

数字单极霍尔效应传感器

产品特性。

- 数字单极霍尔传感器
- 高新波频率
- 支持宽电压范围 --2.5 至 24V
- 宽工作温度范围
- 小封装 --TSOT23 (SE)

产品应用

- 流量计
- 阀门及电磁阀状态
- 无刷直流电机
- 接近开关
- 转速表

产品描述

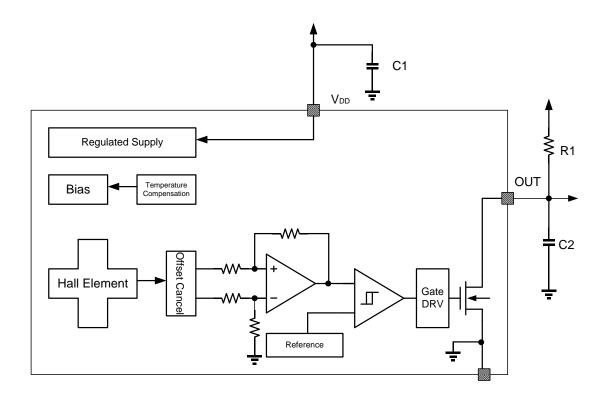
SC2416是一种斩波稳定采用BiCMOS技术制造的霍尔效应传感器,提供了具有卓越灵敏度、温度稳定性和集成保护功能的磁敏感解决方案。

SC2416 内部集成了稳压模块、霍尔阵列、放大电路、施密特触发器和输出级等电路模块。霍尔信号处理通路采用高频斩波技术,不但减小了霍尔感应阵列和处理电路的失调电压,而且减小了应力和温度对失调电压的影响,并尽可能地将芯片的系统延时及输出抖动降低至最小。SC2416 的输出级采用漏极开路输出,并有能达到 20mA 的灌电流能力。

内部集成的稳压电路使芯片可接受 2.5V 到 24V 的宽电源供电电压,满足工业和汽车电子的应用需求。

该器件有 3 引脚 TSOT-23 封装(SE)。该封装是 100%无铅亚光镀锡引线框架。

Rev. A/1.0 赛卓电子科技(上海)



目录

产品特性1-	磁参数6
产品应用1-	特性曲线7
产品描述1-	特性曲线(鍊)8
功能框图3-	功能描述9
订货信息3-	磁场方向定义9
引脚描述4-	传输函数9
极限参数5-	典型应用10
静电保护5-	封装信息 (SE)11
热特性5-	历史版本12
工作参数6-	

功能框图

订货信息

批号	包装	封装	环境温度	Bop(典型)	B _{RP} (典型)
SC2416SE	卷盘,3000 片/卷	TSOT23	-40℃ ~ 150℃	+12.0mT	+9.0mT

引脚描述

3-脚 SOT-23 SO 封装 (俯视图)

弓	脚		
名称	序号	类型	描述
V_{DD}	1	电源	2.5V~24V 供电电压
GND	3	地	地
OUT	2	输出	漏极开路输出,使用时需外接上拉电阻

极限参数

全工作温度范围内(除非另有说明) (1)

参数	符号	最小值	最大值	单位
电源端耐压	V _{DD}	-0.5	28	V
输出端耐压	Vouт	-0.5	28	V
输出灌电流	Isink	0	30	mA
操作环境温度	TA	-40	150	°C
最大结温	TJ	-55	165	°C
储存温度	Тѕтс	-65	175	°C

⁽¹⁾ 高于此处列出的压力可能会导致器件永久损坏,长时间暴露在绝对最大额定值条件下可能会影响器件的可靠性。

静电保护

人体模型(HBM)试验按 AEC-Q100-002 标准进行。

类型	参数	最小值	最大值	单位
静电防护(HBM)	Vesd	-3	+3	kV

热特性

符号	参数	测试条件	值	单位
$R_{ heta}$ JA	SO 封装热阻	单层 PCB, 覆铜仅限于在焊盘上	228	°C/W

 Rev. A/1.0
 赛卓电子科技(上海)

 -5 -5

⁽²⁾ 设计保证。

工作参数

全工作温度范围内(VDD = 5.0V除非另有说明)

符号	参数	测试条件	最小值	典型值	最大值	单位
V _{DD}	工作电压(1)	$T_J < T_{J(Max.)}$	2.5		24	V
IDD (off)	工作电流	V_{DD} =2.5 to 24 V, T_{A} =25 $^{\circ}{\rm C}$	0.8	1.3	2.0	mA
I _{DD} (on)	2 17 Colu	V_{DD} =2.5 to 24 V, T_{A} =25 $^{\circ}$ C	0.8	1.4	2.0	mA
ton	上电时间			35	50	μS
I QL	漏电流	Output Hi-Z			3	μA
		V _{DD} =5V, Io=10mA, T _A =25℃		20		Ω
R _{DS(on)}	场效应管导通电阻	V _{DD} =5V, I _O =10mA, T _A =125 $^{\circ}$ C		30	-1	Ω
t d	输出延时	B=BRP to BOP		15	25	μS
tr	输出上升时间	R1=1Kohm Co=50pF			0.5	μS
tf	输出下降时间	R1=1Kohm Co=50pF			0.2	μS

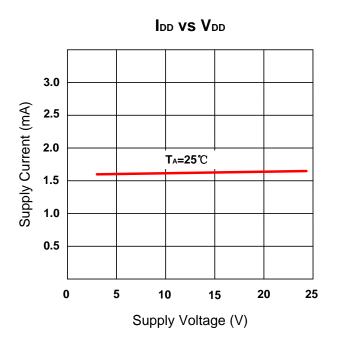
[&]quot; 最大电压必须根据功耗和结温进行调整,见热特性

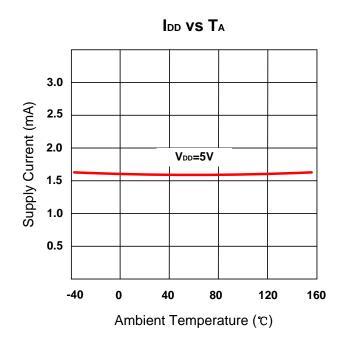
磁参数

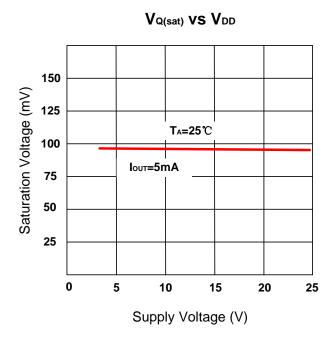
全工作温度范围, VDD = 5.0V (除非另有说明)

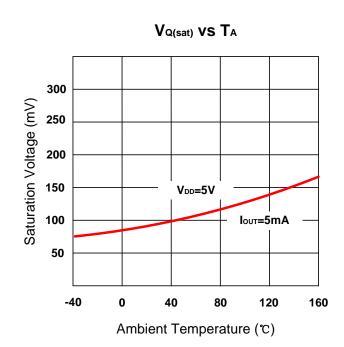
符号	参数	测试条件	最小值	典型值	最大值	单位
f _{BW}	带宽		20		1	kHz
Вор	工作点		6.0	12.0	18.0	mT
B _{RP}	释放点	T _A =-40°C to 125°C	3.0	9.0	15.0	mΤ
Внуѕ	磁滞			3.0		mT

1mT=10Gs

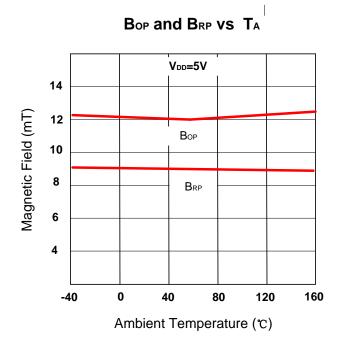

磁感应强度B, 北极性磁场为负值, 南极性磁场为正值。

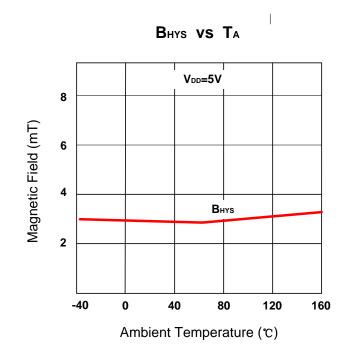

 Rev. A/1.0
 赛卓电子科技(上海)


 -6 -6



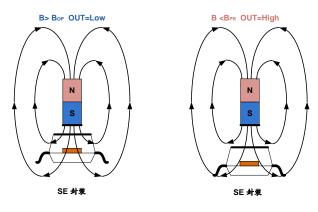
特性曲线





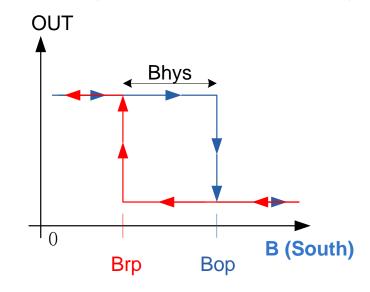
特性曲线 (续)

功能描述


SC2416 是一款数字锁存输出斩波稳定性霍尔传感器,主要用于磁感应。本品能够在 2.5V 到 24V 的电压下正常工作.

SC2416 在一个垂直于霍尔元件的磁场增加至工作点 Bop 时设备输出降低(开启)。在开启后,输出端可灌 20mA 的电流,输出电压是 VQ (sat)。当磁场减弱至释放点 BRP 时,设备输出升高(关闭)。磁场开启点与关闭点中间的距离就是设备的磁滞。这个器件内建的磁滞能够让设备即时在外部机械干扰和噪声下快速切换输出形式。

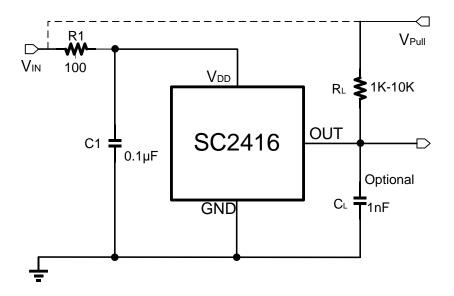
在输出终端上需要外接一个上拉电阻。输出端可以被拉高到 VDD 或者一个其他的电压值。这让其与控制电路的连接更加容易。


磁场方向定义

磁场S极正对芯片丝印面定义为正磁场。

传输函数

在迟滞区,小于 Bop 高于 BRP 的器件上电,允许不确定输出状态。在第一次超过 Bop 或 BRP 后,即可达到正确的状态。如果磁场强度大于 Bop.则输出被拉低。如果场强小于 BRP.输出被释放。



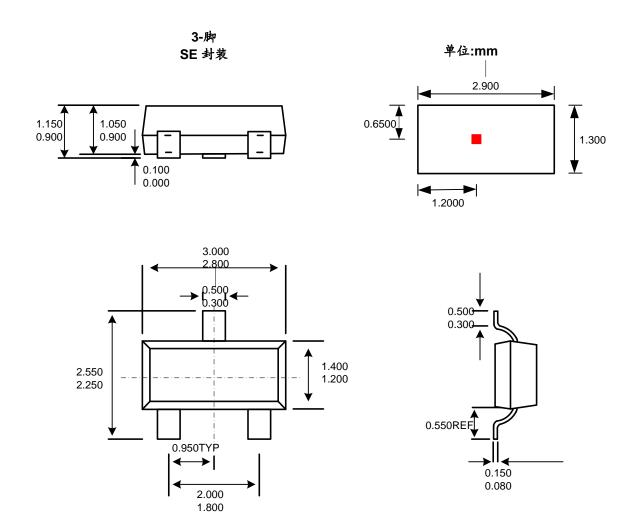
 Rev. A/1.0
 赛卓电子科技(上海)

 -9 -9

典型应用

SC2416 内部有电压调节器,可以在宽供电电压范围内工作。当器件工作于非稳压电源供电的应用时,必须在外部添加瞬态保护。对于使用稳压电源线路供电的应用,可能仍然需要 EMI/RFI 保护。强烈建议电源端与接地端使用外接电容,可降低外部噪声及内部斩波频率技术产生的噪声,建议靠近芯片 Voo 电源端并联 C1 电容到地,其典型值为 0.1μF。同时在外部可选配串联电阻 R1 其典型值为100Ω。输出电容 CL用作输出滤波,典型值为1nF。

根据系统带宽规范选择一个 CL值:


$$C_L = \frac{1}{2\pi \times R \times f (Hz)}$$

SC2416 器件的输出级是一个漏极开路 NMOS 管,可提供 20mA 的负载能力。调节上拉电阻 RL 的值使得其正常工作。RL 为开漏输出提供一个高电平。通常情况电流越小越好,但是更快的瞬态响应和带宽需要,接更小的电阻 RL 以实现更快的切换。

VPULL 不限于 VDD, 可以连接到其他参考电压。该引脚的允许电压范围在极限参数中规定。

封装信息 (SE)

注:

1. 供应商可选的实际本体和管脚形状尺寸位于图示范围内。

2. 高度不包括模具浇口溢料。

如果未指定公差,则尺寸为公称尺寸。

历史版本

版本号	日期	描述
Rev0.1	2017-09-18	初始版本
Rev2.3	2018-10-11	旧规格书最终版本号
RevA1.0	2020-12-29	统一格式发布

单击下面可查看定价,库存,交付和生命周期等信息

>>Semiment (赛卓电子)