

Description

Current Limiting Module (CLM) is a chip type surface mountable device that can protect against both overcurrent and overcharging. It comprises a fuse element to ensure stable operation under normal electrical current and to cut off the current when overcurrent occurs. It also comprises a resistive heating element that could be used in combination with a voltage detecting means, such as IC and FET. When overvoltage is detected, the heating element is electrically excited to generate heat to blow the fuse element to achieve overvoltage protection.

Features

- · Halogen-free
- Overcharging protection
- · Overcurrent protection
- Surface mountable
- · Fast response time

Application

- · Self Balancing
- E-Bike
- Power Tool

- · Automotive applications
- · Energy Storage systems
- Drone

Agency Approval and Environmental Compliance

Agency File Number Regulation Standard

E331807 Free IEC 61249-2-21:2003

TA 50428400

 $\hbox{RoHS Directive: Compliance (this product complies with RoHS exemption requirements)}$

Electrical Specifications

Irate	I _{rated}	Cells in	V _{max}	I _{break}	Vop	Resistance		Agency Approval	
Part Number	(A) series	(V _{DC}) (A)	(A) (V)	R _{heater} (Ω)	R_{fuse} $(m\Omega)$	c FU °us	TÜVRheinlend		
CLM3820P1245	45	3	62	120	9.8 ~ 13.5	1.9 ~ 3.4	0.4 ~ 2.0	✓	✓
CLM3820P1445	45	4	62	120	13.0 ~ 18.4	3.4 ~ 6.0	0.4 ~ 2.0	✓	✓
CLM3820P2045	45	5	62	120	16.7 ~ 23.5	5.6 ~ 9.9	0.4 ~ 2.0	✓	✓
CLM3820P3045	45	6~7	62	120	22.3 ~ 31.5	10.0 ~ 17.7	0.4 ~ 2.0	✓	✓
CLM3820P4045	45	9~10	62	120	33.0 ~ 46.9	22.0 ~ 38.7	0.4 ~ 2.0	✓	✓
CLM3820P5045	45	12~14	62	120	43.7 ~ 62.0	38.5 ~ 68.0	0.4 ~ 2.0	✓	✓

新竹市科學工業園區工業東四路 24-1 號 TEL: +886-3-5643931

No. 24-1 Industry E. Rd. IV, Hsinchu Science Park, Hsinchu 300, Taiwan. FAX: +886-3-5644624 http://www.pttc.com.tw

Electrical Characteristics

Current Capacity	100% x I _{rated} No Melting
Cut Time	200% x I _{rated} < 1 min
Interrupting Current	150A, power on 5 ms, power off 995 ms, 10000 cycles No Melting
Over Voltage Operation	In operation voltage range, the fusing time is <1min.

Note on Electrical Specifications & Characteristics

■ Vocabulary

 I_{rated} = Current carrying capacity that is measured at 40°C thermal equilibrium condition.

 I_{break} = The current that the fuse element is able to interrupt. V_{max} = The maximum voltage that can be cut off by fuse.

 V_{op} = Range of operation voltage.

 R_{heater} = The resistance of the heating element. R_{fuse} = The resistance of the fuse element.

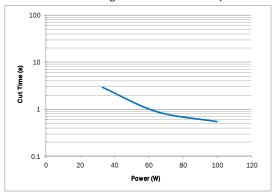
Cells in series = Number of battery cells connected in series in the circuit for CLM device to protect.

- Value specified is determined by using the PWB with 25mm*2oz copper traces, AWG8 covered wire, and 0.6mm glass epoxy PCB.
- Specifications are subject to change without notice.

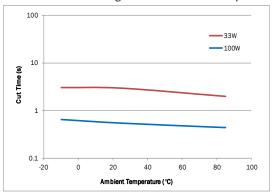
AWARNING

General

- Before and after mounted, the ultrasonic-cleaning or immersion-cleaning must not be done to CLM device. The flux on element would flow, and it would not be satisfied its specification when cleaning is done. In addition, a similar influence happens when the product comes in contact with cleaning-solution. These products after cleaning will not be guaranteed.
- Silicone-based oils, oils, solvents, gels, electrolytes, fuels, acids, and the like will adversely affect the properties of CLM devices, and shall not be used or applied.
- Please Do Not reuse the CLM device removed by the soldering process.
- CLM devices are secondary protection devices and are used solely for sporadic, accidental over-current or over-temperature error condition, and shall NOT be used if or when constant or repeated fault conditions (such fault conditions may be caused by, among others, incorrect pin-connection of a connector) or over-extensive trip events may occur.
- Operation over the maximum rating or other forms of improper use may cause failure, arcing, flame and/or other damage to the CLM devices.
- The performance of CLM devices will be adversely affected if they are improperly used under electronic, thermal and/or mechanical procedures and/or conditions non-conformant to those recommended by manufacturer.
- Customers shall be responsible for determining whether it is necessary to have back-up, failsafe and/or fool-proof protection to avoid or minimize damage that may result from extra-ordinary, irregular function or failure of CLM devices.
- There should be minimum of 0.1mm spacing between CLM and surrounding compounds, to maintain the product characteristics and avoid damage other surrounding compounds.
- This product is designed and manufactured only for general-use of electronics devices. We do not recommend that it is used for the applications Military, Medical and so on which may cause direct damages on life, bodies or properties.

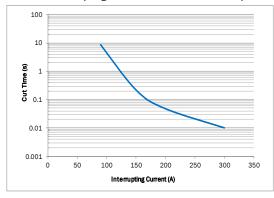


Thermal Derating Characteristics

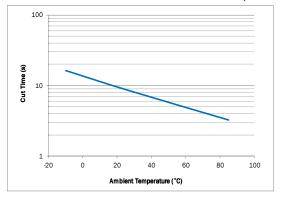

Ambient Temperature (°C)	25	40	60
Recommend Rated Current (A)	49.0	44.5	37.0

Cut Time by Heater Operation

■ Various heater wattage at 25°C ambient temperature.

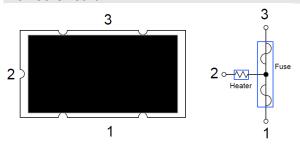


■ Constant heater wattage at various ambient temperature.

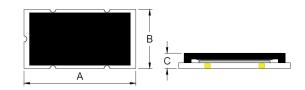


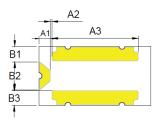
Cut Time by Current Operation

■ Various interrupting current at 25°C ambient temperature.



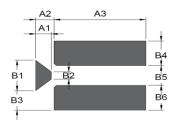
■ Constant 2x rated current at various ambient temperature.





Device Circuit

Physical Dimensions (mm.)

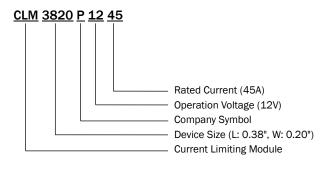

Α	9.50 ± 0.2
В	5.00 ± 0.3
С	2.00 max
A1	0.89 ± 0.1
A2	0.15 ± 0.1
А3	7.32 ± 0.1

B1	1.32 ± 0.1
B2	2.36 ± 0.1
В3	1.25 ± 0.1

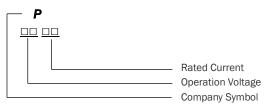
Environmental Specifications

Storage Temperature	0~35°C,≦70%RH
	3 months after shipment
Operating Temperature	-10°C to +65 °C
Hat Danning Aging	100±5°C, 250 hours
Hot Passive Aging	No structural damage and functional failure
House inline Andrews	60°C±2°C, 90~95%R.H. 250 hours
Humidity Aging	No structural damage and functional failure
Cold Dessive Aging	-20±3°C, 500 hours
Cold Passive Aging	No structural damage and functional failure
	MIL-STD-202 Method 107G
Thermal Shock	+125°C /-55°C, 100 times
	No structural damage and functional failure

Board and Solder Layout Recommend (mm)

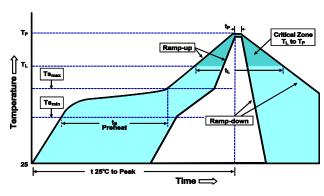


Material	Glass Epoxy PCB
Base Thickness	0.6mm
Copper Thickness	0.07mm
Covered Wire	AWG8

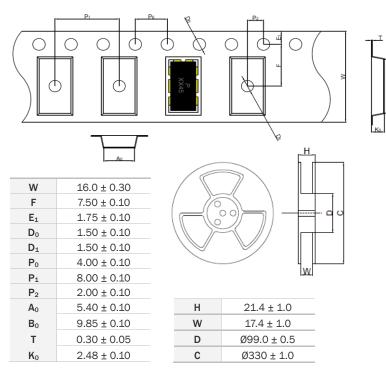

A1	1.30 ± 0.1
A2	1.52 ± 0.1
A3	7.60 ± 0.1

B1	3.10 ± 0.1
B2	0.75 ± 0.1
В3	1.95 ± 0.1
B4	2.50 ± 0.1
B5	2.00 ± 0.1
В6	2.50 ± 0.1

Part Number System


Part Marking System

Soldering Parameters


Average Ramp-Up Rate (Ts _{max} to T _P)	3°C/second max.	
Preheat		
-Temperature Min (Ts _{min})	150°C	
-Temperature Max (Ts _{max})	200°C	
-Time (Ts _{min} to Ts _{max})	60-120 seconds	
Time maintained above:		
-Temperature (T _L)	217°C	
-Time (t _L)	60-105 seconds	
Peak Temperature (T _P)	255°C	
Time within 5°C of actual Peak		
Temperature (t _P)	5 seconds max.	
Ramp-Down Rate	6°C /second max.	
Time 25°C to Peak Temperature	8 minutes max.	

Note 1: The temperature shown above is the top-side surface temperature of the device.

Note 2: If the soldering temperature profile deviates from the recommended profile, devices may not meet the performance requirements

Tape & Reel Specification (mm.)

Devices are packaged per EIA481 and EIA-2 standard

Packaging Quantity

Part Number	Tape & Reel Quantity	
CLM3820PXX45	1000	

单击下面可查看定价,库存,交付和生命周期等信息

2>聚鼎