

# **Data sheet**

SAW duplexer Small cell & femtocell LTE band 3 partial

Part number: B8210

Ordering code: B39192B8210P810

Date: March 27, 2020

Version: 2.1

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").



These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

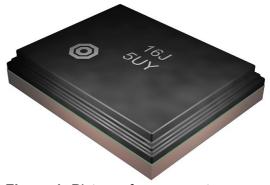
Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.



#### **Table of contents**

| 1 Application               |    |
|-----------------------------|----|
| 2 <u>Features</u>           |    |
| 3 Package                   | ξ  |
| 4 Pin configuration         | ξ  |
| 5 Matching circuit.         |    |
| 6 Characteristics           |    |
| 7 Maximum ratings           |    |
| 8 Transmission coefficients |    |
| 9 Reflection coefficients   |    |
| 10 Group delay              | 21 |
| 11 Packing material         | 22 |
| 12 Marking                  |    |
| 13 Soldering profile        | 26 |
| 14 Annotations.             |    |
| 15 Cautions and warnings    |    |
| 16 Important notes          | 29 |




#### 1 Application

- Low-loss SAW duplexer for 3G/LTE small cell & femtocell systems (Band 3 partial)
- Low insertion attenuation
- Usable pass band 50 MHz
- High power durability
- Rx = uplink = 1735-1785 MHz
- Tx = downlink = 1830-1880 MHz

#### 2 Features

- Industrial grade qualified family
- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.5 mm (max.)
- Approximate weight 0.01 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 2a (MSL2a)



**Figure 1:** Picture of component with example of product marking.

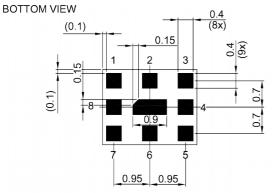
Pin configuration

3

**2**, 4, 5, 7,

8, 9

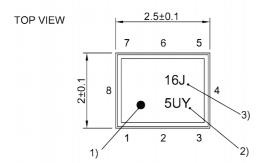
TX


RX

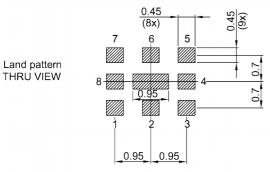
**ANT** 

Ground

#### 3 **Package**


**Europe GmbH** 




Pad and pitch tolerance ±0.05

#### SIDE VIEW





- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number



Landing pad tolerance -0.02

Figure 2: Drawing of package with package height A = 0.5 mm (max.). See Sec. Package information (p. 28).



## 5 Matching circuit

■  $L_{p6}$  = 3.6 nH

**Europe GmbH** 

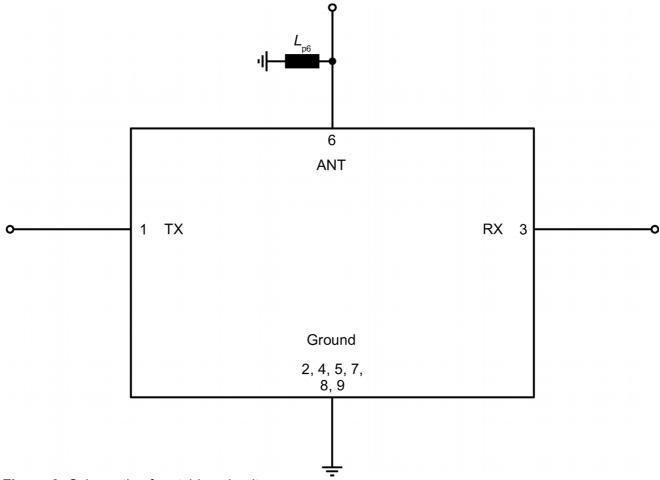



Figure 3: Schematic of matching circuit.



#### 6 Characteristics

#### 6.1 TX - ANT

Temperature range for specification

TX terminating impedance

ANT terminating impedance

RX terminating impedance

 $T_{\text{SPEC}} = -10 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ 

 $Z_{\text{TV}} = 50 \,\Omega$ 

 $Z_{ANT} = 50 \Omega // 3.6 \text{ nH}^{-1}$ 

 $Z_{\rm DX}$  = 50  $\Omega$ 

| Characteristics TX – ANT      |           |         |                                  | $\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$ |     |
|-------------------------------|-----------|---------|----------------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|-----|
| Center frequency              |           |         | f <sub>C</sub>                   |                                                                           | 1855                    | - SPEC                                                                          | MHz |
| Insertion attenuation         |           |         | α <sub>INT</sub>                 |                                                                           |                         |                                                                                 |     |
|                               | 1830 1835 | MHz     | ™INT                             |                                                                           | 1.7                     | 2.4                                                                             | dB  |
|                               | 1835 1875 | MHz     |                                  |                                                                           | 1.7                     | 2.4                                                                             | dB  |
|                               | 1875 1880 | MHz     |                                  | _                                                                         | 1.5                     | 2.4                                                                             | dB  |
| Maximum insertion attenuation | 1075 1000 | IVII IZ | a                                | _                                                                         | 1.5                     | 2.4                                                                             | GB  |
| maximum insertion attenuation | 1020 1000 | NALI    | $\alpha_{max}$                   |                                                                           | 1.0                     | 2.0                                                                             | 4D  |
| Amplifude ripple (p. p)       | 1830 1880 | MHz     | ٨؞                               |                                                                           | 1.8                     | 3.2                                                                             | dB  |
| Amplitude ripple (p-p)        | 1830 1880 | NALI    | Δα                               |                                                                           | 0.7                     | 2.0                                                                             | dB  |
| Maximum group dolay           | 1030 1000 | MHz     | _                                | _                                                                         | 0.7                     | 2.0                                                                             | ub  |
| Maximum group delay           | 1000 1000 |         | $\boldsymbol{\tau}_{\text{max}}$ |                                                                           |                         | 40                                                                              |     |
|                               | 1830 1880 | MHz     |                                  | _                                                                         | 26                      | 42                                                                              | ns  |
| Group delay ripple            |           |         | $\Delta \tau_{\text{var}}$       |                                                                           |                         |                                                                                 |     |
|                               | 1830 1880 | MHz     |                                  | _                                                                         | 10                      | 26                                                                              | ns  |
| Maximum VSWR                  |           |         | $VSWR_{max}$                     |                                                                           |                         |                                                                                 |     |
| @ TX port                     | 1830 1880 | MHz     |                                  | _                                                                         | 1.6                     | 2.1                                                                             |     |
| @ ANT port                    | 1830 1880 | MHz     |                                  | _                                                                         | 1.6                     | 2.0                                                                             |     |
| Minimum attenuation           |           |         | $\alpha_{\text{min}}$            |                                                                           |                         |                                                                                 |     |
|                               | 10 700    | MHz     |                                  | 40                                                                        | 57                      | _                                                                               | dB  |
|                               | 700 1000  | MHz     |                                  | 40                                                                        | 52                      | _                                                                               | dB  |
|                               | 1000 1400 | MHz     |                                  | 35                                                                        | 48                      | _                                                                               | dB  |
|                               | 1400 1600 | MHz     |                                  | 35                                                                        | 48                      | _                                                                               | dB  |
|                               | 1600 1710 | MHz     |                                  | 35                                                                        | 49                      | _                                                                               | dB  |
|                               | 1710 1735 | MHz     |                                  | 45                                                                        | 60                      | _                                                                               | dB  |
|                               | 1735 1785 | MHz     |                                  | 55                                                                        | 58                      | _                                                                               | dB  |
|                               | 1785 1790 | MHz     |                                  | 40                                                                        | 62                      | _                                                                               | dB  |
|                               | 1790 1795 | MHz     |                                  | 30                                                                        | 54                      | _                                                                               | dB  |
|                               | 1920 1980 | MHz     |                                  | 51                                                                        | 57                      | _                                                                               | dB  |
|                               | 1980 2300 | MHz     |                                  | 40                                                                        | 52                      | _                                                                               | dB  |
|                               | 2300 2400 | MHz     |                                  | 45                                                                        | 53                      | _                                                                               | dB  |
|                               | 2400 2484 | MHz     |                                  | 45                                                                        | 54                      | _                                                                               | dB  |
|                               | 2484 2690 | MHz     |                                  | 45                                                                        | 54                      | _                                                                               | dB  |
|                               | 2690 3300 | MHz     |                                  | 45                                                                        | 55                      | _                                                                               | dB  |
|                               | 3300 3800 | MHz     |                                  | 43                                                                        | 52                      | _                                                                               | dB  |
|                               | 3800 5150 | MHz     |                                  | 28                                                                        | 32                      | _                                                                               | dB  |



# **Europe GmbH**

| Characteristics TX – ANT | $\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$ |    |
|--------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|----|
| 5150 6000 MHz            | 20                                                                        | 25                      | _                                                                               | dB |

See Sec. Matching circuit (p. 6). Integrated attenuation  $\alpha_{_{|NT}}$ : Averaged power  $|S_{ij}|^2$  over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.



Temperature range for specification

TX terminating impedance

ANT terminating impedance

RX terminating impedance

 $T_{\text{SPEC}} = -40 \,^{\circ}\text{C} \dots +95 \,^{\circ}\text{C}$ 

 $Z_{TY} = 50 \Omega$ 

 $Z_{ANT} = 50 \Omega // 3.6 \text{ nH}^{-1}$ 

 $Z_{_{\mathrm{PX}}} = 50 \ \Omega$ 

| Characteristics TX – ANT      |           |     |                             | $\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$ |     |
|-------------------------------|-----------|-----|-----------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|-----|
| Center frequency              |           |     | f <sub>C</sub>              | _                                                                         | 1855                    | _                                                                               | MHz |
| Insertion attenuation         |           |     | $\alpha_{\text{INT}}^{ 2)}$ |                                                                           |                         |                                                                                 |     |
|                               | 1830 1835 | MHz |                             | _                                                                         | 1.7                     | 2.6                                                                             | dB  |
|                               | 1835 1875 | MHz |                             | _                                                                         | 1.4                     | 2.2                                                                             | dB  |
|                               | 1875 1880 | MHz |                             | _                                                                         | 1.5                     | 2.6                                                                             | dB  |
| Maximum insertion attenuation |           |     | $\alpha_{\text{max}}$       |                                                                           |                         |                                                                                 |     |
|                               | 1830 1880 | MHz |                             | _                                                                         | 1.8                     | 3.5                                                                             | dB  |
| Amplitude ripple (p-p)        |           |     | Δα                          |                                                                           |                         |                                                                                 |     |
|                               | 1830 1880 | MHz |                             | _                                                                         | 0.7                     | 2.3                                                                             | dB  |
| Maximum group delay           |           |     | $\tau_{\text{max}}$         |                                                                           |                         |                                                                                 |     |
|                               | 1830 1880 | MHz | IIIdx                       | _                                                                         | 26                      | 46                                                                              | ns  |
| Group delay ripple            |           |     | $\Delta 	au_{var}$          |                                                                           |                         |                                                                                 |     |
|                               | 1830 1880 | MHz | vai                         | _                                                                         | 10                      | 30                                                                              | ns  |
| Maximum VSWR                  |           |     | VSWR <sub>max</sub>         |                                                                           |                         |                                                                                 |     |
| @ TX port                     | 1830 1880 | MHz | max                         | _                                                                         | 1.6                     | 2.1                                                                             |     |
| @ ANT port                    | 1830 1880 | MHz |                             | _                                                                         | 1.6                     | 2.0                                                                             |     |
| Minimum attenuation           |           |     | $\alpha_{_{min}}$           |                                                                           |                         |                                                                                 |     |
|                               | 10 700    | MHz | min                         | 40                                                                        | 57                      | _                                                                               | dB  |
|                               | 700 1000  | MHz |                             | 40                                                                        | 52                      | _                                                                               | dB  |
|                               | 1000 1400 | MHz |                             | 35                                                                        | 48                      | _                                                                               | dB  |
|                               | 1400 1600 | MHz |                             | 35                                                                        | 48                      | _                                                                               | dB  |
|                               | 1600 1710 | MHz |                             | 35                                                                        | 49                      | _                                                                               | dB  |
|                               | 1710 1735 | MHz |                             | 45                                                                        | 60                      | _                                                                               | dB  |
|                               | 1735 1785 | MHz |                             | 55                                                                        | 58                      | _                                                                               | dB  |
|                               | 1785 1790 | MHz |                             | 40                                                                        | 62                      | _                                                                               | dB  |
|                               | 1790 1795 | MHz |                             | 30                                                                        | 54                      | _                                                                               | dB  |
|                               | 1920 1980 | MHz |                             | 51                                                                        | 57                      | _                                                                               | dB  |
|                               | 1980 2300 | MHz |                             | 40                                                                        | 52                      | _                                                                               | dB  |
|                               | 2300 2400 | MHz |                             | 45                                                                        | 53                      | _                                                                               | dB  |
|                               | 2400 2484 | MHz |                             | 45                                                                        | 53                      | _                                                                               | dB  |
|                               | 2484 2690 | MHz |                             | 45                                                                        | 53                      | _                                                                               | dB  |
|                               | 2690 3300 | MHz |                             | 45                                                                        | 54                      | _                                                                               | dB  |
|                               | 3300 3800 | MHz |                             | 43                                                                        | 52                      | _                                                                               | dB  |
|                               | 3800 5150 | MHz |                             | 28                                                                        | 32                      | _                                                                               | dB  |
|                               | 5150 6000 | MHz |                             | 17                                                                        | 25                      | _                                                                               | dB  |

<sup>&</sup>lt;sup>1)</sup> See Sec. Matching circuit (p. 6).

Integrated attenuation  $\alpha_{\text{INT}}$ : Averaged power  $|S_{ij}|^2$  over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.



#### 6.2 ANT - RX

Temperature range for specification  $T_{\text{SPEC}} = -10 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ 

TX terminating impedance  $Z_{TX} = 50 \Omega$ 

ANT terminating impedance  $Z_{ANT} = 50 \Omega // 3.6 \text{ nH}^{1)}$ 

RX terminating impedance  $Z_{RX} = 50 \Omega$ 

| Characteristics ANT – RX      |           |     |                                    | $\begin{array}{c c} \mathbf{min.} \\ \mathbf{for} \ T_{\mathtt{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$ |     |
|-------------------------------|-----------|-----|------------------------------------|------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|-----|
| Center frequency              |           |     | f <sub>C</sub>                     | _                                                                                  | 1760                    | _                                                                               | MHz |
| Insertion attenuation         |           |     | $\alpha_{\text{INT}}^{ 2)}$        |                                                                                    |                         |                                                                                 |     |
|                               | 1735 1740 | MHz |                                    | _                                                                                  | 1.6                     | 2.5                                                                             | dB  |
|                               | 1740 1780 | MHz |                                    | _                                                                                  | 1.3                     | 2.1                                                                             | dB  |
|                               | 1780 1785 | MHz |                                    | _                                                                                  | 1.5                     | 2.5                                                                             | dB  |
| Maximum insertion attenuation |           |     | $\boldsymbol{\alpha}_{\text{max}}$ |                                                                                    |                         |                                                                                 |     |
|                               | 1735 1785 | MHz |                                    | _                                                                                  | 1.8                     | 3.0                                                                             | dB  |
| Amplitude ripple (p-p)        |           |     | Δα                                 |                                                                                    |                         |                                                                                 |     |
|                               | 1735 1785 | MHz |                                    | _                                                                                  | 0.8                     | 2.1                                                                             | dB  |
| Maximum group delay           |           |     | $\boldsymbol{\tau}_{\text{max}}$   |                                                                                    |                         |                                                                                 |     |
|                               | 1735 1785 | MHz |                                    | –                                                                                  | 28                      | 41                                                                              | ns  |
| Group delay ripple            |           |     | $\Delta \tau_{\text{var}}$         |                                                                                    |                         |                                                                                 |     |
|                               | 1735 1785 | MHz |                                    | _                                                                                  | 13                      | 26                                                                              | ns  |
| Maximum VSWR                  |           |     | $VSWR_{max}$                       |                                                                                    |                         |                                                                                 |     |
| @ ANT port                    | 1735 1785 | MHz |                                    | _                                                                                  | 1.6                     | 2.0                                                                             |     |
| @ RX port                     | 1735 1785 | MHz |                                    | _                                                                                  | 1.6                     | 2.1                                                                             |     |
| Minimum attenuation           |           |     | $\boldsymbol{\alpha}_{\text{min}}$ |                                                                                    |                         |                                                                                 |     |
|                               | 10 700    | MHz |                                    | 35                                                                                 | 52                      | _                                                                               | dB  |
|                               | 700 1000  | MHz |                                    | 35                                                                                 | 46                      | _                                                                               | dB  |
|                               | 1000 1600 | MHz |                                    | 30                                                                                 | 40                      | _                                                                               | dB  |
|                               | 1600 1690 | MHz |                                    | 38                                                                                 | 43                      | _                                                                               | dB  |
|                               | 1805 1830 | MHz |                                    | 8                                                                                  | 26                      | _                                                                               | dB  |
|                               | 1805 1830 | MHz |                                    | 13 <sup>2)</sup>                                                                   | 322)                    | _                                                                               | dB  |
|                               | 1830 1880 | MHz |                                    | 50                                                                                 | 56                      | _                                                                               | dB  |
|                               | 1880 1920 | MHz |                                    | 35                                                                                 | 45                      | _                                                                               | dB  |
|                               | 1920 1980 | MHz |                                    | 35                                                                                 | 44                      | _                                                                               | dB  |
|                               | 1980 2110 | MHz |                                    | 35                                                                                 | 44                      | _                                                                               | dB  |
|                               | 2110 2200 | MHz |                                    | 35                                                                                 | 44                      | _                                                                               | dB  |
|                               | 2200 2400 | MHz |                                    | 35                                                                                 | 43                      | _                                                                               | dB  |
|                               | 2400 2500 | MHz |                                    | 35                                                                                 | 43                      | _                                                                               | dB  |
|                               | 2500 2690 | MHz |                                    | 37                                                                                 | 47                      | _                                                                               | dB  |
|                               | 2690 3300 | MHz |                                    | 35                                                                                 | 46                      | _                                                                               | dB  |
|                               | 3300 3800 | MHz |                                    | 35                                                                                 | 40                      | _                                                                               | dB  |
|                               |           |     |                                    |                                                                                    |                         | _                                                                               |     |
|                               | 3800 5150 | MHz |                                    | 30                                                                                 | 33                      |                                                                                 | dB  |



# **Europe GmbH**

| Characteristics ANT – RX | $\begin{array}{c} \textbf{min.} \\ \textbf{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$ |    |
|--------------------------|-------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|----|
| 5150 6000 MHz            | 20                                                                            | 31                      | _                                                                               | dB |

<sup>1)</sup> 

See Sec. Matching circuit (p. 6). Integrated attenuation  $\alpha_{\text{INT}}$ : Averaged power  $|S_{ij}|^2$  over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.



# **Europe GmbH**

Temperature range for specification

TX terminating impedance

ANT terminating impedance

RX terminating impedance

 $T_{\scriptscriptstyle\mathrm{SPEC}}$ = -40 °C ... +95 °C

 $Z_{\text{TX}}$ =  $50 \Omega$ 

= 50  $\Omega$  // 3.6 nH<sup>1)</sup>

= 50 Ω

| Center frequency         f <sub>c</sub> or a serior attonuation         1760 or a serior attonuation         1700 or a serior attonuation         1735 1745 or MHz or a serior attonuation         1735 1785 or MHz or a serior attonuation         1735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Characteristics ANT – RX      |           |     |                                    | $\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$ |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-----|------------------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|-----|
| 1735 1745   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center frequency              |           |     | f <sub>C</sub>                     | _                                                                         | 1760                    | _                                                                         | MHz |
| 1745 1775   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Insertion attenuation         |           |     | $\alpha_{\text{INT}}^{ 2)}$        |                                                                           |                         |                                                                           |     |
| Maximum insertion attenuation   1775 1785   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 1735 1745 | MHz |                                    | _                                                                         | 1.6                     | 2.9                                                                       | dB  |
| Maximum insertion attenuation   1735 1785   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 1745 1775 | MHz |                                    | _                                                                         | 1.3                     | 2.2                                                                       | dB  |
| 1735 1785   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 1775 1785 | MHz |                                    | _                                                                         | 1.5                     | 2.9                                                                       | dB  |
| 1735 1785   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum insertion attenuation |           |     | $\boldsymbol{\alpha}_{\text{max}}$ |                                                                           |                         |                                                                           |     |
| Maximum group delay  1735 1785 MHz  1735 1785 MHz  Δτ <sub>vast</sub> Δτ <sub>v</sub> |                               | 1735 1785 | MHz |                                    | _                                                                         | 1.8                     | 3.5                                                                       | dB  |
| Maximum group delay         τmax         π         28         45         ns           Group delay ripple         Δτ <sub>var</sub> —         28         45         ns           Maximum VSWR         VSWR <sub>max</sub> —         13         30         ns           Maximum VSWR         VSWR <sub>max</sub> —         1.6         2.0         —           @ ANT port         1735 1785         MHz         —         1.6         2.0         —           @ RX port         1735 1785         MHz         —         1.6         2.1         —           Minimum attenuation         —         48         —         46         —         48           100 700         MHz         35         52         —         48           1000 1600         MHz         30         40         —         48           1805 1830         MHz         10°2         32°3         —         48           1805 1830         MHz         50         56         —         48           1880 1920         MHz         35         45         —         48           1880 1920         MHz         35         44         —         48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amplitude ripple (p-p)        |           |     | Δα                                 |                                                                           |                         |                                                                           |     |
| 1735 1785   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 1735 1785 | MHz |                                    | _                                                                         | 0.8                     | 2.6                                                                       | dB  |
| Group delay ripple         Δτ <sub>ver</sub> —         13         30         ns           Maximum VSWR         VSWR <sub>max</sub> —         1.6         2.0         —           @ ANT port         1735 1785         MHz         —         1.6         2.0         —           @ RX port         1735 1785         MHz         —         1.6         2.1         —           Minimum attenuation         —         1.6         2.1         —         dB           10 700         MHz         35         52         —         dB           1000 1600         MHz         30         40         —         dB           1805 1830         MHz         38         43         —         dB           1805 1830         MHz         10²         32²         —         dB           1805 1830         MHz         50         56         —         dB           1805 1830         MHz         50         56         —         dB           1809 1980         MHz         35         45         —         dB           1820 1980         MHz         35         44         —         dB           1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum group delay           |           |     | $\tau_{\text{max}}$                |                                                                           |                         |                                                                           |     |
| Maximum VSWR  ② ANT port  ② RX port  1735 1785  MHz  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □ 1.6  □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | 1735 1785 | MHz |                                    | _                                                                         | 28                      | 45                                                                        | ns  |
| Maximum VSWR         VSWR mass         VSWR mass         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <th< td=""><td>Group delay ripple</td><td></td><td></td><td><math>\Delta 	au_{var}</math></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Group delay ripple            |           |     | $\Delta 	au_{var}$                 |                                                                           |                         |                                                                           |     |
| @ ANT port       1735 1785       MHz       —       1.6       2.0         @ RX port       1735 1785       MHz       —       1.6       2.1         Minimum attenuation         10 700       MHz       35       52       —       dB         4000 1000       MHz       35       46       —       dB         1000 1600       MHz       30       40       —       dB         1600 1690       MHz       38       43       —       dB         1805 1830       MHz       6       26       —       dB         1805 1830       MHz       50       56       —       dB         1830 1880       MHz       35       45       —       dB         1880 1920       MHz       35       44       —       dB         1920 1980       MHz       35       44       —       dB         1980 2110       MHz       35       44       —       dB         2400 2500       MHz       35       43       —       dB         2400 2500       MHz       35       43       —       dB         2690 3300 </td <td></td> <td>1735 1785</td> <td>MHz</td> <td></td> <td>_</td> <td>13</td> <td>30</td> <td>ns</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 1735 1785 | MHz |                                    | _                                                                         | 13                      | 30                                                                        | ns  |
| <ul> <li>         @ RX port         Minimum attenuation         1735 1785         MHz         a<sub>min</sub>         10 700         MHz         35         52         — dB         700 1000         MHz         35         46         — dB         1000 1600         MHz         30         40         — dB         1600 1690         MHz         38         43         — dB         1805 1830         MHz         6         26         — dB         1850 1830         MHz         50         56         — dB         1880 1920         MHz         35         44         — dB         1920 1980         MHz         35         44         — dB         1980 2110         MHz         35         44         — dB         2200 2400         MHz         35         44         — dB         2400 2500         MHz         35         43         — dB         2500 2690         MHz         35         46         — dB         dB         2690 3300         MHz         35         40         — dB         B         2690 3800         MHz</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum VSWR                  |           |     | VSWR <sub>max</sub>                |                                                                           |                         |                                                                           |     |
| Minimum attenuation  10 700 MHz 35 52 — dB 700 1000 MHz 35 46 — dB 1000 1600 MHz 30 40 — dB 1600 1690 MHz 38 43 — dB 1805 1830 MHz 6 26 — dB 1805 1830 MHz 10² 32² — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1920 1980 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3300 3800 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |           |     |                                    | _                                                                         |                         |                                                                           |     |
| 10 700 MHz 35 52 — dB 700 1000 MHz 35 46 — dB 1000 1600 MHz 30 40 — dB 1600 1690 MHz 38 43 — dB 1805 1830 MHz 6 26 — dB 1830 1830 MHz 10 <sup>2)</sup> 32 <sup>2)</sup> — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3300 3800 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 1735 1785 | MHz |                                    | _                                                                         | 1.6                     | 2.1                                                                       |     |
| 700 1000 MHz 35 46 — dB 1000 1600 MHz 30 40 — dB 1600 1690 MHz 38 43 — dB 1805 1830 MHz 6 26 — dB 1805 1830 MHz 10 <sup>20</sup> 32 <sup>21</sup> — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2500 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3300 3800 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum attenuation           |           |     | $\alpha_{min}$                     |                                                                           |                         |                                                                           |     |
| 1000 1600 MHz 30 40 — dB 1600 1690 MHz 38 43 — dB 1805 1830 MHz 6 26 — dB 1805 1830 MHz 10 <sup>2)</sup> 32 <sup>2)</sup> — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3300 3800 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |           | MHz |                                    | 35                                                                        | 52                      | _                                                                         | dB  |
| 1600 1690 MHz 38 43 — dB 1805 1830 MHz 6 26 — dB 1805 1830 MHz 10 <sup>2)</sup> 32 <sup>2)</sup> — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 3300 3800 MHz 35 46 — dB 3300 5150 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 700 1000  | MHz |                                    | 35                                                                        | 46                      | _                                                                         | dB  |
| 1805 1830 MHz 6 26 — dB 1805 1830 MHz 10 <sup>2)</sup> 32 <sup>2)</sup> — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 1000 1600 | MHz |                                    | 30                                                                        | 40                      | _                                                                         | dB  |
| 1805 1830 MHz 10 <sup>2)</sup> 32 <sup>2)</sup> — dB 1830 1880 MHz 50 56 — dB 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 1600 1690 | MHz |                                    | 38                                                                        | 43                      | _                                                                         | dB  |
| 1830 1880       MHz       50       56       —       dB         1880 1920       MHz       35       45       —       dB         1920 1980       MHz       35       44       —       dB         1980 2110       MHz       35       44       —       dB         2110 2200       MHz       35       43       —       dB         2200 2400       MHz       35       43       —       dB         2400 2500       MHz       35       43       —       dB         2500 2690       MHz       37       47       —       dB         2690 3300       MHz       35       46       —       dB         3300 3800       MHz       35       40       —       dB         3800 5150       MHz       29       33       —       dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 1805 1830 | MHz |                                    | 6                                                                         | 26                      | _                                                                         | dB  |
| 1880 1920 MHz 35 45 — dB 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 1805 1830 | MHz |                                    | 10 <sup>2)</sup>                                                          | 322)                    | _                                                                         | dB  |
| 1920 1980 MHz 35 44 — dB 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 1830 1880 | MHz |                                    | 50                                                                        | 56                      | _                                                                         | dB  |
| 1980 2110 MHz 35 44 — dB 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 1880 1920 | MHz |                                    | 35                                                                        | 45                      | _                                                                         | dB  |
| 2110 2200 MHz 35 44 — dB 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 1920 1980 | MHz |                                    | 35                                                                        | 44                      | _                                                                         | dB  |
| 2200 2400 MHz 35 43 — dB 2400 2500 MHz 35 43 — dB 2500 2690 MHz 37 47 — dB 2690 3300 MHz 35 46 — dB 3300 3800 MHz 35 40 — dB 3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 1980 2110 | MHz |                                    | 35                                                                        | 44                      | _                                                                         | dB  |
| 2400 2500 MHz 35 43 — dB<br>2500 2690 MHz 37 47 — dB<br>2690 3300 MHz 35 46 — dB<br>3300 3800 MHz 35 40 — dB<br>3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 2110 2200 | MHz |                                    | 35                                                                        | 44                      | _                                                                         | dB  |
| 2500 2690 MHz 37 47 — dB<br>2690 3300 MHz 35 46 — dB<br>3300 3800 MHz 35 40 — dB<br>3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 2200 2400 | MHz |                                    | 35                                                                        | 43                      | _                                                                         | dB  |
| 2500 2690 MHz 37 47 — dB<br>2690 3300 MHz 35 46 — dB<br>3300 3800 MHz 35 40 — dB<br>3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 2400 2500 | MHz |                                    | 35                                                                        | 43                      | _                                                                         | dB  |
| 2690 3300 MHz 35 46 — dB<br>3300 3800 MHz 35 40 — dB<br>3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 2500 2690 | MHz |                                    | 37                                                                        | 47                      | _                                                                         | dB  |
| 3300 3800 MHz 35 40 — dB<br>3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |           |     |                                    |                                                                           |                         | _                                                                         |     |
| 3800 5150 MHz 29 33 — dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |           |     |                                    |                                                                           |                         | _                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |     |                                    |                                                                           |                         | _                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 5150 6000 | MHz |                                    | 20                                                                        | 31                      | _                                                                         | dB  |



See Sec. Matching circuit (p. 6). Integrated attenuation  $\alpha_{_{\rm INT}}$ : Averaged power  $|S_{_{ij}}|^2$  over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.



#### 6.3 TX - RX

Temperature range for specification  $T_{\text{SPEC}} = -10 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ 

TX terminating impedance  $Z_{Tx} = 50 \Omega$ 

ANT terminating impedance  $Z_{ANT} = 50 \Omega // 3.6 \text{ nH}^{1)}$ 

RX terminating impedance  $Z_{RX} = 50 \Omega$ 

| Characteristics TX – RX |           |     |                                | $\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$ |    |
|-------------------------|-----------|-----|--------------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|----|
| Minimum isolation       |           |     | $\boldsymbol{\alpha}_{_{min}}$ |                                                                           |                         |                                                                           |    |
|                         | 1735 1785 | MHz |                                | 55                                                                        | 59                      | _                                                                         | dB |
|                         | 1830 1880 | MHz |                                | 53                                                                        | 58                      | _                                                                         | dB |

<sup>&</sup>lt;sup>1)</sup> See Sec. Matching circuit (p. 6).



Temperature range for specification  $T_{\text{SPEC}} = -40 \,^{\circ}\text{C} \dots +95 \,^{\circ}\text{C}$ 

TX terminating impedance  $Z_{Tx} = 50 \Omega$ 

ANT terminating impedance  $Z_{ANT} = 50 \Omega // 3.6 \text{ nH}^{1)}$ 

RX terminating impedance  $Z_{RX} = 50 \Omega$ 

| Characteristics TX – RX |           |     |                                    | $\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$ | <b>typ.</b><br>@ +25 °C | $\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$ |    |
|-------------------------|-----------|-----|------------------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|----|
| Minimum isolation       |           |     | $\boldsymbol{\alpha}_{\text{min}}$ |                                                                           |                         |                                                                           |    |
|                         | 1735 1785 | MHz |                                    | 55                                                                        | 59                      | _                                                                         | dB |
|                         | 1830 1880 | MHz |                                    | 53                                                                        | 58                      | _                                                                         | dB |

<sup>&</sup>lt;sup>1)</sup> See Sec. Matching circuit (p. 6).



#### 7 Maximum ratings

| Operable temperature     | T <sub>OP</sub> = −40 °C +95 °C                |                                                                                                                |
|--------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Storage temperature      | T <sub>STG</sub> <sup>1)</sup> = −40 °C +95 °C |                                                                                                                |
| DC voltage               | $ V_{DC} ^{2)} = 0 V$                          |                                                                                                                |
| ESD voltage              |                                                |                                                                                                                |
|                          | $V_{\rm ESD}^{3)} = 150 \text{ V}$             | Machine model.                                                                                                 |
|                          | V <sub>ESD</sub> <sup>4)</sup> = 250 V         | Human body model.                                                                                              |
| Input power              | P <sub>IN</sub>                                |                                                                                                                |
| @ TX port: 1830 1880 MHz | 28 dBm <sup>5), 6)</sup>                       | 5 MHz LTE downlink signal (25 RB) for 100000 h @ 55 °C. P <sub>IN</sub> average – 39 dBm peak. Source and load |
|                          |                                                | impedance 50Ω.                                                                                                 |
| @ RX port: 1735 1785 MHz | 27 dBm <sup>5)</sup>                           | 5 MHz LTE uplink signal (25 RB) for 5000 h @ 55 $^{\circ}$ C. Source and load impedance 50 $\Omega$ .          |

Not valid for packaging material. Storage temperature for packaging material is −25 °C to +40 °C.

<sup>2)</sup> In case of applied DC voltage blocking capacitors are mandatory.

<sup>&</sup>lt;sup>3)</sup> According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

<sup>&</sup>lt;sup>4)</sup> According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

<sup>5)</sup> Expected lifetime according to accelerated power durability test and wear out models.

<sup>6)</sup> T<sub>SPEC</sub> is the ambient temperature of the PCB at component position. Specified min./max values from section 6 "characteristics" for maximum input power 28dBm are valid for temperature up to 65°C.



**Europe GmbH** 

#### 8 **Transmission coefficients**

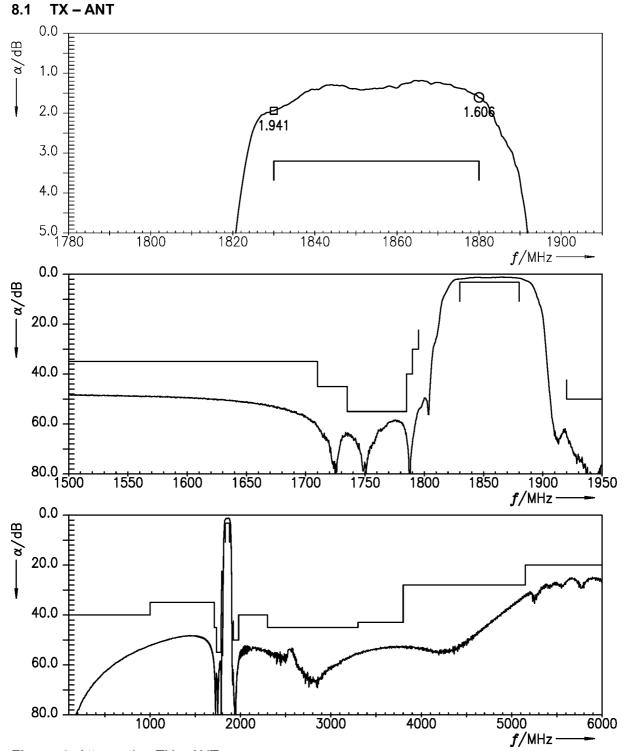



Figure 4: Attenuation TX – ANT.



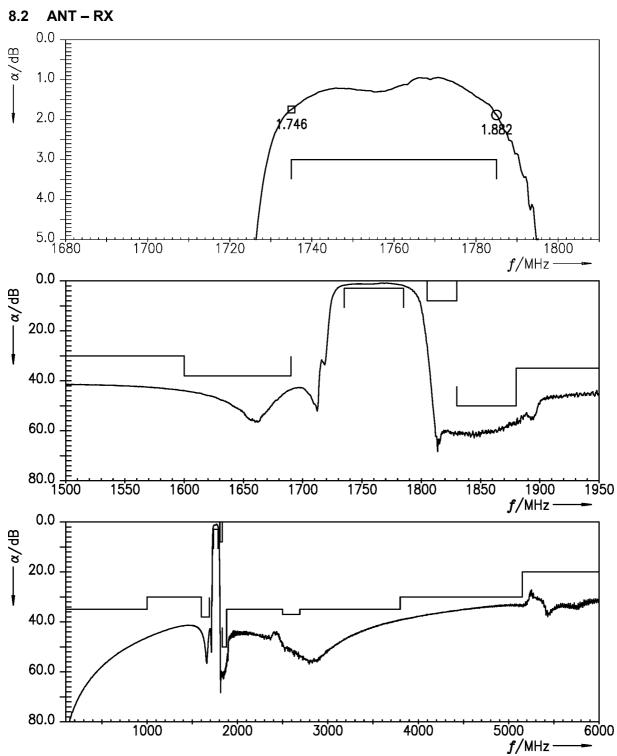



Figure 5: Attenuation ANT – RX.

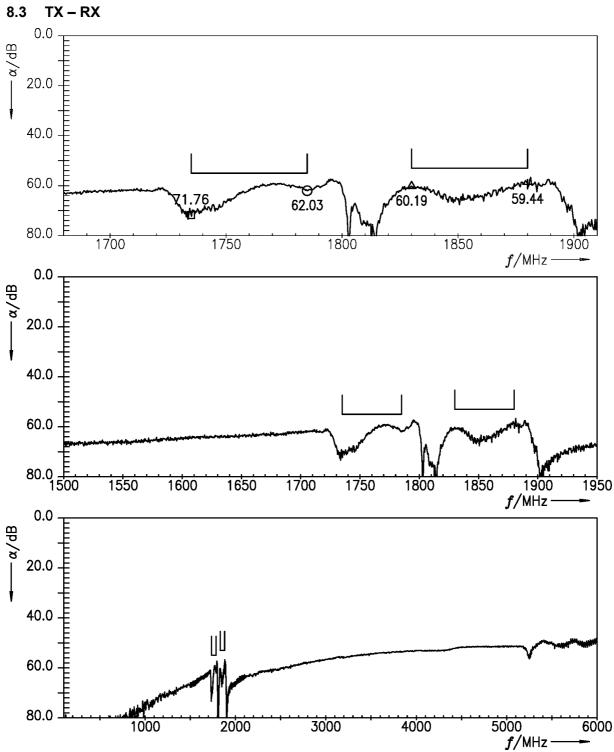
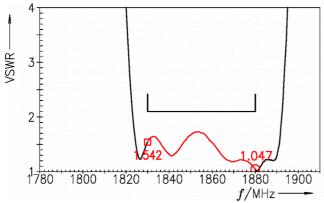




Figure 6: Isolation TX – RX.

#### 9 Reflection coefficients



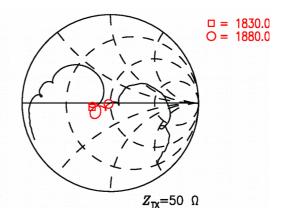
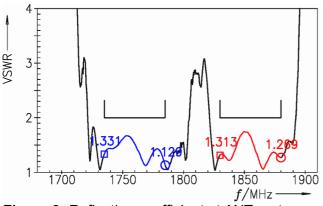




Figure 7: Reflection coefficient at TX port.



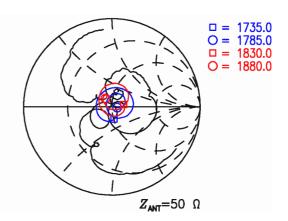
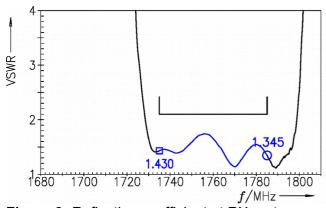




Figure 8: Reflection coefficient at ANT port.



C = 1735.0 C = 1785.0  $Z_{RX} = 50 \Omega$ 

Figure 9: Reflection coefficient at RX port.

## 10 Group delay

#### 10.1 TX - ANT

Europe GmbH

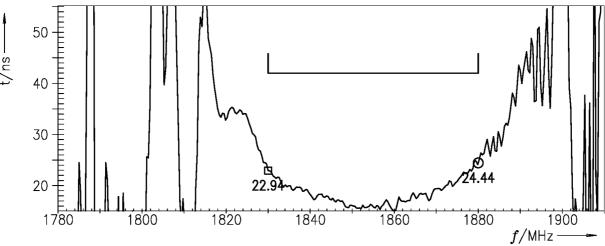



Figure 10: Group delay TX – ANT.

#### 10.2 ANT - RX

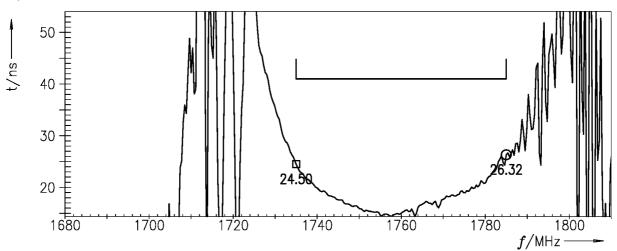
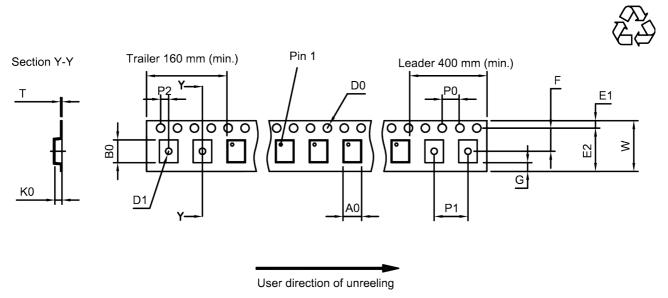




Figure 11: Group delay ANT – RX.



## 11 Packing material

#### 11.1 Tape



**Figure 12:** Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

| A <sub>0</sub> | 2.25±0.05 mm            | E <sub>2</sub> | 6.25 mm (min.) | P₁             | 4.0±0.1 mm      |
|----------------|-------------------------|----------------|----------------|----------------|-----------------|
| B <sub>0</sub> | 2.75±0.05 mm            | F              | 3.5±0.05 mm    | P <sub>2</sub> | 2.0±0.05 mm     |
| D <sub>0</sub> | 1.5+0.1/-0 mm           | G              | 0.75 mm (min.) | Т              | 0.25±0.03 mm    |
| D <sub>1</sub> | 1.0 mm (min.)           | K <sub>0</sub> | 0.6±0.05 mm    | <br>W          | 8.0+0.3/-0.1 mm |
| E <sub>1</sub> | 1.75 <sub>±0.1</sub> mm | P <sub>0</sub> | 4.0±0.1 mm     |                |                 |

Table 1: Tape dimensions.

**Europe GmbH** 

#### 11.2 Reel with diameter of 180 mm

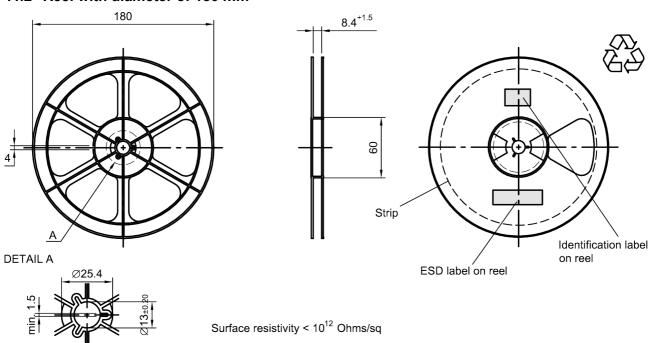



Figure 13: Drawing of reel (first-angle projection) with diameter of 180 mm.

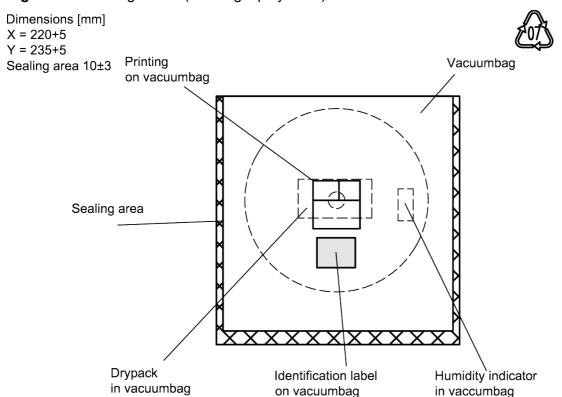



Figure 14: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

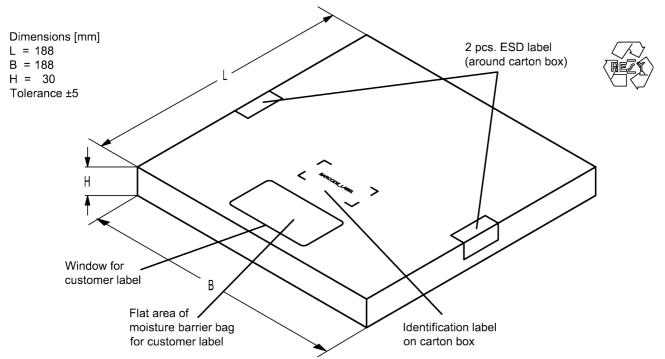



Figure 15: Drawing of folding box for reel with diameter of 180 mm.



#### 12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

#### ■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB1234xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x  $32^2$  + 6 x  $32^1$  + 18 (=J) x  $32^0$  = 1234

The BASE32 code for product type B8210 is 80J.

#### ■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

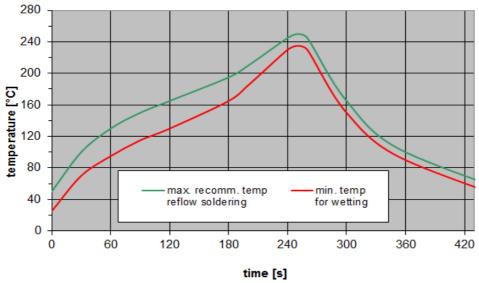
Example of decoding lot number marking on device in decimal code.

5UY => 12345  $5 \times 47^2 + 27 (=U) \times 47^1 + 31 (=Y) \times 47^0 =$  12345

| Adopte  | Adopted BASE32 code for type number |         |        |  |  |  |  |  |  |
|---------|-------------------------------------|---------|--------|--|--|--|--|--|--|
| Decimal | Base32                              | Decimal | Base32 |  |  |  |  |  |  |
| value   | code                                | value   | code   |  |  |  |  |  |  |
| 0       | 0                                   | 16      | G      |  |  |  |  |  |  |
| 1       | 1                                   | 17      | Н      |  |  |  |  |  |  |
| 2       | 2                                   | 18      | J      |  |  |  |  |  |  |
| 3       | 3                                   | 19      | K      |  |  |  |  |  |  |
| 4       | 4                                   | 20      | M      |  |  |  |  |  |  |
| 5       | 5                                   | 21      | N      |  |  |  |  |  |  |
| 6       | 6                                   | 22      | Р      |  |  |  |  |  |  |
| 7       | 7                                   | 23      | Q      |  |  |  |  |  |  |
| 8       | 8                                   | 24      | R      |  |  |  |  |  |  |
| 9       | 9                                   | 25      | S      |  |  |  |  |  |  |
| 10      | Α                                   | 26      | Т      |  |  |  |  |  |  |
| 11      | В                                   | 27      | V      |  |  |  |  |  |  |
| 12      | С                                   | 28      | W      |  |  |  |  |  |  |
| 13      | D                                   | 29      | X      |  |  |  |  |  |  |
| 14      | E                                   | 30      | Y      |  |  |  |  |  |  |
| 15      | F                                   | 31      | Z      |  |  |  |  |  |  |

| Adopted BASE47 code for lot number |        |         |        |  |
|------------------------------------|--------|---------|--------|--|
| Decimal                            | Base47 | Decimal | Base47 |  |
| value                              | code   | value   | code   |  |
| 0                                  | 0      | 24      | R      |  |
| 1                                  | 1      | 25      | S      |  |
| 2                                  | 2      | 26      | Т      |  |
| 3                                  | 3      | 27      | U      |  |
| 4                                  | 4      | 28      | V      |  |
| 5                                  | 5      | 29      | W      |  |
| 6                                  | 6      | 30      | X      |  |
| 7                                  | 7      | 31      | Y      |  |
| 8                                  | 8      | 32      | Z      |  |
| 9                                  | 9      | 33      | b      |  |
| 10                                 | Α      | 34      | d      |  |
| 11                                 | В      | 35      | f      |  |
| 12                                 | С      | 36      | h      |  |
| 13                                 | D      | 37      | n      |  |
| 14                                 | E      | 38      | r      |  |
| 15                                 | F      | 39      | t      |  |
| 16                                 | G      | 40      | V      |  |
| 17                                 | Н      | 41      | \      |  |
| 18                                 | J      | 42      | ?      |  |
| 19                                 | K      | 43      | {      |  |
| 20                                 | L      | 44      | }      |  |
| 21                                 | M      | 45      | <      |  |
| 22                                 | N      | 46      | >      |  |
| 23                                 | Р      |         |        |  |
|                                    |        |         |        |  |

**Table 2:** Lists for encoding and decoding of marking.




#### 13 Soldering profile

The recommended soldering process is in accordance with IEC  $60068-2-58-3^{rd}$  edit and IPC/JEDEC J-STD-020B.

| ramp rate                          | ≤ 3 K/s                                              |  |
|------------------------------------|------------------------------------------------------|--|
| preheat                            | 125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s |  |
| T > 220 °C                         | 30 s to 70 s                                         |  |
| T > 230 °C                         | min. 10 s                                            |  |
| T > 245 °C                         | max. 20 s                                            |  |
| <i>T</i> ≥ 255 °C                  | -                                                    |  |
| peak temperature $T_{\text{peak}}$ | 250 °C +0/-5 °C                                      |  |
| wetting temperature $T_{\min}$     | 230 °C +5/-0 °C for 10 s ± 1 s                       |  |
| cooling rate                       | ≤ 3 K/s                                              |  |
| soldering temperature T            | measured at solder pads                              |  |
|                                    |                                                      |  |

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).



**Figure 16:** Recommended reflow profile for convection and infrared soldering – lead-free solder.



#### 14 Annotations

#### 14.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

#### 14.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

### 14.3 Ordering codes and packing units

| Ordering code   | Packing unit |
|-----------------|--------------|
| B39192B8210P810 | 5000 pcs     |

Table 4: Ordering codes and packing units.



#### 15 Cautions and warnings

#### 15.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <a href="https://rffe.gualcomm.com/">https://rffe.gualcomm.com/</a>.

#### 15.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

#### 15.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

#### 15.4 Package information

#### Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

#### **Dimensions**

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Dimensions do not include burrs.

### **Projection method**

Unless otherwise specified first-angle projection is applied.



#### 16 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (<a href="https://rffe.qualcomm.com">https://rffe.qualcomm.com</a>). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

# 单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360