2.8±0.05 mm	F	3.5±0.05 mm	P ₂	2.0±0.05 mm
D_0	1.5+0.1/-0 mm	G	0.75 mm (min.)	Т	0.25±0.03 mm
D ₁	1.0 mm (min.)	K ₀	0.85±0.05 mm	W	8.0+0.3/-0.1 mm
E ₁	1.75 _{±0.1} mm	P_0	4.0±0.1 mm		

Table 1: Tape dimensions.

15.2 Reel with diameter of 180 mm

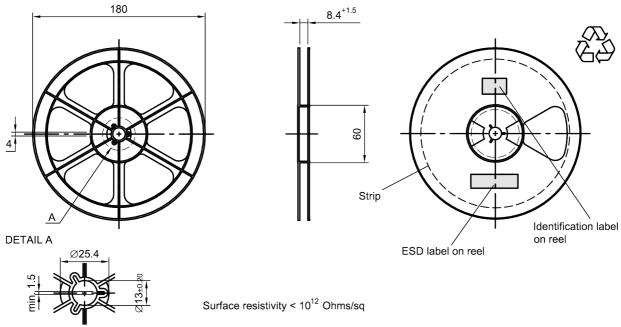


Figure 18: Drawing of reel (first-angle projection) with diameter of 180 mm.

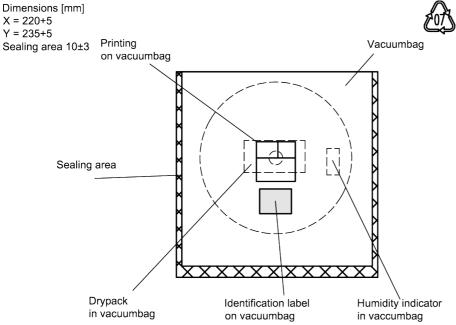


Figure 19: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

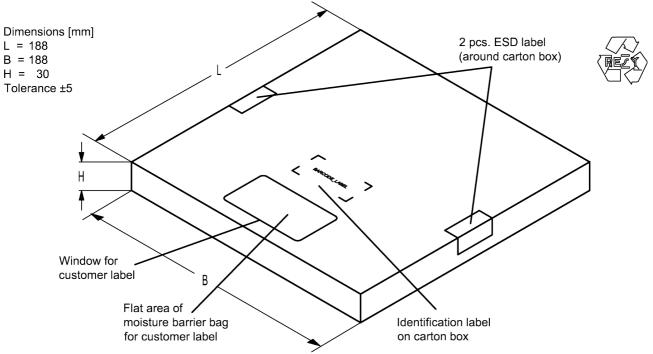


Figure 20: Drawing of folding box for reel with diameter of 180 mm.

15.3 Reel with diameter of 330 mm

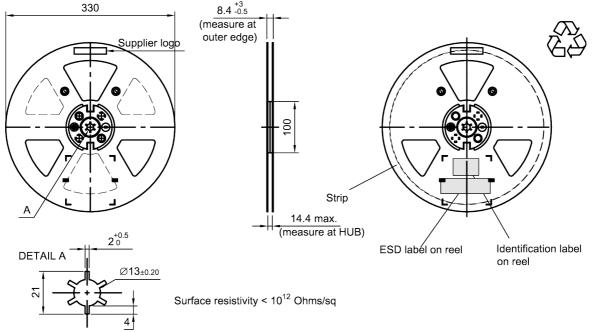


Figure 21: Drawing of reel (first-angle projection) with diameter of 330 mm.

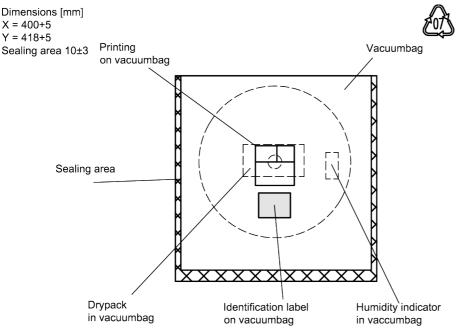


Figure 22: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

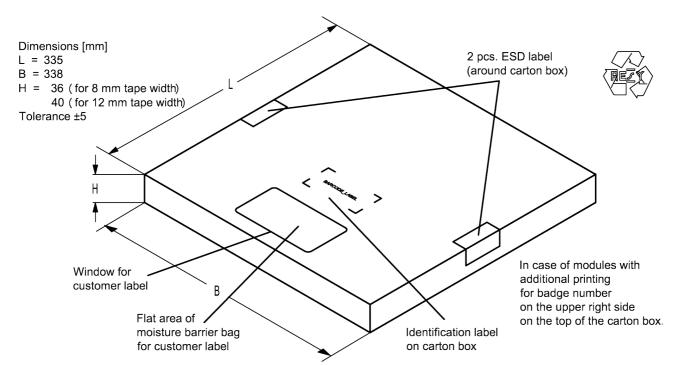


Figure 23: Drawing of folding box for reel with diameter of 330 mm.

16 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB**1234**xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type B1203 is 15K.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

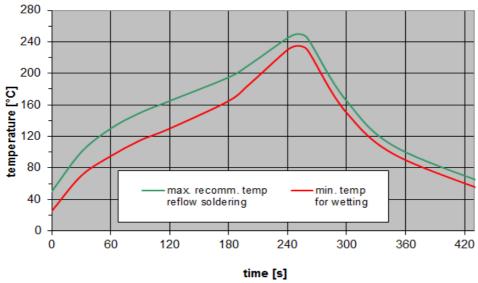
Example of decoding lot number marking on device in decimal code.

5UY => 12345 $5 \times 47^2 + 27 = (=U) \times 47^1 + 31 = (=Y) \times 47^0 = (=V) \times$

Adopte	Adopted BASE32 code for type number						
Decimal	Base32	Decimal	Base32				
value	code	value	code				
0	0	16	G				
1	1	17	Н				
2	2	18	J				
3	3	19	K				
4	4	20	M				
5	5	21	N				
6	6	22	Р				
7	7	23	Q				
8	8	24	R				
9	9	25	S				
10	Α	26	Т				
11	В	27	V				
12	С	28	W				
13	D	29	X				
14	E	30	Y				
15	F	31	Z				

Adopt	ed BASE47 c	ode for lot n	umber
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	X
7	7	31	Y
8	8	32	Z
9	9	33	b
10	Α	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	V
17	Н	41	\
18	J	42	?
19	K	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		
·	·	·	·

Table 2: Lists for encoding and decoding of marking.



17 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T _{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature <i>T</i>	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 24: Recommended reflow profile for convection and infrared soldering – lead-free solder.

18 Annotations

18.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

18.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

18.3 Ordering codes and packing units

Ordering code	Packing unit
B39212B1203L210	15000 pcs
B39212B1203L210S 5	5000 pcs

Table 4: Ordering codes and packing units.

19 Cautions and warnings

19.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.rf360jv.com/orderingcodes.

19.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

19.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

19.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

20 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>RF360 / Qualcomm