Ultra-Small, 1 to 26 MHz Oscillator

Description

The CS00112 is the industry's smallest and the lowest power MHz oscillator. With 0.1 mW of active power consumption at 3.072 MHz output frequency, this $\mu Power$ oscillator enables longer battery life for a wearable, IoT or mobile device compared to a quartz-based oscillator or resonator.

The device comes in the smallest 1.5 mm x 0.8 mm package. The unique combination of ultra-low power, ultra-small package and flexible output frequency makes it ideal for power sensitive and space constrained applications including:

- Tablets
- Fitness bands
- Health and medical monitoring
- Wearables
- Portable audio
- Input devices
- loT devices

Features

- Ultra-low current consumption of 60 µA at 3.072 MHz
- Ultra-small 1.5 mm x 0.8 mm package
- 1 to 26 MHz with 6 decimal places of accuracy
- Operating temperature from -40°C to 85°C. Contact SiTime for -40°C to 105°C option
- Frequency stability as low as ±100 ppm. Contact SiTime for ±25 ppm or ±50 ppm options
- Programmable output drive strength for best EMI or driving multiple loads
- Ultra-light weight of 1.28 mg
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition		
Frequency Range								
Output Frequency Range	f	1.000000		26.000000	MHz			
Frequency Stability and Aging								
Initial Tolerance	f_tol	-15	ı	+15	ppm	Frequency offset at 25°C post reflow		
Frequency Stability	f_stab	-100	ı	+100	ppm	Inclusive of initial tolerance, and variations over operating temperature, rated power supply voltage and output load. Contact SiTime for ±25 or ±50 ppmoptions.		
First Year Aging	f_1year	-3		+3	ppm	at 25°C		
			Operatin	ng Temperatu	reRange			
Operating Temperature Range	T_use	-20	ı	+70	°C	Extended Commercial		
		-40	-	+85	°C	Industrial. Contact SiTime for -40°C to 105°C option.		
		Su	pply Voltage	e and Curren	t Consump	otion		
Supply Voltage	VDD	1.62	1.8	1.98	V	Contact SiTime for 3.3V option		
Current Consumption ^[1]	IDD	-	60	-	μΑ	f = 3.072 MHz, no load		
		_	110	130	μA	f = 6.144 MHz, no load		
		_	230	270	μA	f = 6.144 MHz, 10 pF load		
		-	160	-	μA	f = 12 MHz, no load		
Standby Current	I_std	_	0.7	1.3	μΑ	ST pin = LOW, output is weakly pulled down		
			LVCMOS	OutputChara	acteristics			
Duty Cycle	DC	45	ı	55	%			
Rise/Fall Time	T_r, T_f	-	4	8	ns	20% - 80%. Contact SiTime for other programmable rise/fall options		
Output High Voltage	VOH	90%	-	-	VDD	IOH = -0.5 mA		
Output Low Voltage	VOL	-	-	10%	VDD	IOL = 0.5 mA		
			Inp	ut Characteri	stics			
Input High Voltage	VIH	80%	ı	-	VDD			
Input Low Voltage	VIL	-	ı	20%	VDD			
Input Slew Rate	In-slew	10	ı	-	V/µs			
Input Pull-down Impedance	Z_in	2.5	4	-	$M\Omega$	Clock active mode (ST pin = HIGH)		
		300	-	-	kΩ	Standby mode (ST pin =LOW)		

SiTime Corporation

Rev. 1.01

5451 Patrick Henry Drive, Santa Clara, CA95054

(408) 328-4400

www.sitime.com

Revised Oct 31, 2017

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition	
Startup, Standby and Resume Timing							
Startup Time	T_start	_	75	150	ms	Measured from the time VDD reaches 90% of its final value	
Standby Time	T_stdby	1	_	20	μs	Measured from the time ST pin crosses 50% threshold	
Resume Time	T_resume	1	2	3	ms	Measured from the time ST pin crosses 50% threshold	
				Jitter			
RMS Period Jitter	T_jitt	-	75	110	ps	f = 6.144 MHz	
RMS Phase Jitter	T_phj	-	0.8	2.5	ns	f = 6.144 MHz, Integration bandwidth = 100 Hz to 40 kHz	
						Note 2	

Notes:

Table 2. Pin Description

Pin	Symbol	Functionality		
1	nST	Input	L: Output is low (weak pull down). Device goes to the standby mode. Supply current reduces to I_std. H: Specified frequency output	
2	OUT	Output	LVCMOS clock output	
3	VDD	Power	Supply voltage. Bypass with a 0.01µF X7R capacitor.	
4	GND	Power	Connect to ground	

Top View

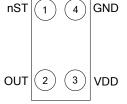


Figure 1. Pin Assignments

Table 3. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Condition	Value	Unit
Continuous Power Supply Voltage Range (VDD)		-0.5 to 3.63	V
Short Duration Maximum Power Supply Voltage (VDD)	<30 seconds	4.0	V
Continuous Maximum Operating Temperature		105	°C
Short Duration Maximum OperatingTemperature	≤30 seconds	125	°C
Human Body Model (HBM) ESD Protection	JESD22-A115	2000	V
Charge-Device Model (CDM) ESD Protection	JESD22-C101	750	V
Machine Model (MM) ESD Protection	T _A = 25°C	200	V
Latch-up Tolerance	JESD78 Compliant		
Mechanical ShockResistance	MII 883, Method 2002	10,000	g
Mechanical Vibration Resistance	MII 883, Method 2007	70	g
1508 CSP JunctionTemperature		150	°C
Storage Temperature		-65 to 150	°C
Soldering Temperature (follow standard Pb free soldering guidelines)	_	260	°C

^{1.} Current consumption with load is a function of the output frequency and output load. For any given output frequency, the capacitive loading will increase current consumption equal to C_load*VDD*f(MHz).

^{2.} Max spec inclusive of 25 mV peak-to-peak sinusoidal noise on VDD. Noise frequency 100 Hz to 20 MHz.

Block Diagram

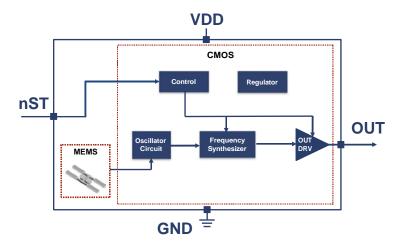


Figure 2. CS00112 Block Diagram

Device Operating Modes and Outputs

The CS00112 supports a \leq 0.7 μ A standby mode for battery-powered and other power sensitive applications. The switching between the active and standby modes is controlled by the logic level on the ST pin as shown in the table below.

Table 4. Operating Modes and Output States

nST Pin	MODE	OUTPUT	IDD Example	
LOW	Standby	Hi-Z, pulled-down with 1 MΩ impedence	1.3 μΑ	
FLOAT	Standby with 200 kΩinternal pull-down	Hi-Z, pulled-down with 1 MΩ impedence	1.3 μΑ	
HIGH	Clock Active	Specified frequency	60 μA @ 3.072 MHz	

Clock Active Mode

The CS00112 operates in the clock active mode when the ST pin is at logic HIGH. In the active mode, the device uses the on-chip frequency synthesizer to generate an output from the internal MEMS resonator reference. The frequency of the output is factory programmed based on the device ordering code.

Standby Mode

The CS00112 operates in the standby mode when the ST pin is at logic LOW or FLOAT. In the standby mode, all internal circuits with the exception of the MEMS oscillator circuit and the ST pin detection logic are turned off to reduce power consumption. While in standby mode, the input impedance of the ST pin is increased to further reduce system-level power consumption.

The output driver of the device in the standby mode is pulled-down with 1 $M\Omega$ impedance.

Output During Startup and Resume

The CS00112 starts up with the output disabled. The output is enabled once all internal circuit blocks are active, and logic HIGH is detected on the ST pin.

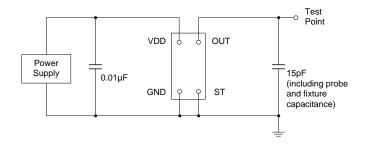
As shown in Table 4, logic LOW or FLOAT at the ST pin forces the CS00112 into the "standby" state, causing the output to disable. Upon pulling the ST pin HIGH, the device enters the "resume" state, keeping the output disabled. Once the "resume" state ends, the device output enables.

The first clock pulse after startup or resume is accurate to the rated stability.

Low Power Design Guidelines

For high EM noise environments, we recommend the following design guidelines:

- Place oscillator as far away from EM noise sources as possible (e.g., high-voltage switching regulators, motor drive control).
- Route noisy PCB traces, such as digital data lines or high di/dt power supply lines, away from the SiTime oscillator.
- Place a solid GND plane underneath the SiTime oscillator to shield the oscillator from noisy traces on the other board layers.


Manufacturing Guidelines

- No Ultrasonic or Megasonic Cleaning: Do not subject the CS00112 to an ultrasonic or megasonic cleaning environment. Permanent damage or long-term reliability issues to the device may occur in such an event.
- Applying board-level underfill (BLUF) to the device is acceptable, but will cause a slight shift of few ppm in the initial frequency tolerance. Tested with UF3810, UF3808, and FP4530 underfill.
- Reflow profile, per JESD22-A113D.
- For additional manufacturing guidelines and marking/ tape-reel instructions, click on the following link:
 **Total Control of the Con

http://www.sitime.com/component/docman/doc_download/243-manufactuing-notes-for-sitime-oscillators

Test Circuit and Waveform

tr — tf

80% Vdd

50%

20% Vdd

High Pulse

(TH)

Period

Period

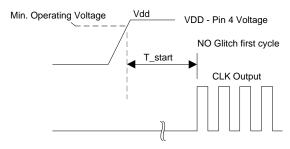
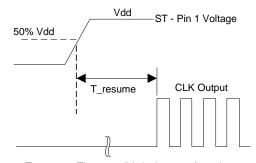

Figure 4. Waveform[3]

Figure 3. Test Circuit

Note:


3. Duty Cycle is computed as Duty Cycle =TH/Period.

Timing Diagram

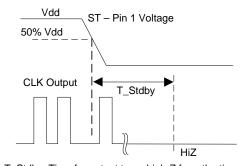

T_start: Time to valid clock output from power on

Figure 5. Startup Timing^[4, 5]

T_resume: Time to valid clock output from the time ST pin crosses 50% threshold

Figure 6. Resume Timing[4, 5]

T_Stdby: Time for output to go high-Z from the time ST pin crosses 50% threshold

Figure 7. Standby Timing[4]

Notes:

- 4. CS00112 supports "no runt" pulses and "no glitch" output during startup or resume.
- 5. CS00112 supports gated output which is accurate within rated frequency stability from the first cycle.

Performance Plots^[6]

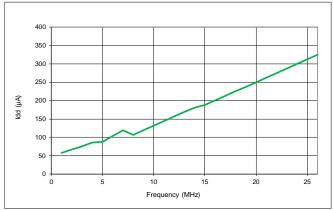


Figure 8. Idd vs Frequency without load

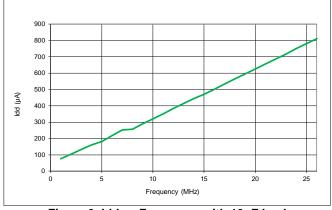


Figure 9. Idd vs Frequency with 10pF load

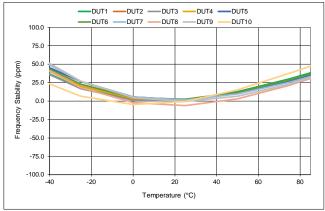


Figure 10. Frequency vs Temperature

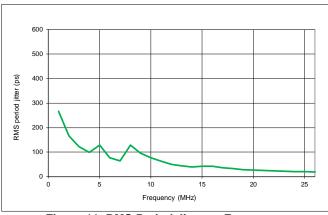


Figure 11. RMS Period Jitter vs Frequency

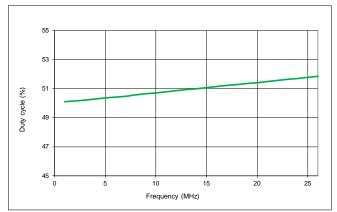


Figure 12. Duty Cycle vs Frequency

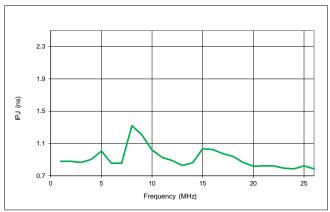


Figure 13. RMS Phase Jitter Random vs Frequency^[7]

Performance Plots^[6]

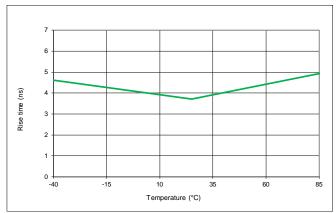
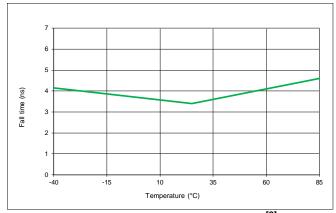
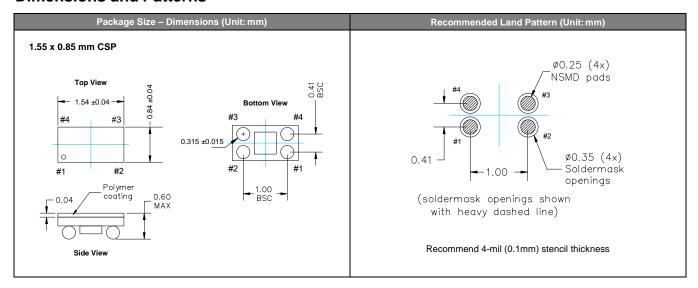


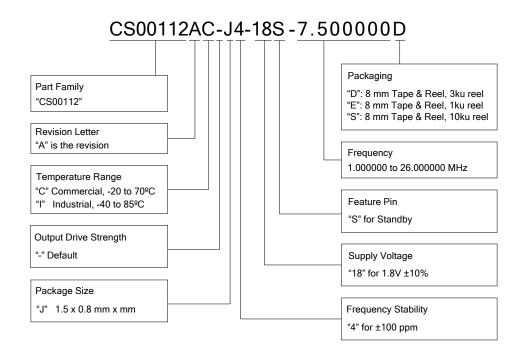
Figure 14. Rise Time vs Temperature^[8]




Figure 15. Fall Time vs Temperature^[8]

Notes:

- 6. All data is measured at room temperature, unless otherwise stated.
- 7. Data is measured with 15 pF load.
- 8. Integration range is from 100 Hz to 40 kHz.



Dimensions and Patterns

Ordering Information

CS00112

Ultra-Small, 1 to 26 MHz Oscillator

Revision History

Table 5. Datasheet Version and ChangeLog

Version	Release Date	Change Summary
1.0	5/10/17	Final production release
1.01	10/30/17	Correct an example of full part number at ordering information

© SiTime Corporation 2015. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

单击下面可查看定价,库存,交付和生命周期等信息

>>SiTime