Qualcom

RF360 Europe GmbH

Data sheet

SAW duplexer Small cell & femtocell LTE band 3 partial

Part number:	B8212
Ordering code:	B39182B8212P810
Date:	May 18, 2020
Version:	2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

 $\ensuremath{\textcircled{\sc 0}}$ 2020 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

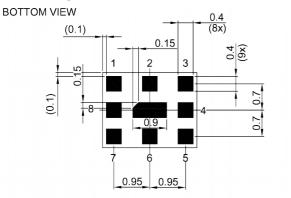
Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1 Application	
2 Features.	
3 Package	
4 Pin configuration	
5 Matching circuit	6
6 Characteristics	
7 Maximum ratings	
8 <u>Transmission coefficients</u>	
9 <u>Reflection coefficients</u>	
10 Group delay	19
11 Packing material	
12 <u>Marking</u>	
13 <u>Soldering profile</u>	
14 Annotations	
15 Cautions and warnings	
16 Important notes	

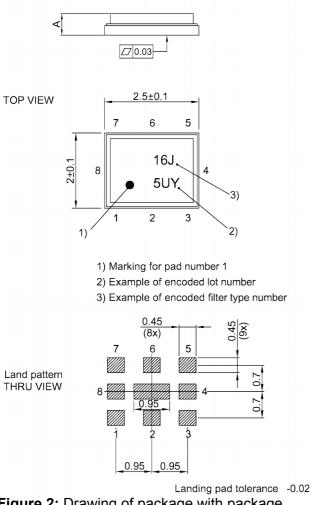
- 1 Application
- Low-loss SAW duplexer for 3G/LTE small cell & femtocell systems (Band 3 partial)
- Low insertion attenuation
- Usable pass band 25 MHz
- High power durability
- Tx = Downlink = 1805 MHz-1830 MHz
- Rx = Uplink = 1710 MHz -1735 MHz

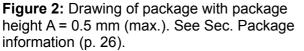

2 Features

- Industrial grade qualified family
- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.5 mm (max.)
- Approximate weight 0.01 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 2a (MSL2a)

Figure 1: Picture of component with example of product marking.

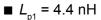
3 Package




Pad and pitch tolerance ±0.05

4 Pin configuration

- 1 TX ■ 3 RX
- 6 ANT
- 2, 4, 5, 7, Ground 8, 9


SIDE VIEW

5 **Matching circuit**

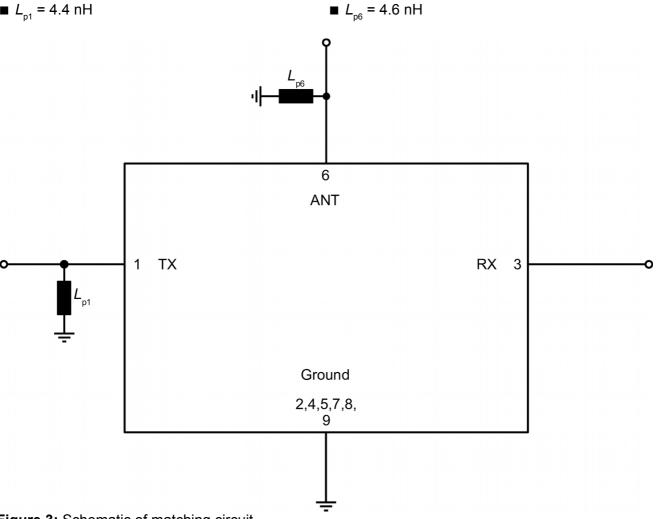


Figure 3: Schematic of matching circuit.

6 Characteristics

TX – ANT 6.1

Temperature range for specification	T _{SPEC}	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 4.4 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 4.6 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	—	1817.5	—	MHz
Insertion attenuation			$\alpha_{_{INT}}^{^{2)}}$				
	1805 1810	MHz		_	1.7	2.5	dB
	1810 1825	MHz		_	1.5	2.1	dB
	1825 1830	MHz		_	1.6	2.5	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1805 1830	MHz		_	1.8	2.8	dB
Amplitude ripple (p-p)			Δα				
	1805 1830	MHz		_	0.5	1.5	dB
Maximum group delay			$ au_{max}$				
	1805 1830	MHz		_	27	48	ns
Group delay ripple			$\Delta au_{ m var}$				
	1805 1830	MHz	vai		8.0	26	ns
Maximum VSWR			VSWR _{max}				
@ TX port	1805 1830	MHz	max		1.5	2.0	
@ ANT port	1805 1830	MHz		_	1.4	2.0	
Minimum attenuation			α _{min}				
	10 824	MHz	min	30	45	_	dB
	824 960	MHz		30	41	_	dB
	960 1710	MHz		30	38	_	dB
	1710 1735	MHz		55	60	_	dB
	1735 1765	MHz		30	42	_	dB
	1765 1785	MHz		22	33	_	dB
	1850 1870	MHz		9	20	_	dB
	1880 1920	MHz		30	47	_	dB
	1920 1980	MHz		40	48	_	dB
	1980 2700	MHz		40	47	—	dB
	2700 3300	MHz		40	57	—	dB
	3300 3600	MHz		50	59	—	dB
	3600 5150	MHz		40	55	—	dB
	5150 5950	MHz		30	42	_	dB

1)

See Sec. Matching circuit (p. 6). Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

Please read Cautions and warnings and Important notes at the end of this document.

Temperature range for specification	$T_{_{ m SPEC}}$	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 4.4 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 4.6 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – ANT				min. for T_{SPEC}	typ. @ +25 °C	max. for T _{SPEC}	
Insertion attenuation			$\alpha_{INT}^{2)}$				
	1805 1810	MHz		_	1.7	2.7	dB
	1810 1825	MHz		_	1.5	2.2	dB
	1825 1830	MHz		—	1.6	2.7	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1805 1830	MHz		_	1.8	3.3	dB
Amplitude ripple (p-p)			Δα				
	1805 1830	MHz		—	0.5	2.0	dB
Maximum group delay			$ au_{max}$				
	1805 1830	MHz		_	27	52	ns
Group delay ripple			$\Delta au_{ m var}$				
	1805 1830	MHz		_	8.0	30	ns
Maximum VSWR			VSWR _{max}				
@ TX port	1805 1830	MHz		_	1.5	2.0	
@ ANT port	1805 1830	MHz		_	1.4	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	10 824	MHz		30	45	—	dB
	824 960	MHz		30	41	_	dB
	960 1710	MHz		30	38	_	dB
	1710 1735	MHz		55	60	—	dB
	1735 1765	MHz		30	42	—	dB
	1765 1785	MHz		19	33	—	dB
	1850 1870	MHz		6	20	_	dB
	1880 1920	MHz		30	47	_	dB
	1920 1980	MHz		40	48	_	dB
	1980 2700	MHz		40	47	—	dB
	2700 3300	MHz		40	57	—	dB
	3300 3600	MHz		50	59	—	dB
	3600 5150	MHz		40	55	—	dB
	5150 5950	MHz		30	42	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

6.2 ANT – RX

Temperature range for specification	T _{SPEC}	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 4.4 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω // 4.6 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{_{ m SPEC}}$	typ. @ +25 °C	max. for T _{SPEC}	
Center frequency			f _c		1722.5		MHz
Insertion attenuation			$\alpha_{_{INT}}^{^{2)}}$				
	1710 1715	MHz		—	1.2	1.9	dB
	1715 1730	MHz			1.0	1.7	dB
	1730 1735	MHz		—	1.2	2.2	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1710 1735	MHz		—	1.4	2.5	dB
Amplitude ripple (p-p)			Δα				
	1710 1735	MHz		—	0.4	1.7	dB
Maximum group delay			$ au_{max}$				
	1710 1735	MHz			26	56	ns
Group delay ripple			$\Delta\tau_{\rm var}$				
	1710 1735	MHz		—	8.0	34	ns
Maximum VSWR			$VSWR_{max}$				
@ ANT port	1710 1735	MHz		—	1.5	2.0	
@ RX port	1710 1735	MHz			1.5	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	10 824	MHz		30	51		dB
	824 960	MHz		40	50	_	dB
	960 1660	MHz		30	36	—	dB
	1660 1690	MHz		18	23		dB
	1690 1700	MHz		2 ²⁾	12 ²⁾	_	dB
	1745 1760	MHz		3 ²⁾	13 ²⁾	—	dB
	1765 1805	MHz		35	40	—	dB
	1805 1830	MHz		55	58	—	dB
	1920 1980	MHz		45	50	_	dB
	1980 2110	MHz		40	46	—	dB
	2110 2180	MHz		40	45	_	dB
	2180 2700	MHz		35	39		dB
	2700 3300	MHz		28	34	_	dB
	3300 3600	MHz		28	32	_	dB
	3600 5150	MHz		12	19	_	dB
	5150 5950	MHz		9	13	_	dB
¹⁾ See Sec. Matching circuit (p. 6).		1111			10		

¹⁾ See Sec. Matching circuit (p. 6).

Please read **Cautions and warnings** and **Important notes** at the end of this document.

²⁾ Integrated attenuation $\alpha_{_{INT}}$: Averaged power $|S_{_{IJ}}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

Temperature range for specification	$T_{_{ m SPEC}}$	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 4.4 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 4.6 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics ANT – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Insertion attenuation			$\alpha_{INT}^{2)}$				
	1710 1715	MHz		_	1.2	1.9	dB
	1715 1730	MHz		—	1.0	1.9	dB
	1730 1735	MHz		—	1.2	2.5	dB
Maximum insertion attenuation			$\alpha_{_{max}}$				
	1710 1735	MHz		_	1.4	3.0	dB
Amplitude ripple (p-p)			Δα				
	1710 1735	MHz		—	0.4	2.1	dB
Maximum group delay			$ au_{max}$				
	1710 1735	MHz		_	26	59	ns
Group delay ripple			$\Delta\tau_{\rm var}$				
	1710 1735	MHz		—	8.0	37	ns
Maximum VSWR			$VSWR_{max}$				
@ ANT port	1710 1735	MHz		—	1.5	2.0	
@ RX port	1710 1735	MHz		—	1.5	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	10 824	MHz		30	51	—	dB
	824 960	MHz		40	50	_	dB
	960 1660	MHz		30	36	—	dB
	1660 1690	MHz		16	23	_	dB
	1690 1700	MHz		2 ²⁾	12 ²⁾	_	dB
	1745 1760	MHz		2 ²⁾	13 ²⁾	_	dB
	1765 1805	MHz		35	40	—	dB
	1805 1830	MHz		55	58	_	dB
	1920 1980	MHz		45	50		dB
	1980 2110	MHz		40	46	_	dB
	2110 2180	MHz		40	45	_	dB
	2180 2700	MHz		35	39		dB
	2700 3300	MHz		28	34		dB
	3300 3600	MHz		28	32	_	dB
	3600 5150	MHz		12	19		dB
	5150 5950	MHz		9	13	_	dB

1)

See Sec. Matching circuit (p. 6). Integrated attenuation $\alpha_{_{\rm INT}}$: Averaged power $|S_{_{ij}}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels. 2)

Please read Cautions and warnings and Important notes at the end of this document.

TX – RX 6.3

Temperature range for specification	$T_{_{ m SPEC}}$	= −10 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 4.4 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 4.6 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for T _{SPEC}	
Minimum isolation			$\alpha_{_{min}}$				
	1710 1735	MHz		53	60	_	dB
	1805 1830	MHz		55	62	_	dB
¹⁾ See Sec. Matching circuit (p. 6).							

See Sec. Matching circuit (p. 6).

Temperature range for specification	$T_{_{ m SPEC}}$	= −40 °C +95 °C
TX terminating impedance	Z _{TX}	= 50 Ω // 4.4 nH ¹⁾
ANT terminating impedance	Z _{ANT}	= 50 Ω // 4.6 nH ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Minimum isolation			$\alpha_{_{min}}$				
	1710 1735	MHz		53	60	—	dB
	1805 1830	MHz		55	62	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

7 Maximum ratings

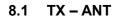
Operable temperature	<i>T</i> _{OP} = -40 °C +95 °C	
Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +95 ^{\circ}{\rm C}$	
DC voltage	$ V_{\rm DC} ^{2)} = 0 \ V$	
ESD voltage		
	V _{ESD} ³⁾ = 150 V	Machine model.
	V _{ESD} ⁴⁾ = 250 V	Human body model.
Input power	P _{IN}	
@ TX port: 1805 1830 MHz	27 dBm ^{5), 6)}	5 MHz LTE downlink signal (25 RB) for 100000 h @ 55 °C. P_{IN} average – 38 dBm
		peak. Source and load impedance 50Ω .
@ RX port: 1710 1735 MHz	27 dBm ⁷⁾	5 MHz LTE uplink signal (25 RB) for 5000 h @ 55 °C. Source and load impedance 50Ω.

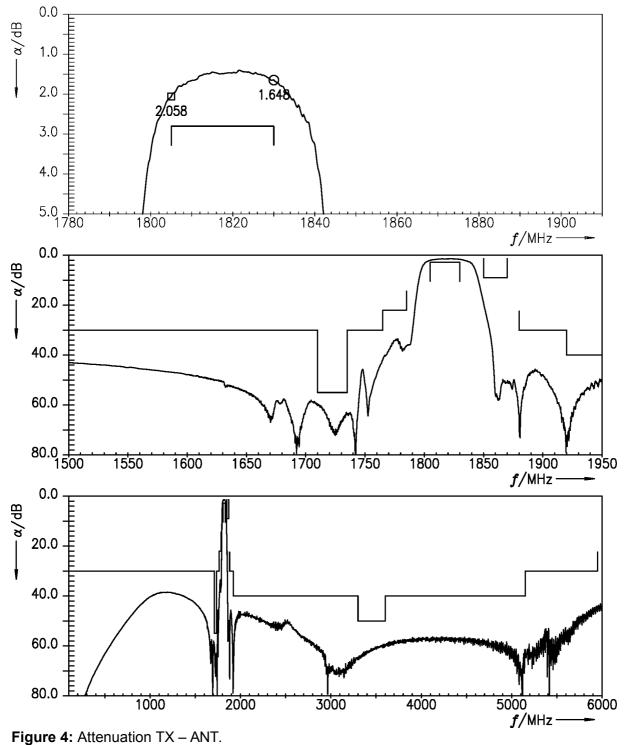
¹⁾ Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

²⁾ In case of applied DC voltage blocking capacitors are mandatory.

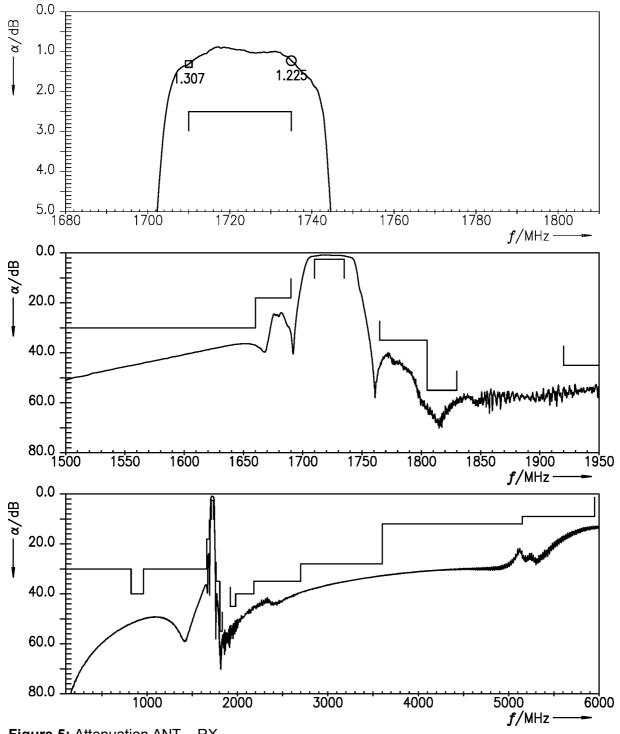
³⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.

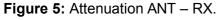
⁴⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.


⁵⁾ Expected lifetime according to power durability simulations and wear out models.


⁶⁾ T_{SPEC} is the ambient temperature of the PCB at component position. Specified min./max values from section 6 "characteristics" for maximum input power 27dBm are valid for temperature up to 70°C.

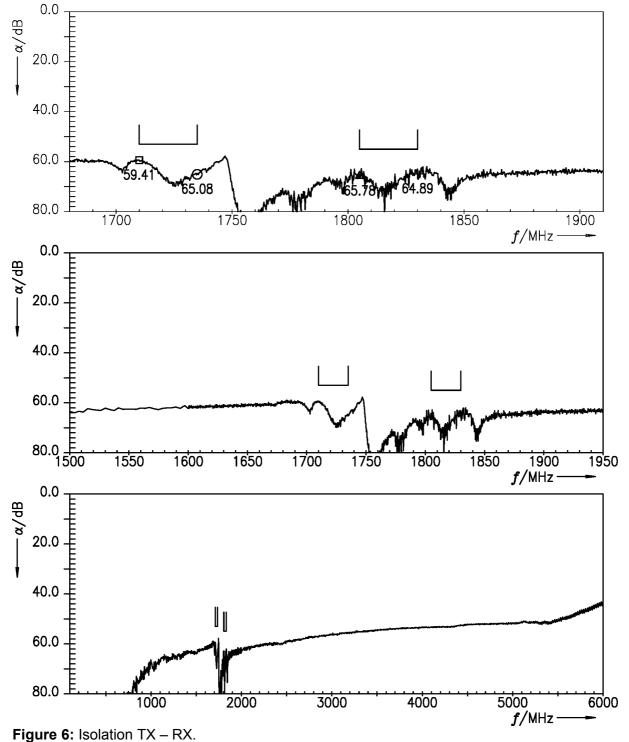
⁷⁾ Expected lifetime according to accelerated power durability test and wear out models.


8 Transmission coefficients



Qualconversion RF360 Europe GmbH

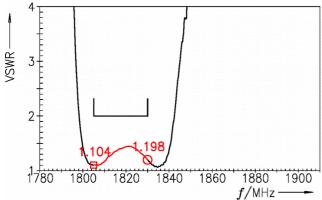
8.2 ANT – RX

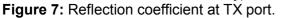


Please read **Cautions and warnings** and **Important notes** at the end of this document.

Qualconversion RF360 Europe GmbH

8.3 TX – RX




Please read **Cautions and warnings** and **Important notes** at the end of this document.

□ = 1805.0 O = 1830.0

9 Reflection coefficients

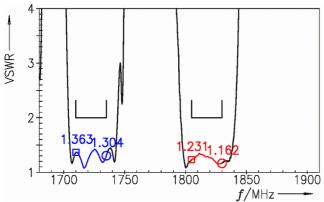
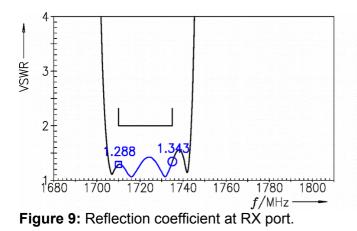
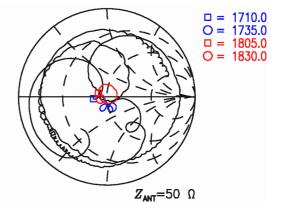
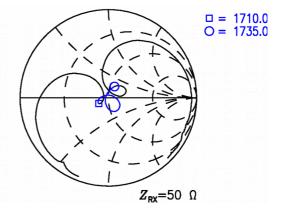
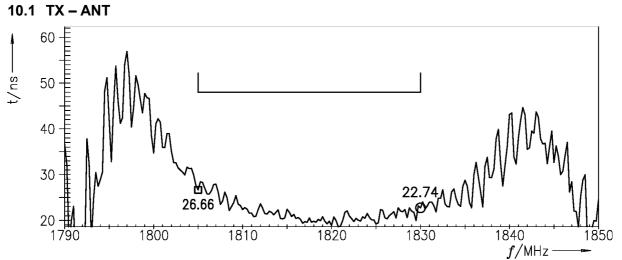





Figure 8: Reflection coefficient at ANT port.



Z_{TX}=50 Ω

10 Group delay

Figure 10: Group delay TX – ANT.

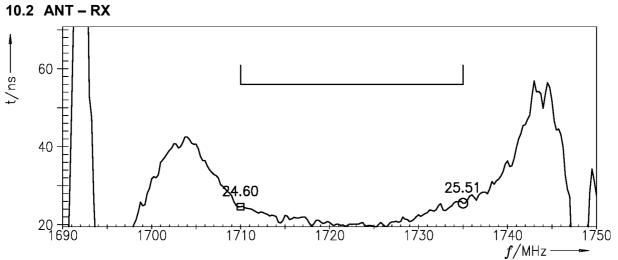
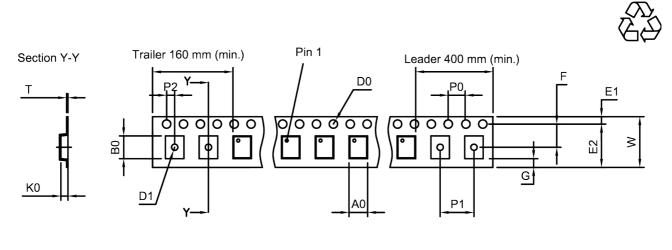



Figure 11: Group delay ANT – RX.

11 Packing material

11.1 Tape

User direction of unreeling

Figure 12: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

 $\begin{array}{c} A_0 \\ A_0 \\ 2.25_{\pm 0.05} \text{ mm} \\ B_0 \\ 2.75_{\pm 0.05} \text{ mm} \\ D_0 \\ 1.5_{\pm 0.1/-0} \text{ mm} \\ D_1 \\ 1.0 \text{ mm} (\text{min.}) \\ E_1 \\ 1.75_{\pm 0.1} \text{ mm} \end{array}$

Table 1: Tape dimensions.

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.6±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

11.2 Reel with diameter of 180 mm

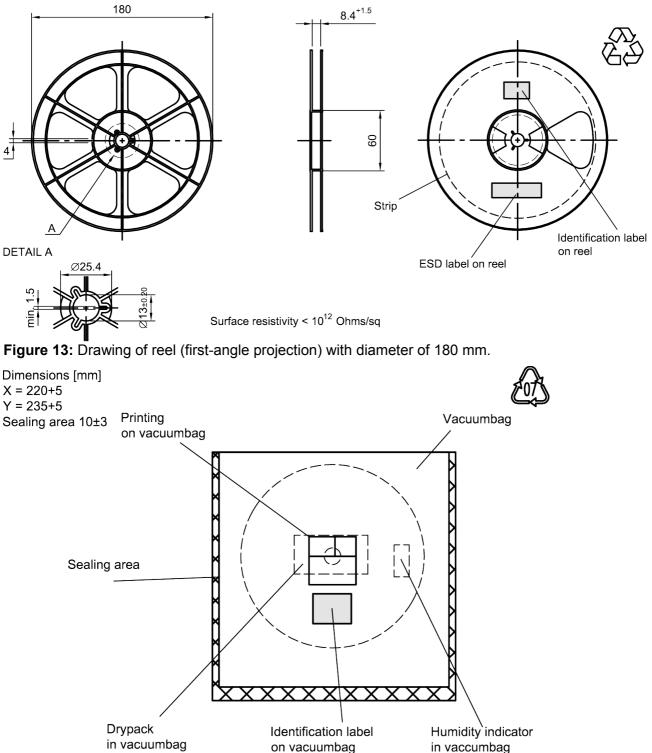


Figure 14: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

Please read Cautions and warnings and Important notes at the end of this document. Qualconn RF360 Europe GmbH

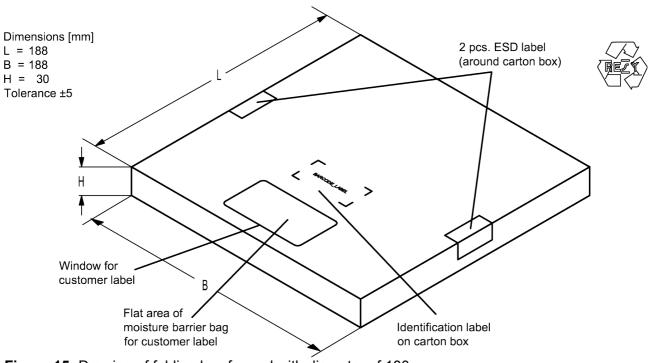


Figure 15: Drawing of folding box for reel with diameter of 180 mm.

Jalcomm **RF360 Europe GmbH**

12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3		e.g., B3xxxxB <u>1234</u> xxxx,
Example of decoding type number markin 16J 1 x 32 ² + 6 x 32 ¹ + 18 (=J) x 32 ⁰ The BASE32 code for product type B8212 is 8	=>	in decimal code. 1234 1234

■ Lot number:

The last 5 digits of the lot number, 12345, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

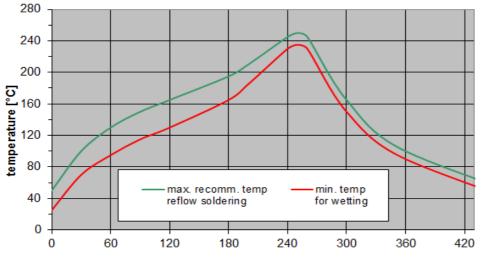
Example of decoding lot number marking on device **5UY**

5UY [~]	5	=>	12345
5 x 47 ² + 27 (=U) x 47 ¹ + 3	31 (=Y) x 47°	=	12345

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	K
4	4	20	М
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	А	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	A	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		

in decimal code.


Table 2: Lists for encoding and decoding of marking.

13 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

time [s]

Figure 16: Recommended reflow profile for convection and infrared soldering – lead-free solder.

14 Annotations

14.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

14.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

14.3 Ordering codes and packing units

Ordering code	Packing unit
B39182B8212P810	5000 pcs

Table 4: Ordering codes and packing units.

15 Cautions and warnings

15.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.qualcomm.com/.

15.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

15.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

15.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Dimensions do not include burrs.

Projection method

Unless otherwise specified first-angle projection is applied.

16 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (<u>https://rffe.qualcomm.com</u>). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360