Qualcom

RF360 Europe GmbH

Data sheet

SAW duplexer M2M LTE band 87

Part number:	B1298
Ordering code:	B39421B1298P810
Date:	September 15, 2021
Version:	2.0

Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

RF360 Europe GmbH Anzinger Straße 13 81671 Munich, Germany © 2021 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved

These materials, including the information contained herein, may be used only for informational purposes by the customer. Qualcomm Technologies, Inc. and/or its subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein and reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, without warranty, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1	Application	4
2	Features	4
3	Package	5
4	Pin configuration	5
5	Matching circuit	6
6	Characteristics	7
7	Maximum ratings	10
8	Transmission coefficients	.11
9	Reflection coefficients	.14
10	Common-mode rejection ratio	.15
11	Group delay.	16
12	Packing material	.17
13	Marking	20
14	Soldering profile	.21
15	Annotations	22
16	Cautions and warnings	.23
17	ESD protection of acoustic devices.	.24
18	Important notes	25

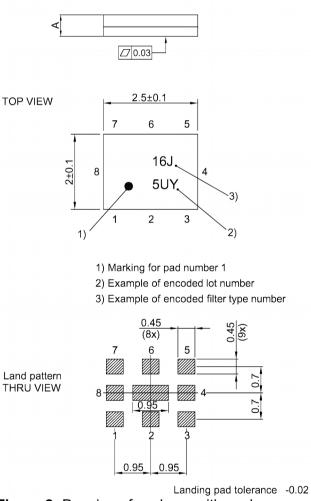
1 Application

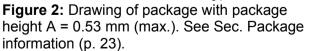
- Low-loss SAW duplexer for band 87 application
- Usable pass band 5 MHz
- Tx = Uplink = 410 415 MHz
- Rx = Downlink = 420 425 MHz
- Single-ended to balanced conversion


2 Features

- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.53 mm (max.)
- Approximate weight 9 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

Figure 1: Picture of component with example of product marking.


3 Package



4 Pin configuration

- 1, 8 RX balanced
- 3 TX
- 6 ANT
- 2, 4, 5, 7, Ground 9

SIDE VIEW

Matching circuit 5

■ L_{p6} = 56 nH

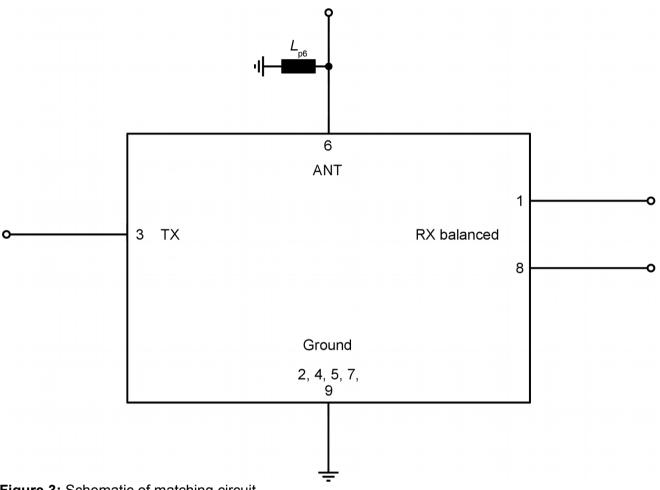


Figure 3: Schematic of matching circuit.

6 Characteristics

6.1 TX – ANT

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z	= 50 Ω // 56 nH ¹⁾
RX terminating impedance	Z _{RX}	= 100 Ω

Characteristics TX – ANT				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	_	412.5	—	MHz
Maximum insertion attenuation			$\alpha_{_{max}}$				
	410 415	MHz		_	1.6	3.7	dB
Amplitude ripple (p-p)			Δα				
	410 415	MHz		—	0.7	2.8	dB
Maximum group delay			T _{max}				
	410 415	MHz		—	140	230	ns
Group delay ripple			$\Delta \tau_{var}$				
	410 415	MHz		—	60	150	ns
Maximum VSWR			VSWR _{max}				
@ TX port	410 415	MHz		—	1.3	2.4	
@ ANT port	410 415	MHz		—	1.3	2.4	
Minimum attenuation			$\alpha_{_{min}}$				
	50 390	MHz		20	22	—	dB
	400 405	MHz		15	23	—	dB
	420 425	MHz		45	49	—	dB
	439 1100	MHz		21	23	—	dB
	1200 1500	MHz		24	27	—	dB
	1500 1600	MHz		24	28	—	dB
	1600 4000	MHz		20	24	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

6.2 ANT – RX

Temperature range for specification	T _{SPEC}	= −30 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω // 56 nH ¹⁾
RX terminating impedance	Z _{RX}	= 100 Ω

Characteristics ANT – RX				min. for $T_{_{ m SPEC}}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency			f _c	—	422.5		MHz
Maximum insertion attenuation			α _{max}				
	420 425	MHz		_	2.1	3.0	dB
Amplitude ripple (p-p)			Δα				
	420 425	MHz		—	0.5	1.4	dB
Maximum group delay			T _{max}				
	420 425	MHz		—	160	210	ns
Group delay ripple			$\Delta \tau_{\rm var}$				
	420 425	MHz		_	80	130	ns
Maximum VSWR			$VSWR_{max}$				
@ ANT port	420 425	MHz		_	1.8	2.1	
@ RX port	420 425	MHz		_	1.6	2.1	
Minimum common-mode rejection ratio							
	420 425	MHz		22	25	_	dB
Minimum attenuation			$\alpha_{_{min}}$				
	50 410	MHz		47	53	_	dB
	410 415	MHz		45	57	—	dB
	434 439	MHz		15	32	—	dB
	440 4000	MHz		24	32	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

6.3 TX – RX

Temperature range for specification	$T_{_{ m SPEC}}$	= −30 °C +85 °C
TX terminating impedance	Z _{TX}	= 50 Ω
ANT terminating impedance	Z _{ANT}	= 50 Ω // 56 nH ¹⁾
RX terminating impedance	Z _{RX}	= 100 Ω

Characteristics TX – RX				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for T _{SPEC}	
Minimum isolation			$\alpha_{_{min}}$				
	410 415	MHz		50	58	_	dB
	420 425	MHz		48	52	—	dB

¹⁾ See Sec. Matching circuit (p. 6).

7 **Maximum ratings**

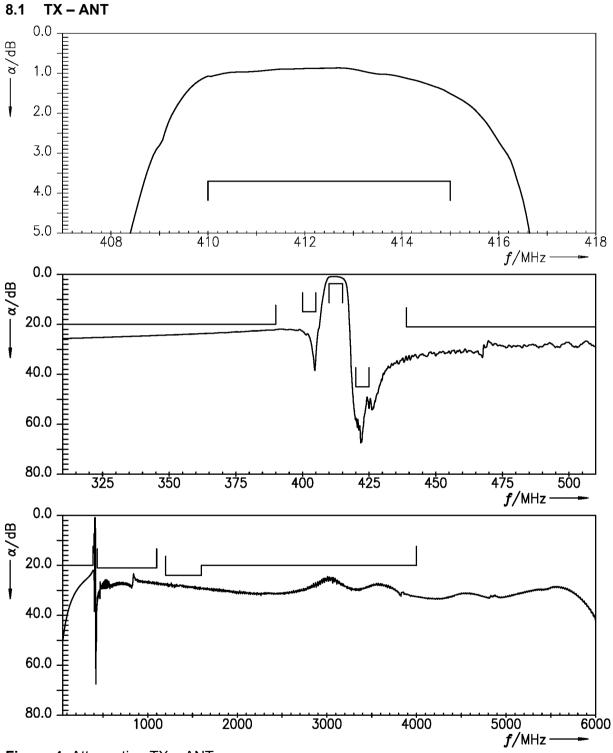
Operable temperature	$T_{OP} = -40 ^{\circ}\text{C} \dots +85 ^{\circ}\text{C}$	
Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +85 ^{\circ}{\rm C}$	
DC voltage	$ V_{\rm DC} ^{2)} = 0 V$	
ESD voltage		
	$V_{\rm ESD}^{3)} = 150 \rm V$	Machine model.
	$V_{\rm ESD}^{4)}$ = 250 V	Human body model.
@ TX port: 410 415 MHz Input power	$P_{\rm IN} = 29 \rm dBm^{5), 6)}$	Continuous wave for 5000 h @ 55 °C.

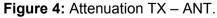
1) Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

2)

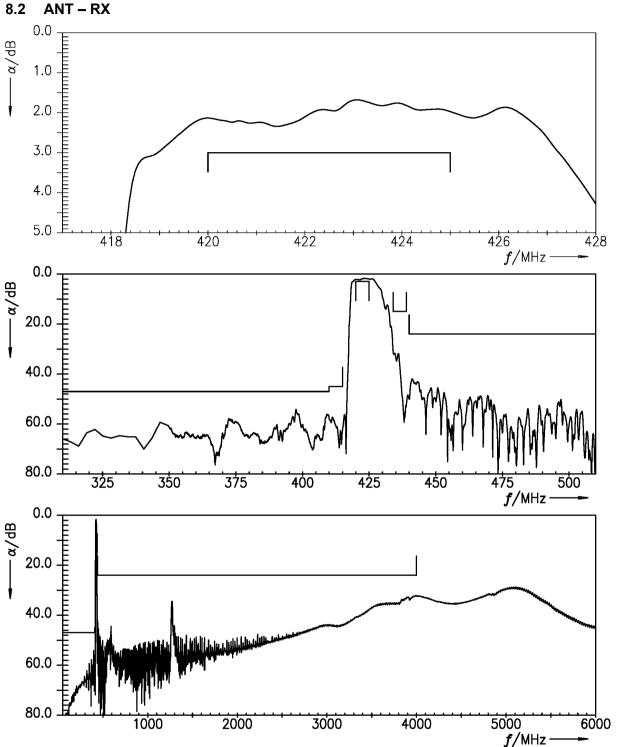
In case of applied DC voltage blocking capacitors are mandatory. According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse. 3)

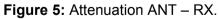
4)

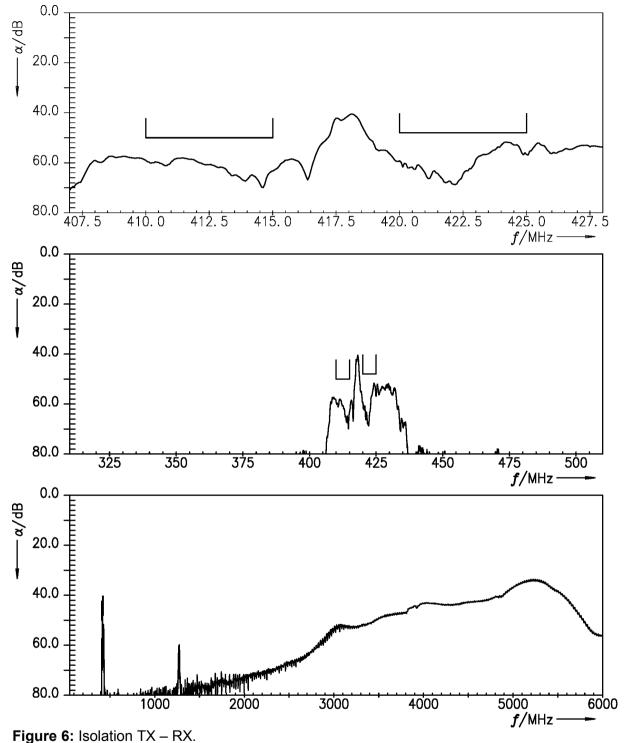

5)


Expected lifetime according to accelerated power durability test and wear-out models. T_{spec} is the ambient temperature of the PCB at component position. Specified min./max values from Section 6 6)

"Characteristics" for maximum input power of 29dBm are valid for temperature up to 55°C.




8 Transmission coefficients


Qualcomm RF360 Europe GmbH

Qualconversion RF360 Europe GmbH

8.3 TX – RX

9 Reflection coefficients

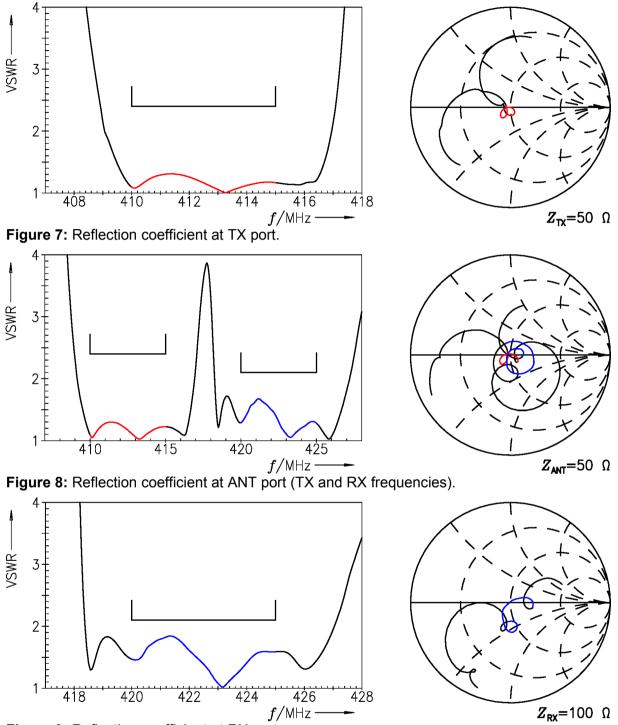


Figure 9: Reflection coefficient at RX port.

10 Common-mode rejection ratio

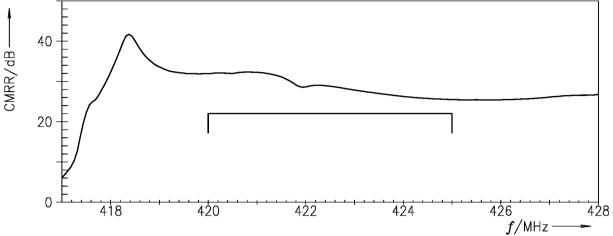


Figure 10: Common-mode rejection ratio ANT – RX.

11 Group delay

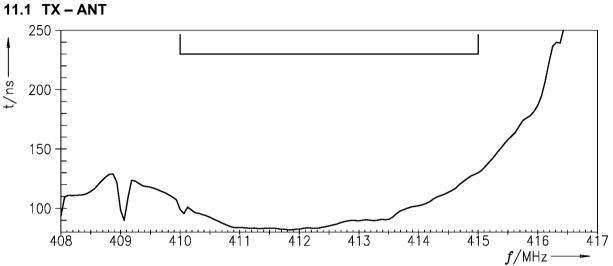


Figure 11: Group delay TX – ANT.

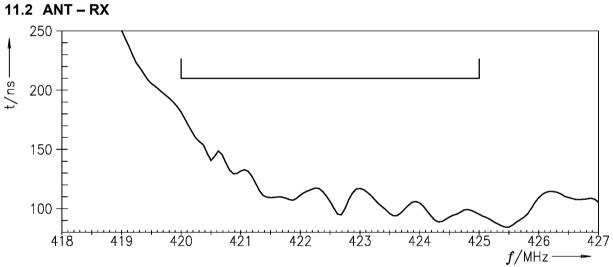
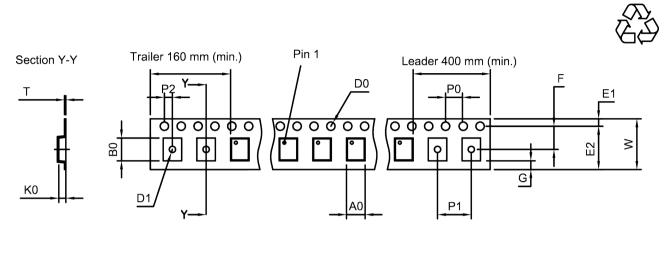



Figure 12: Group delay ANT – RX.

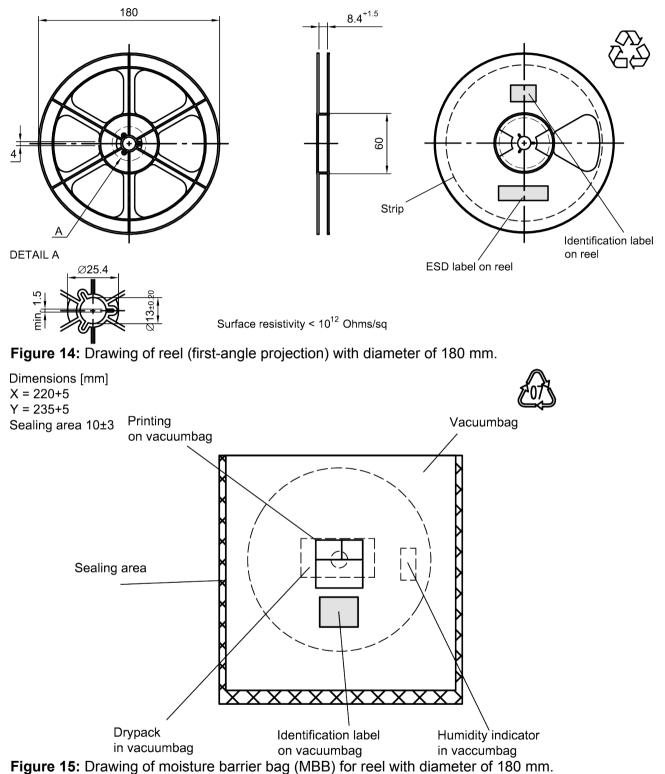
12 Packing material

12.1 Tape

User direction of unreeling

Figure 13: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

2.25±0.05 mm
2.75±0.05 mm
1.5+0.1/-0 mm
1.0 mm (min.)
1.75±0.1 mm


Table 1: Tape dimensions.

E2	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.6±0.05 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P_2	2.0±0.05 mm
Т	0.25±0.03 mm
W	8.0+0.3/-0.1 mm

12.2 Reel with diameter of 180 mm

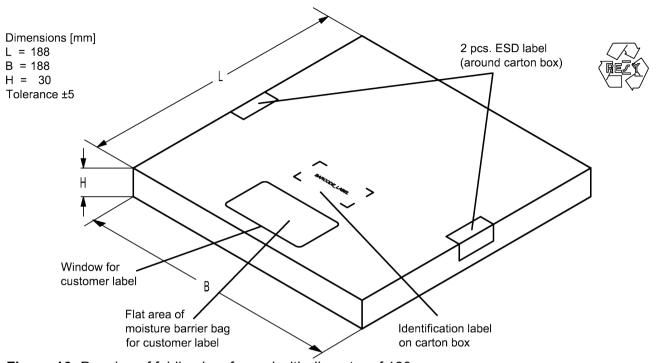


Figure 16: Drawing of folding box for reel with diameter of 180 mm.

Qualcom

RF360

Europe GmbH

Jalcomm **RF360 Europe GmbH**

13 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3 digit	marking.	e.g., B3xxxxB <u>1234</u> xxxx,
Example of decoding type number marking on 16J	device =>	in decimal code. 1234
1 x 32 ² + 6 x 32 ¹ + 18 (=J) x 32 ⁰ The BASE32 code for product type B1298 is 18J.	=	1234
l ot number:		

Lot number:

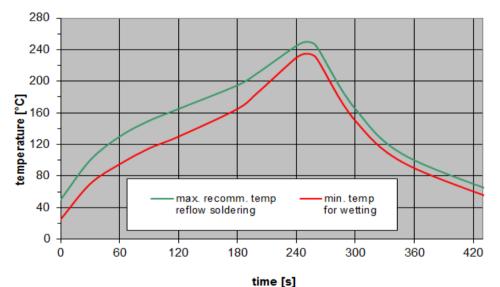
The last 5 digits of the lot number, 12345, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device

nple of decoding lot number marking on device		in decimal code.
5UY	=>	12345
5 x 47 ² + 27 (=U) x 47 ¹ + 31 (=Y) x 47 ⁰	=	12345

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	К
4	4	20	М
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	А	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	X
7	7	31	Y
8	8	32	Z
9	9	33	b
10	Α	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		


Table 2: Lists for encoding and decoding of marking.

14 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	_
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

 Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 17: Recommended reflow profile for convection and infrared soldering – lead-free solder.

15 Annotations

15.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

15.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

15.3 Ordering codes / product IDs and packing units

Ordering code / product ID	RF360 label
B39421B1298P810	5000 pcs

Table 4: Ordering codes / product IDs and packing units.

16 Cautions and warnings

16.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.gualcomm.com/.

16.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

16.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

16.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

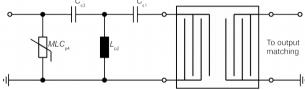
Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

17 ESD protection of acoustic devices


Acoustic devices are Electro Static Discharge sensitive devices. To reduce the probability of damages caused by ESD, special matching topologies must be applied.

In general, "ESD matching" must be ensured at that electrical port, where electrostatic discharge is expected.

Electrostatic discharges predominantly appear at the antenna input of RF receivers. Therefore, only the input matching of the acoustic device must be designed to short circuit or to block the ESD pulse.

Below three figures show recommended "ESD matching" topologies.

For wide band acoustic devices the high-pass ESD matching structure needs to be at least of 3rd order to ensure a proper matching for any impedance value of antenna and input port. The required component values must be determined from case to case.

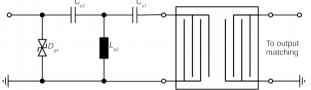
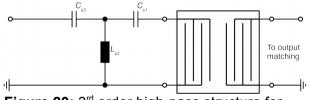



Figure 18: MLC varistor plus ESD matching.

Figure 19: Suppressor diode plus ESD matching.

In cases where minor ESD occur, following simplified "ESD matching" topologies can be used alternatively.

Figure 20: 3rd order high-pass structure for basic ESD protection.

In all three figures the shunt inductor L_{p2} could be replaced by a shorted microstrip with proper length and width. If this configuration is possible depends on the operating frequency and available PCB space.

Effectiveness of the applied ESD protection has to be checked according to relevant industry standards or customer specific requirements.

For further information, please refer to RF360 Application report: **"ESD protection for SAW filters".** This report can be found under <u>https://rffe.qualcomm.com</u>.

18 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (<u>https://rffe.qualcomm.com</u>). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360