POE-D06-00-E-12 Ver: 12 Page: 1 / 20

POE-D06-00-E-12 Ver: 12 Page: 2 / 20

Record of change

Date	Version	Description					
2008.6.3	1	1. D19-00-E-03(before) -	→ POE-D06-00-H	E-01(1 st edition)			
2008.8.22	2	1. Revised diameter as b	elow :				
		Before	Now				
		LB202471K060* LB2	202471K050*		7		
		LB202681K070* LB2	202681K060*				
		2. Add last SAP code "I	H" for halogen ar	nd Pb free , epoxy resin	6		
2008.12.12	3	. Complete the 13 th to 17 th codes of SAP P/N.					
		2. Page layout adjustmen	nt.				
		3. Add marking when th	e coating resin is	Halogen and Pb free Epoxy.			
2009.8.5	4	1. Change PSA & POE 1	ogo to Walsin &	POE logo.			
2011/12/21	5	Review the "LB" & "LR"	Review the "LB" & "LR" to be "LB(Y5P)" & "LR(Y5R)";				
2012/9/14	6	1. Review TCC of LR(Y5R) type.					
		2. Review the condition of "life test"					
		B. Review the Item 8.1 Caution (Rating) 1					
2012/12/27	7	1. Review the Item 8.1 Caution (Rating): Allowable conditions at high frequency					
		(Fig.2 : Allowable Voltage (Sine Wave Voltage) – Frequency Characteristics (At Ambient					
		Temperature of 105°C or 1	ess))				
2013/5/6	8	1. Review the Lead dian	neter φ from 0.60	+/-0.06mm to 0.55+/-0.05mm	5,13		
		2. Review the "D $\Phi \leq 6.0$	nm shall be omit	ted." to " $D\Phi \leq 060$ shall be omitted."	10		
		3. Review the Solderabi	lity temperature f	rom $260(+5/-0)^{\circ}$ C to $245\pm5^{\circ}$ C solderability time			
		from 2 ± 0.5 s to 5 ± 0.5 s.					
2013/10/18	9	1. Review the packing specification					
		1. Review the Availab	le lead code of	Lead Configuration.	5		
2016/3/3	10	2. Delete the definition	n about "Old P	art No".	5-6		
		3. Review the size Dφ	for the item LF	2202681K from "070" to be "080".	8		
2017/5/4	11	1. Delete LB series pro	oducts.				
2018/4/19	12	1. Add "Lead in diele AC or 250 V DC or		n capacitors for a rated voltage of 125 V 8.6 Note.	19		

POE-D06-00-E-12 Ver: 12 Page: 3 / 20

Table of Contents

No.	Item	Page
1	Part number for SAP system	4
2	Mechanical	5
3	Capacitance value vs. rated voltage, product diameter	6
4	Marking	7
5	Packing specification	8
6	Taping Format	9-10
7	Specification and test method	11-14
8	Notices	15-19
9	Drawing of Internal Structure and material list	20
	正所有 信心	
	此题的文学	
	LET AN EXTRACT	
	PASSIVE SYSTEM ALLIANCE	
	in the second se	
	Conology Corporation, HILREN	·

POE-D06-00-E-12 Ver: 12 Page: 4 / 20

1. Part number for SAP system(total eighteen code) :

LR	102	471	Κ	050	В	20	С	5	В
0	0	6	4	G	6	0	8	9	0

● Material code: Low Dissipation Factor (LDF), Operating Temperature Range : -25°C to +125°C

Code	LR(Y5R)
Cap. change	$\pm 15\%$ (-25°C to +85°C) + 15 ~ -30% (+85°C to+125°C)
D.F.	≤0.2%

2 Rated voltage (Vdc) ∶

Voltage	1000V	2000V	3000V
Code	102	202	302

❸Capacitance(pF) :

Capacitors (pF)	100	470	1000	2200	3300
Code	101	471	102	222	332

GCapacitance tolerance : $\pm 10\%$, Code is "K"

S Nominal body diameter dimension (Ref. to page.7~9 D max. & T max. spec.).

• Code of lead type : Please refer to Item "2. Mechanical".

• Packing mode and lead's length (identified by 2-figure code)

Taping Code	Description	5 513	The limit of body size	
AN	Ammo / Pitch of component:12.7 mm		Only for 1	
AF	Ammo / Pitch of component:15.0 mm			
AM	Ammo / Pitch of component:25.4 mm			

Bulk Code	Description	
3E	Lead's length L : 3.5mm	
04	Lead's length L: 4mm	03
4E	Lead's length L : 4.5mm	
20	Lead's length L : 20mm	M.
	UNVOLOGY CORPORAL	10.

8Length tolerance

Code	Description			
А	± 0.5 mm(Only for short kink lead code "D / X / H")			
В	±1.0 mm			
С	Min.			
D	Taping special purpose			

9Pitch

Code	Description			Code	Description
5	5.0±0.8mm (For Bulk)	Rated voltage		7	7.5 ±1mm
5	5.0+0.8mm-0.2mm (For Taping)	≤2000Vdc		0	10.0 ±1mm

DEpoxy Resin Code

Code	Description
В	Epoxy resin, Pb free
Н	Halogen and Pb free, epoxy resin

POE-D06-00-E-12 Ver: 12 Page: 5 / 20

2. Mechanical:			Available lead co	ode (Epoxy r	resin coating)- (unit: mm)
Lead code	SAP P/N (13-17)digits	Pitch (F)	Lead Length(L)	Packing	Lead Configuration
Lead style : B	B20C5	5.0 ± 0.8	20 MIN.		D max. T max.
Straight long	B20C7	7.5 ± 1.0	20 MIN.	Bulk	
lead	B20C0	10±1.0	20 MIN.		
	BAND5	5.0+0.8-0.2			
	BAFD7	7.5±1.0			
	BAMD0	10±1.0	- Taping Spec. (Ref.to page.12)	Tap. Ammo	
Lead style : L	L04B5	5.0±0.8	4.0 ± 1.0		D max. T max.
Straight short	L03B7	7.5 ± 1.0	3.0 ± 1.0		
lead	L4EB7	7.5 ± 1.0	4.5 ± 1.0		
	L05B7	7.5 ± 1.0	5.0 ± 1.0		
	L10B7	7.5 ± 1.0 7.5 ± 1.0	10.0 ± 1.0	Bulk	
	L03B0	10 ± 1.0	3.0 ± 1.0	2 911	
	L03B0	10 ± 1.0 10 ± 1.0	3.0 ± 1.0 4.5 ± 1.0		ŢĨŧ− ┍ −ŧĨ Ţ¯∏ ∏
	L05B0	10 ± 1.0 10 ± 1.0	4.5 ± 1.0 5.0 ± 1.0		
	L10B0	10 ± 1.0 10 ± 1.0	10.0 ± 1.0		
Lead style : D	D04A5	5.0±0.8	4.0 ± 0.5		
Vertical kink lead		7.5 ± 1.0	4.0 ± 0.5 3.5 ± 0.5		
vertical klink leau	D3LA7 D04A7	7.5 ± 1.0 7.5 ± 1.0	3.3 ± 0.3 4.0 ± 0.5	Bulk	
	D3EA0	10 ± 1.0	4.0 ± 0.5 3.5 ± 0.5		
	D3EA0 D04A0	10 ± 1.0 10 ± 1.0	4.0 ± 0.5	-1.1	
	D04A0 DAND5	5.0+0.8-0.2	4.0 ± 0.3	77	
	DAND3 DAFD7		Taping Spec.	Tap. Ammo	[
	DAFD/ DAMD0	7.5 ± 1.0 10 ± 1.0	(Ref.to page.12)	Tap. Annio	
Lead style : X	X04A5	10 ± 1.0 5.0±0.8	4.0 ± 0.5		
•		3.0 ± 0.8 7.5 ± 1.0	4.0 ± 0.5 3.5 ± 0.5	- 9	D max. T max.
Outside kink lead	X04A7	7.5 ± 1.0 7.5 ± 1.0	3.5 ± 0.5 4.0 ± 0.5		
	X04A7 X05B7	7.5 ± 1.0	4.0 ± 0.3 5.0 ± 1.0	Bulk	
	X3EA0	10 ± 1.0		Duik	
		- // .	3.5 ± 0.5	E.	
	X04A0	10 ± 1.0	4.0 ± 0.5		xemo
	X05B0	10 ± 1.0	5.0 ± 1.0	*	
	XAFD7	7.5 ± 1.0	Taping Spec (Ref.to	Tap. Ammo	
T 1 / 1 · TT	XAMD0	10 ± 1.0	page.12)	_	
Lead style : H	H04A5	5.0±0.8	4.0 ± 0.5		D max. T max.
Inside kink lead	H04A7	7.5 ± 1.0	4.0 ± 0.5	Bulk	
	H04A0	10 ± 1.0	4.0 ± 0.5		()
	H4EB0	10 ± 1.0	4.5 ± 1.0		
	HAND5	5.0+0.8-0.2	Taping Spec.		
	HAFD7	7.5 ± 1.0	(Ref.to page.12)	Tap. Ammo	∽⊤⊮ ⊦ –╢ ┬┤╽
	HAMD0	10 ± 1.0	(iterito puge.12)		
Lead style : M Double Outside Kink Lead	M04A5	5.0±0.8	4.0 ± 0.5		D max.
	M04A7	7.5 ± 1.0	4.0 ± 0.5	Bulk	xi line in the second s
	M04A0	10 ± 1.0	4.0 ± 0.5		

***** Lead type – Inside kink lead is not available for 2KV & 3 KV, and Pitch 5.0mm is not available for 3KV. ***** Lead diameter $\varphi = 0.55 \pm -0.05$ mm

%e (Coating extension on leads): 3.0mmMax for straight lead style, not exceed the kink for kink lead. **%**When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.

PSA

POE-D06-00-E-12 Ver: 12 Page: 6 / 20

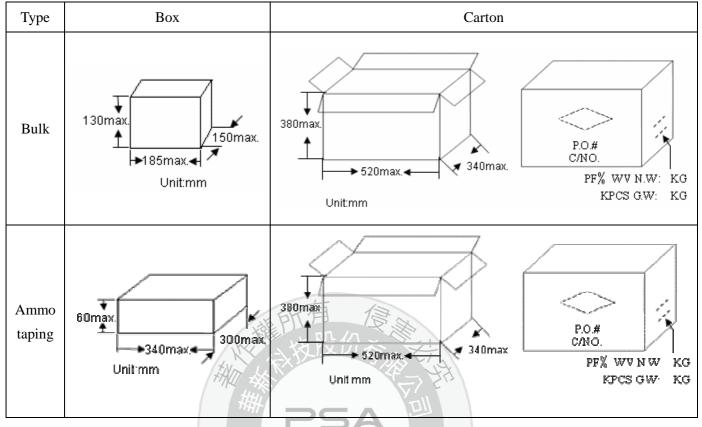
3. Capacitance value vs. rated voltage, product diameter:

3.1 LR Series :

Part Number	Rated Volt.	Cap. in pF	Cap. Tol.(%)	Dimension	Dimensions in mm		
	Kaleu volt.	Cap. III pr	Cap. 101.(%)	D max.	T max.		
LR102101K050	1000VDC	100	±10%	6.5	4.5		
LR102151K050	1000VDC	150	±10%	6.5	4.5		
LR102221K050	1000VDC	220	±10%	6.5	4.5		
LR102271K050	1000VDC	270	±10%	6.5	4.5		
LR102331K050	1000VDC	330	±10%	6.5	4.5		
LR102391K050	1000VDC	390	±10%	6.5	4.5		
LR102471K050	1000VDC	470	±10%	6.5	4.5		
LR102561K060	1000VDC	560	±10%	7.5	4.5		
LR102681K060	1000VDC	680	±10%	7.5	4.5		
LR102821K070	1000VDC	820	±10%	8.5	4.5		
LR102102K070	1000VDC	1000	±10%	8.5	4.5		
LR102152K090	1000VDC	1500	±10%	10.5	4.5		
LR102222K100	1000VDC	2200	±10%	11.5	4.5		
LR102332K130	1000VDC	3300	±10%	14.5	4.5		
LR202101K050	2000VDC	有100 亿	±10%	6.5	5.0		
LR202151K050	2000VDC	150	±10%	6.5	5.0		
LR202221K050	2000VDC	\leq 220 \rightarrow \geq	±10%	6.5	5.0		
LR202271K050	2000VDC	270	±10%	6.5	5.0		
LR202331K060	2000VDC	330	±10%	7.5	5.0		
LR202391K060	2000VDC	390	±10%	7.5	5.0		
LR202471K060	2000VDC		±10%	7.5	5.0		
LR202561K070	2000VDC	560	±10%	8.5	5.0		
LR202681K080	2000VDC	680	±10%	9.5	5.0		
LR202821K080	2000VDC	820	±10%	9.5	5.0		
LR202102K090	2000VDC	1000	±10%	10.5	5.0		
LR202122K100	2000VDC	1200	±10%	11.5	5.0		
LR202152K110	2000VDC	2001500	±10%	12.5	5.0		
LR202182K120	2000VDC	1800	±10%	13.5	5.0		
LR202222K130	2000VDC	2002200 UNA	±10%	14.5	5.0		
LR202332K160	2000VDC	3300	±10%	17.5	5.0		
LR302101K050	3000VDC	100	±10%	6.5	6.0		
LR302151K050	3000VDC	150	±10%	6.5	6.0		
LR302221K050	3000VDC	220	±10%	6.5	6.0		
LR302331K060	3000VDC	330	±10%	7.5	6.0		
LR302391K070	3000VDC	390	±10%	8.5	6.0		
LR302471K080	3000VDC	470	±10%	9.5	6.0		
LR302561K080	3000VDC	560	±10%	9.5	6.0		
LR302681K090	3000VDC	680	±10%	10.5	6.0		
LR302821K100	3000VDC	820	±10%	11.5	6.0		
LR302102K100	3000VDC	1000	±10%	11.5	6.0		
LR302152K130	3000VDC	1500	±10%	14.5	6.0		
LR302222K150	3000VDC	2200	±10%	16.5	6.0		

POE-D06-00-E-12 Ver: 12 Page: 7 / 20

4.	Marking:
----	----------


Temp. Char.		LR			
Marking Nominal body diameter		(2) + 102K + (4) + (4) + (5)			
		±15%(-25°C to +85°C)			
(1). Temp. char. and D.F.	+15~-30%(+85°C to+125°C) D.F. ∶ 0.2% Max.				
	Identified by 3-Figure Code.				
(2). Nominal capacitance	Ex. 100pf→"101", 1000 Pf→"102"				
	1000V	Marked with code (In case of DC 1000V marked with 1KV)			
(3). Rated voltage	2000V	Marked with code (In case of DC 2000V marked with 2KV)			
	3000V	Marked with code (In case of DC 3000V marked with 3KV)			
(4). Capacitance tolerance	K=±10% 55 1				
(5). Manufacturer's identification	Shall be marked as " UK ", but D $\Phi \leq 060$ shall be omitted.				
(6). Halogen and Pb free	When the ep	oxy resin is Halogen and Pb free, there is a "_"marking.			

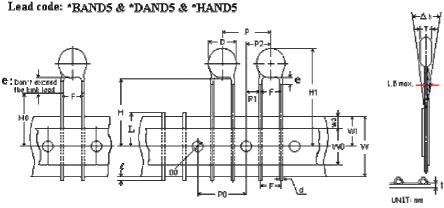
POE-D06-00-E-12 Ver: 12 Page: 8 / 20

5. Packing Baggage :

5.1 Packing size:

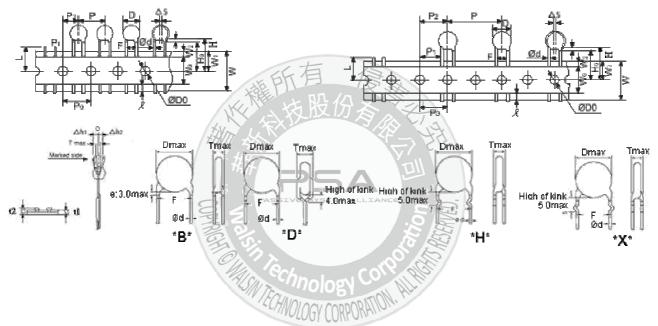
5.2 Packing quantity:

Packing Type		The code of 14th to15th in SAP P/N	MPQ (Kpcs	/Box)
		ANCHIO	1.5	
Taping		AF CORPORATION	1	
		AM	0.5	
Decking Type	Lead	Size code of 10th to 12th in SAP P/N	MPQ (Kpcs/Bag)	Kpcs/Box
Packing Type	length	Size code of 10th to 12th in SAF F/N	MFQ (Kpcs/bag)	Kpcs/Dox
	Long lead	050~100	1	2
	(L≧	110~120	0.5	1.5
	16mm)	130~170	0.5	1
Bulk		050~060	1	6
DUIK	Short lead	070~080	1	4
	(L<	090~100	1	3
	16mm)	110~140	1	2
		150~160	0.5	1


5

+ 12.7mm pitch/lead spacing 5.0mm taping

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR


POE-D06-00-E-12 Ver: 12 Page: 9 / 20

6. Taping Specifications:

 15mm pitch/lead spacing 7.5mm taping Lead code: *BAFD7 & *DAFD7 & *HAFD7 & *XAFD7

 25.4mm pitch/lead spacing 10.0mm taping Lead code: *DAMD0 & *XAMD0 & *HAMD0 & *BAMD0

Ver: 12 POE-D06-00-E-12 Page: 10 /

ge: 10 / 20

POE Part Number		*BAND5 *D AND5 *H AND5	*BAFD7 *DAFD7 *HAFD7 *XAFD7	*BAMD0 *DAMD0 *HAMD0 *XAMD0		
Item	Symbol	Dimensions (mm)	Dimensions (mm)	Dimensions (mm)		
Pitch of component	Р	12.7±1.0	15.0±1.0	25.4±2		
Pitch of sprocket	P0	12.7±0.3	15.0±0.3	12.7±0.3		
Lead spacing	F	5.0+0.8-0.2	7.5±1.0	10.0±1.0		
Length from hole center to component center	P2	6.35±1.3	7.5±1.5	12.7 ± 1.5		
Length from hole center to lead	P1	3.75±0.7	3.75±1.0	7.7±1.5		
Body diameter	D	See the "3. Capacitance	value vs. Rate voltage	e, product diameter"		
Deviation along tape, left or right	$\triangle S$		0±	2.0		
Carrier tape width	W	18.0 +1/-0.5				
Position of sprocket hole	W1	9.0±0.5				
Lead distance between the kink and center of sprocket hole	HO	16.0±0.5 For: *DAND5 *HAND5 *XAND5	18.0+2/-0 For: *DAFD7 *HAFD7 *XAFD7	18.0+2/-0 For: *DAMD0 *HAMD0 *XAMD0		
Lead distance between the bottom of body and the center of sprocket hole	H	20.0+1.5/-1.0 For: *BAND5	20.0+1.5/-1.0 For: *BAFD7	20.0+1.5/-1.0 For: *BAMD0		
Component Height	HI	、场区分合、	32.25Max			
Lead-Wire Protrusion length	HAN L	2.0Max (Or the example 1)	nd of lead wire may be in	side the tape.)		
Diameter of sprocket hole	D0		4.0±0.2			
Lead diameter	φd		0.55 ±0.05			
Total tape thickness	t1	2 SA	0.6±0.3			
Total thickness, tape and lead wire	n t2 ⁼	ASSIVE SYSTEM ALLIANCE	1.5 max.			
Deviation across tape	∆h		O 2.0 max.			
Portion to cut in case of defect	PLO.		11.0 max.			
Hole-down tape width	W0		8.0min			
Hole-down tape distortion	W2/	Cholony Con	1.5±1.5			
Coating extension on leads	e	3.0 max for straight lead s	tyle; Not exceed the ki	nk leads for kink lead.		
Body thickness	Т	See the "3. Capacitance	value vs. Rate voltage	e, product diameter"		

7.1 Scope: This specification applies to Low Dissipation Ceramic Disc Capacitor.

7.2 Test Conditions:

7.5 Test items:

Unless otherwise specified, all tests shall be operated at the standard test conditions of temperature 5° C to 35° C and relative humidity 45% to 85%.

When fails a test, retest be operated at the conditions of temperature $25^{\circ}C \pm 2^{\circ}C$, relative humidity of 60% to 70% and barometric pressure 860 to 1060 mbar.

- 7.3 Handle procedure: to avoid unexpected testing results from occurring, the tested capacitor must be kept at room condition for at least 30 minutes and completely discharged.
- 7.4 Applications : Ideal for use on high frequency pulse circuits such as a horizontal resonance circuit for CTV and snubber circuits for switching power supplies.

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
Operating Temperature Range	-25 To +125°C (Including capacito	pr's self-heating temperature 20°C Max)
Appearance Structure size	No abnormalities	As stated in section 3.
Marking	To be easily legible.	As stated in section 4
	Between Lead Wire : No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage (DC1 to 3KV) is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current \leq 50mA.)
Dielectric Strength	Body Insulation : No failure 000	First, the terminals of the capacitor should be connected together. Then, as shown in figure at right, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 4mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC1250Vrms <50/60Hz> is applied for 1 to 5 sec. between the capacitor lead wires and metal balls. (Charge/Discharge current ≤ 50 mA.)
Insulation Resistance	10000 M Ω min.	Insulation resistance should be measured at 60 ± 5 seconds after applied voltage ((DC500V)
Capacitance	Tolerance: K: ±10%	Testing Frequency: 1 KHz ± 20% Testing Voltage: 1.0 Vrms
Dissipation Factor (D.F.)	LR : 0.2% Max.	The dissipation factor should be measured at 25° C with 1 ± 0.2 KHz and 1.0 Vrms Max.

"room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

V 2KV LOW DISCIDATION OF DAMO DISC CARACITES

Ver: 12 Page: 12 / 20

A

Item	Po	ost-Test	Requ	uirements	Te	sting		Proce	dure	
	Temp. Char		According to step 1 to 5 in order, measured capacitance when temperature reaches balance and CAP. change shall be calculated on the following formula:							
		-25 to -	-85°C	+85 to +125°C	CAP. change =(0			C1 3	4	5
Temperature Characteristic	LR	Within		Step12345LR Temp. (°C) 25 ± 2 -25 ± 3 25 ± 2 125 ± 2 25 ± 2 Note: C1 = Capacitance as step 3C2 = Capacitance as step 2 or 4T1 =Temperature as step 3T2 = Temperature as step 2 or 4						
Strength of Lead	Pull : Lead wire should not be cut off.			As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10 ± 1 sec.						
	Bendi	Bending :		Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.						
Vibration Resistance	Appearance: No abnormalities Capacitance: Within specified tolerance. D.F. :				The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1minute rate of vibration change from 10Hz to 55Hz and back to 10Hz. apply for a total of 6 hrs., 2hrs. each in 3 mutually perpendicular directions.				10 to 1minute nd back to	
Solder ability Of Leads	LR : 0.2% Max. Lead wire should be soldered with uniform coating on the axial direction over 75% of the circumferential direction.				The lead wire of a capacitor should be dipped into a ethanol solution of 25 wt% rosin and then into molten solder of 245 ± 5 °C for 5 ± 0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires.				molten s the depth	
	Appearance : No marked defect.			The lead wire should be immersed up to 2.0 mm form the root of lead wires.(A) Body Dia. ≤ 6.0mm: Into the molten solder of which						
Soldering Effect	-	Capacitance Change : Within ±10%			 temperature: 260(+5/-0)°C for 3.0±0.5 seconds. (B) Body Dia. > 6.0mm: Into the molten solder of which temperature 260(+5/-0)°C for 5~10 seconds. 			conds. er of which ds.		
	Dielectric Strength (between Lead Wires) : Per. Item Dielectric Strength		Then leave at standard test conditions for 24±2 hours, then measured. (Continued on the following page.)							

РОЕ-D06-00-Е-12 Ра

Page: 13 / 20

Ver: 12

Item	Post-Test Requirements		Testing	Procedure
	Appearance : No marked defect. Capacitance Change : Within ±10%	be perfo Temper	ormed in following co ature of iron-tip: 350-	-400 °C
Soldering Effect	Dielectric Strength (between Lead Wires) : Per. Item Dielectric Strength	Soldering Pre-treat Capacito at *room Post-trea Capacito Measure Dielectri Soldering Capacita	r should be stored at 1 condition for 24±2 ht tment: r should be stored for ment order: c strength -> Pre-treat g effect test -> Post-treat nce	25±3°C for 1 hr., then placed rs. before initial measurements. 24±2 hrs. at *room condition. ment -> Capacitance -> eatment ->
	Appearance: No Abnormalities		$\frac{\text{cature cycle}}{\text{Temperature}(^{\circ}C)}$	cted to 5 temperature cycles.
	Cap. Change: Within ±10%	1	-25±3 25±2	<u>30</u> 3
	D.F. : LR : 0.6% max.	3/2	125±3	30
Temperature Cycle	Insulation Resistance: 1000MΩ Min. PASSIVE SV	at *1ro measur Post-trea con Measure I.R. • I D.F> Capaci	tor should be stored a om condition for 24± rements. tment: pacitor should be stor ndition. ment order: Dielectric strength -> I Temperature cycle te tance • D.F. • I.R. • D	ed for 24±2 hrs. at *room Pre-treatment -> Capacitance • est -> Post-treatment -> ielectric strength °
Humidity (Under Steady State)	Appearance: No Abnormalities Cap. Change: Within ±10% D.F. : LR : 0.6% max.	relative h Pre-treatu Capacit placed a measure Post-trea	umidity. nent: or should be stored at at *1room condition for ements.	0 hrs. at $40\pm2^{\circ}$ C in 90 to 95% 125 $\pm3^{\circ}$ C for 1 hr., then or 24 ±2 hrs. before initial
	Insulation Resistance: 1000MΩ Min.	condition Measure I.R> 1	on. ment order:	citance • D.F> Humidity

* "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

POE-D06-00-E-12

Ver: 12 Page: 14 / 20

Item	Post-Test Requirements	Testing Procedure		
	Appearance: No Abnormalities	Apply the rated voltage for 500 +24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. (Charge/Discharge current<50mA.)		
	Cap. Change: Within ±10% D.F. : LR : 0.6% max.	Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at *1room condition for 24±2 hrs. before initial measurements. Post-treatment:		
Humidity Loading		Capacitor should be stored for 1 to 2 hrs. at *1 room condition.		
-		Post-treatment:		
	Insulation Resistance: 500MΩ Min.	Capacitor should be stored at $125\pm3^{\circ}$ C for 1 hr., then placed at *1 room condition for 24 ± 2 hrs.		
		Measurement order:		
		I.R> Pre-treatment -> Capacitance • D.F>Humidity loading test -> *2 I.R> Post-treatment ->Capacitance • D.F.		
	Appearance: No Abnormalities Cap. Change: Within ±10% D.F. :	Apply a DC voltage of 150% of the rated voltage (DC1kV to 3kV) for 1000 +48/-0 hrs. at 125±2°C with a relative humidity of 50% max. (Charge/Discharge currentV50mA.) Pre-treatment:		
Life	LR : 0.6% max.	Capacitor should be stored at 125±3°C for 1 hr., then place at *1room condition for 24±2 hrs. before initial measurements.		
	Insulation Resistance: LR : 2000MΩ Min.	Post-treatment : Capacitor should be stored at 125±3°C for 1 hr., then placed at *1room condition for 24±2 hrs.		
	Alson ech	Measurement order:		
	TECHNO	I.R> Pre-treatment -> Capacitance • D.F> Life test ->*3 I.R> Post-treatment -> Capacitance • D.F.		

*1 "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 The measurement of I.R. will be held in 1 to 2 hrs. after Humidity loading test.

*3 The measurement of I.R. will be held in 12 to 24 hrs. after Life test.

8. Notices:

8.1 Caution (Rating)

I. Operating Voltage

When dc-rated capacitors are to be used in ac or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains dc bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When using the low-dissipation (LR Char.) series in a high-frequency and high-voltage circuit, be sure to read the instructions in item 4.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

II. Operating Temperature And Self-Generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 15°c at an atmosphere temperature of 25°c. When measuring, use a thermocouple of small thermal capacity-k of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

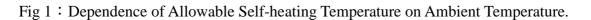
Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. otherwise, accurate measurement cannot be ensured.)

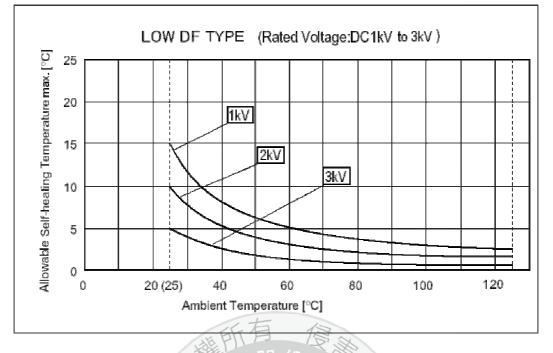
III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

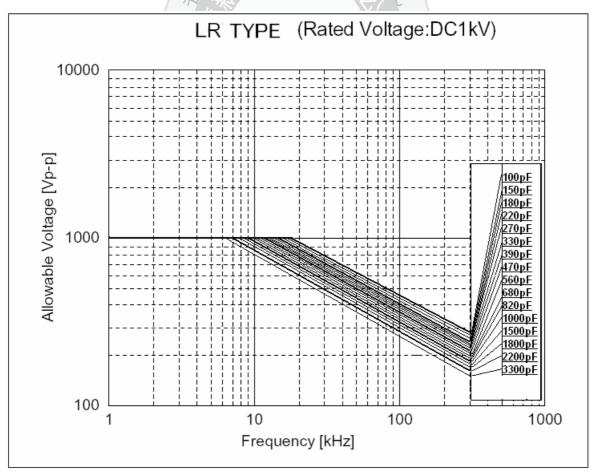
IV. Load Reduction and Self-generated Heat During

Application of High-frequency and High-voltage

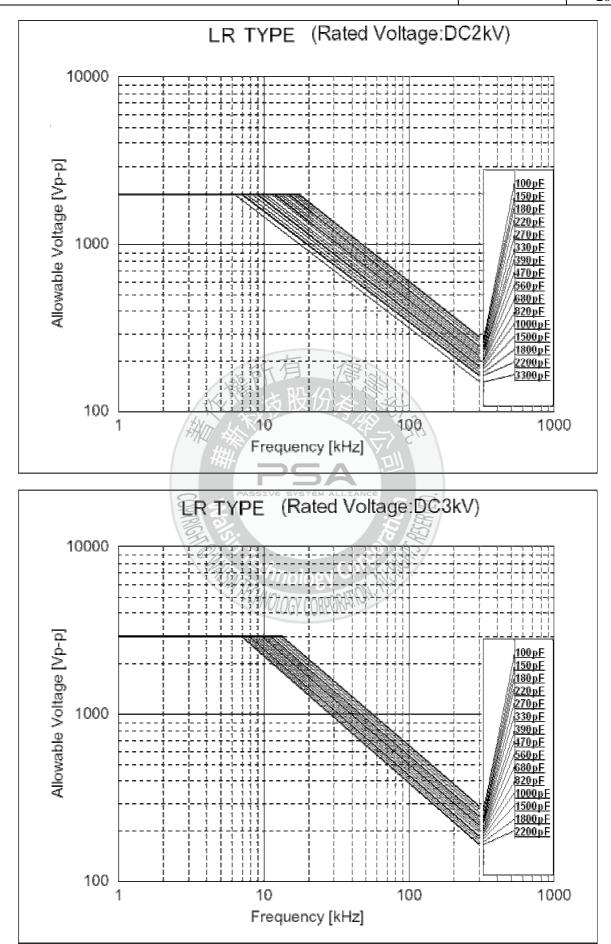

Due to the low self-heating characteristics of low dissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of B characteristic capacitors. However, in case the self heating temperature is 15°C under a high-frequency voltage whose peak-to-peak value equals the capacitor's rated voltage, the capacitor's power consumption may exceed it's allowable electric power.


Allowable conditions at high frequency:

*1 Fig. 1 show the dependence of allowable self-heating temperature on ambient temperature. When the ambient temperature is 85 to 125° , the applied voltage needs to be further reduced.


*2 Fig. 2 shows reference data on the allowable voltage-frequency characteristic for a sine wave voltage when the ambient temperature is 105° C or less.

Failure to follow the above cautions (items 1to 4) may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.



 1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR
 POE-D06-00-E-12

Page: 17 /

20

Copyright © by Walsin Technology Correction 1 All rights reserved.

Because of influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency.

Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms.

8.2 Storage and Operating Condition:

Operating And Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to Moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

8.3 Soldering and Mounting:

I. Vibration And Impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

II. Soldering

When soldering this product to a Pcb / Pwb, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions

following conditions.

Temperature of iron-tip: 400 °C Max.

Soldering iron wattage: 50W Max. Soldering time: 3.5 sec. Max.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

8.4 Cleaning (ultrasonic cleaning):

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity: output of 20-watts per liter or less. Rinsing time: 5 min. Maximum. Do not vibrate the Pcb/Pwb directly. Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

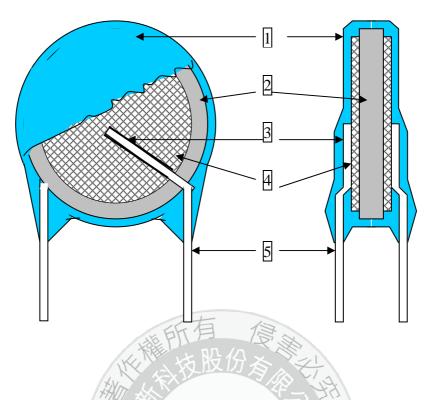
8.5 Caution (Handling)

Vibration And Impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

8.6 Note


7(c)-II Does not apply to applications covered by point Lead in dielectric ceramic in capacitors for a rated voltage of 7(c)-I and 7(c)-IV of this Annex. 125 V AC or 250 V DC or higher Expires on: -21 July 2021 for categories 1-7 and 10; -21 July 2021 for categories 8 and 9 other than in vitro diagnostic medical devices and industrial monitoring and control instruments; -21 July 2023 for category 8 in vitro diagnostic medical devices; -21 July 2024 for category 9 industrial monitoring and control instruments, and for category 11."

PSA

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
	POE-D06-00-E-12	Page: 20 /
		20

9. Drawing of Internal Structure and material list: (LR)

Remarks :

No.	Part name	Material	Model/Type	Component
1	Insulation Coating	94	4.EF-150 Alliance 2.PCE-210 3.PCE-300	Epoxy resin、Pigment (Blue / UL 94 V-0 /)
2	Dielectric Element	Ceramic	holosysRof	BaTiO ₃
3	Solder	Tin-silver	Sn97.5-Ag2.5	Sn97.5-Ag2.5
4	Electrodes	Ag	1.SP-160PL 2.SP-260PL	Silver Glass frit
5	Leads wire	Tinned copper clad steel wire	0.55+/-0.05mm	Substrate metal: Fe & Cu Surface plating: Sn 100%(3~7µm)

单击下面可查看定价,库存,交付和生命周期等信息

>>Walsin Technology(华新科技(华科))

>>点击查看相关商品