

SAW components

SAW duplexer LTE band 13

Series/type:	B8034
Ordering code:	B39781B8034P810
Date:	April 20, 2016
Version:	2.0

© EPCOS AG 2016. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

⊗TDK

751 / 782 MHz

SAW components

SAW duplexer

Data sheet

Table of contents

1 Application	3
2 Features	
3 Package	
4 Pin configuration	4
5 Matching circuit	5
6 Characteristics	6
7 Maximum ratings	9
8 Transmission coefficients	10
9 Reflection coefficients	13
10 <u>Packing material</u>	14
11 Marking	17
12 Soldering profile.	19
13 Annotations	20
14 Cautions and warnings.	21
Important notes.	

B8034

⊗TDK

751 / 782 MHz

B8034

SAW components

SAW duplexer

Data sheet

1 Application

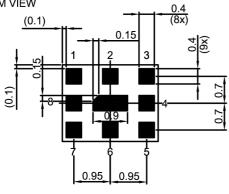
- Low-loss SAW duplexer for mobile telephone LTE Band 13 systems, also suitable for CDMA applications
- NS07 rejection, public safety frequency band
- High isolation
- Single-ended duplexer
- Near zero temperature drift

2 Features

- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.5 mm (max.)
- Approximate weight 9 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

Figure 1: Picture of component with example of product marking.

B8034

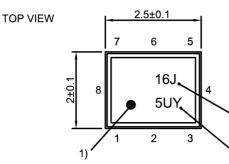

SAW components

SAW duplexer

Data sheet

3 Package

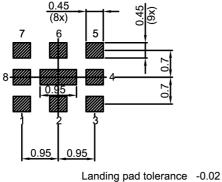
BOTTOM VIEW


Pad and pitch tolerance ±0.05

4 Pin configuration

- 1
 3
 6
 ANT
- 2, 4, 5, 7, Ground 8, 9

SIDE VIEW



- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

2)

Land pattern THRU VIEW

Figure 2: Drawing of package with package height A = 0.5 mm (max.). See Sec. Package information (p. 21).

B8034

SAW components

SAW duplexer

Data sheet

Matching circuit 5

■ *L*_{p6} = 13 nH



Figure 3: Schematic of matching circuit.

Page 6 of 22

SAW components

SAW duplexer

Data sheet

6 Characteristics

6.1 TX – ANT

Temperature range for specification	$T_{_{\rm SPEC}}$	= −20 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω with par. 13 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for $T_{\rm SPEC}$	typ. @+25 °C	max. for T _{SPEC}	
Center frequency			f _c	—	782	—	MHz
Maximum insertion attenuation			$\alpha_{_{max}}$				
	777.5 786.5	MHz		_	2.3 ²⁾	3.5 ²⁾	dB
Amplitude ripple (p-p)			$\Delta \alpha^{_3)}$				
	777.5 786.5	MHz		_	1.2	2.6	dB
Maximum VSWR			VSWR _{max}				
@ TX port	777.5 786.5	MHz		_	1.4	2.0	
@ ANT port	777.5 786.5	MHz		_	1.4	2.0	
Minimum attenuation			α_{min}				
	10 716	MHz		40	43	_	dB
	716 728	MHz		40	47	_	dB
	728 746	MHz		45	50	_	dB
	746 756	MHz		50	56	_	dB
	758 768	MHz		40	53	_	dB
NS07	768 775	MHz		20 ⁴⁾	26 ⁴⁾	—	dB
	793 805	MHz		20	36	—	dB
	869 894	MHz		40	46	—	dB
	1226 1250	MHz		45	55	—	dB
	1554 1565	MHz		45	55	—	dB
	1565 1607	MHz		45	54	—	dB
	1710 2170	MHz		40	49	—	dB
	2331 2361	MHz		35	45	—	dB
	2400 2484	MHz		35	44	—	dB
	3108 3148	MHz		30	40	—	dB
	4900 5950	MHz		17	23	_	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Integrated over 1RB.

³⁾ Over any channel with band width of 5 MHz.

⁴⁾ Relative to integrated insertion loss in 777.5 – 786.5MHz over 1RB.

B8034

751 / 782 MHz

公TDK

B8034

SAW components

SAW duplexer

Data sheet

6.2 ANT – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −20 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω with par. 13 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{_{\rm SPEC}}$	typ. @+25 °C	max. for $T_{_{\rm SPEC}}$	
Center frequency			f _c	1	751	—	MHz
Maximum insertion attenuation			α_{max}				
	746 756	MHz		_	1.1	1.7	dB
Amplitude ripple (p-p)			$\Delta \alpha^{2)}$				
	746 756	MHz		—	0.2	1.0	dB
Maximum VSWR			VSWR _{max}				
@ ANT port	746 756	MHz		_	1.5	2.0	
@ RX port	746 756	MHz		—	1.5	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	10 686	MHz		40	43		dB
	686 728	MHz		28	33	—	dB
	771 772	MHz		27	32	—	dB
	777 787	MHz		50	58	—	dB
	1523 1543	MHz		35	42	—	dB
	1710 1755	MHz		35	41	—	dB
	1850 1910	MHz		35	41	—	dB
	2238 2268	MHz		35	41	—	dB
	2400 2500	MHz		34	40	—	dB
	4900 5950	MHz		12	17	—	dB

¹⁾ See Sec. Matching circuit (p. 5).

²⁾ Over any channel with band width of 5 MHz.

B8034

SAW components

SAW duplexer

Data sheet

6.3 TX – RX

Temperature range for specification	$T_{\rm SPEC}$	= −20 °C +90 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω with par. 13 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX				min. for $T_{_{\rm SPEC}}$	typ. @+25 °C	max. for T _{SPEC}	
Minimum isolation			α _{min}				
	746 752	MHz		54	57	_	dB
	752 756	MHz		57	62	_	dB
	777 787	MHz		55	60	_	dB
	1552 1574	MHz		30	60	_	dB
	2328 2361	MHz		30	56	_	dB
	3104 3148	MHz		30	52	_	dB

¹⁾ See Sec. Matching circuit (p. 5).

SAW components

SAW duplexer

B8034

751 / 782 MHz

Data sheet

7 **Maximum ratings**

Storage temperature	T _{STG} = −40 °C +85 °C	
DC voltage	$V_{\rm DC} = 0 \rm V (max.)^{1)}$	
ESD voltage		
	$V_{\rm ESD}^{2)}$ = 100 V (max.)	Machine model.
	$V_{\rm ESD}^{3)}$ = 300 V (max.)	Human body model.
	V _{ESD} ⁴⁾ = 600 V (max.)	Charged device model.
Input power	P _{IN}	
@ TX port: 777.5 786.5 MHz	29 dBm	Continuous wave for 5000 h @ 50 °C.
@ TX port: other frequency range(s)	10 dBm	Continuous wave for 5000 h @ 50 °C.

1) DC resistance at RX output might be less than 100Mohm at elevated temperatures. Hence, we recommend usage of blocking capacitors.

2)

3)

According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse. According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses. 4)

B8034

SAW components

SAW duplexer

Data sheet

8 Transmission coefficients

8.1 TX – ANT

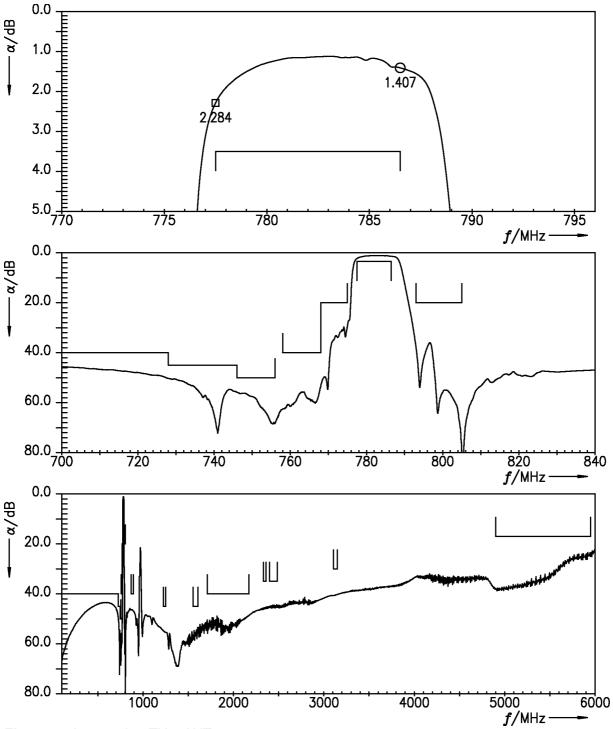
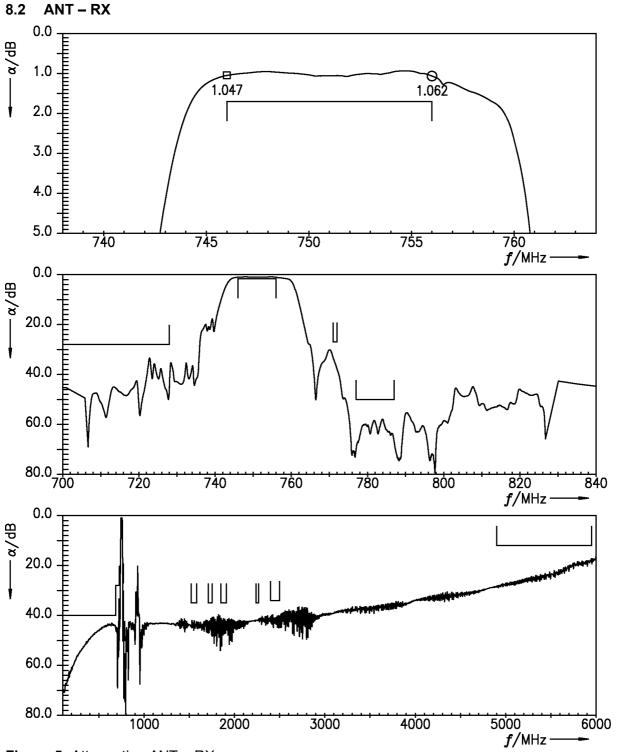
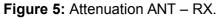


Figure 4: Attenuation TX – ANT.




B8034

SAW components

SAW duplexer

Data sheet

B8034

SAW components

SAW duplexer

Data sheet

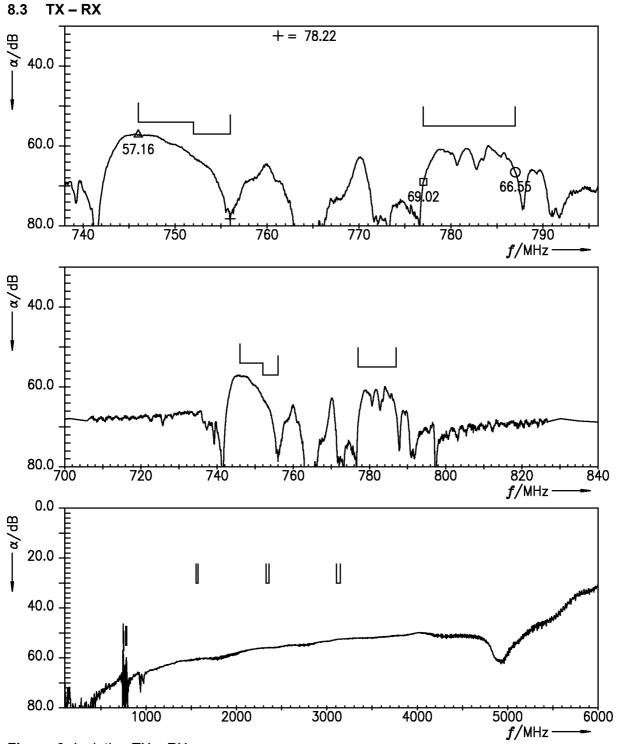


Figure 6: Isolation TX – RX.

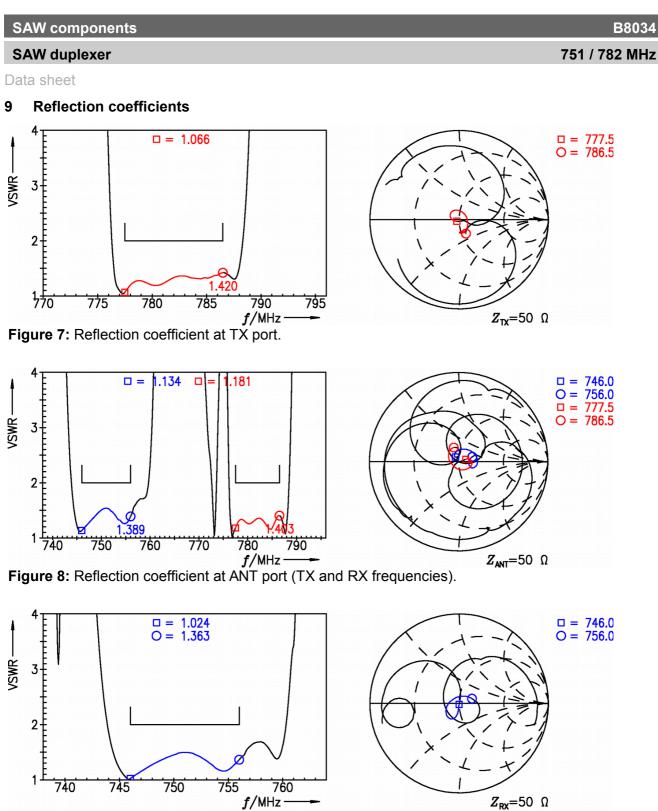
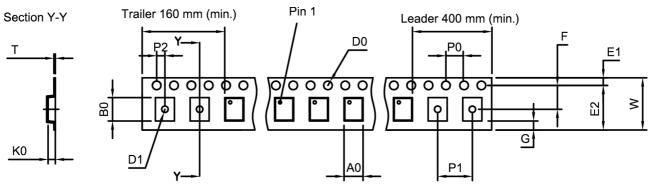


Figure 9: Reflection coefficient at RX port.

B8034


SAW components

SAW duplexer

Data sheet

10 Packing material

10.1 Tape

User direction of unreeling

Figure 10: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	2.25±0.05 mm
B₀	2.75±0.05 mm
D ₀	1.5+0.1/-0 mm
D ₁	1.0 mm (min.)
E1	1.75±0.1 mm

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.6±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

Table 1: Tape dimensions.

10.2 Reel with diameter of 180 mm

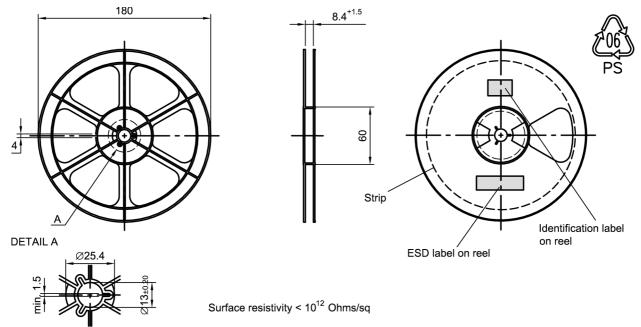


Figure 11: Drawing of reel (first-angle projection) with diameter of 180 mm.

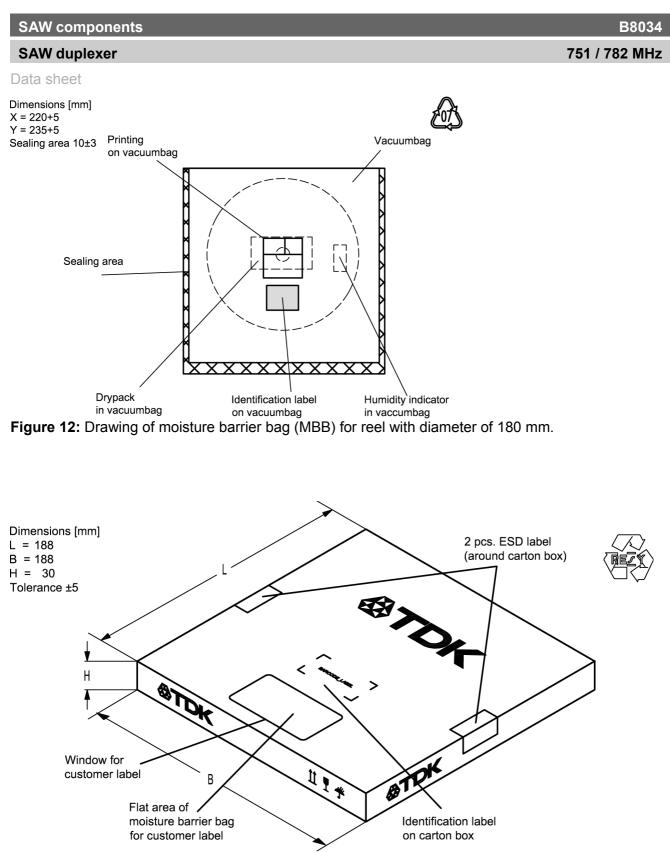
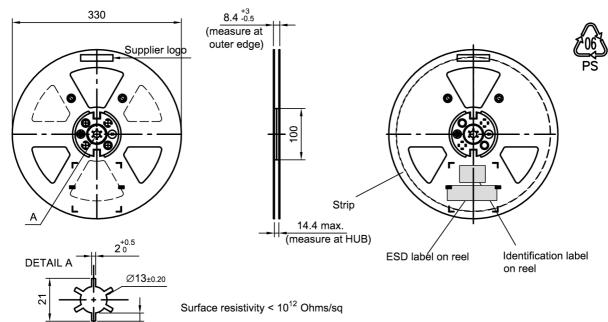
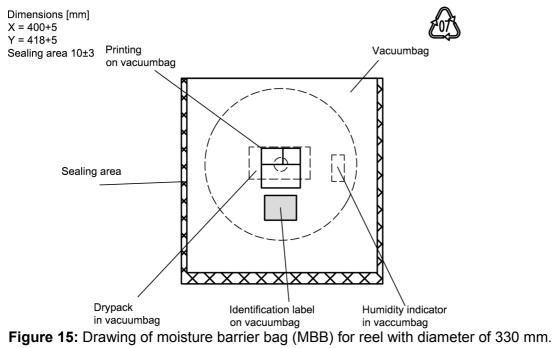


Figure 13: Drawing of folding box for reel with diameter of 180 mm.

B8034


SAW components

SAW duplexer


Data sheet

10.3 Reel with diameter of 330 mm

4

STDK

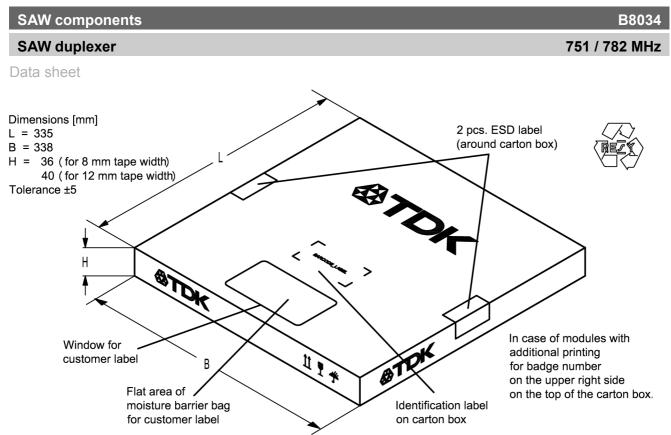


Figure 16: Drawing of folding box for reel with diameter of 330 mm.

11 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number: The 4 digit type number of the ordering code, e.g., B3xxxxB1234xxxx, is encoded by a special BASE32 code into a 3 digit marking. Example of decoding type number marking on device in decimal code. 16J 1 x 32² + 6 x 32¹ + 18 (=J) x 32⁰ = The BASE32 code for product type B8034 is 7V2. ■ Lot number: The last 5 digits of the lot number, e.g.,

are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device		in decimal code.
5UY	=>	12345
5 x 47 ² + 27 (=U) x 47 ¹ + 31 (=Y) x 47 ⁰	=	12345

1234

1234

12345,

谷TDK

751 / 782 MHz

B8034

SAW components

SAW duplexer

Data sheet

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	К
4	4	20	М
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	А	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

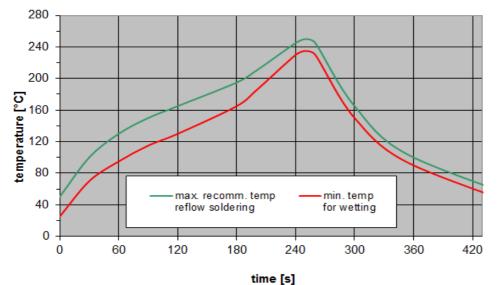
Adopt	Adopted BASE47 code for lot number		
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	A	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	K	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

Table 2: Lists for encoding and decoding of marking.

B8034

SAW components

SAW duplexer


Data sheet

12 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T _{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 17: Recommended reflow profile for convection and infrared soldering – lead-free solder.

SAW components

SAW duplexer

Data sheet

13 Annotations

13.1 Matching coils

See TDK inductor pdf-catalog <u>http://www.tdk.co.jp/tefe02/coil.htm#aname1</u> and Data Library for circuit simulation <u>http://www.tdk.co.jp/etvcl/index.htm</u>.

13.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local EPCOS sales office.

13.4 Ordering codes and packing units

Ordering code	Packing unit
B39781B8034P810	15.000 pcs
B39781B8034P810S 5	5.000 pcs

Table 4: Ordering codes and packing units.

Important notes at the end of this document.

B8034

751 / 782 MHz

SAW components

SAW duplexer

Data sheet

14 Cautions and warnings

14.1 Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <u>www.epcos.com/orderingcodes</u>.

14.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

14.3 Moldability

Before using in overmolding environment, please contact your local EPCOS sales office.

14.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on EPCOS internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of EPCOS, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Dimensions do not include burrs.

Projection method

Unless otherwise specified first-angle projection is applied.

B8<u>034</u>

751 / 782 MHz

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

单击下面可查看定价,库存,交付和生命周期等信息

>>RF360 / Qualcomm