

MP18831

Isolated Dual-Input Control High-Side/Low-Side Half-Bridge Gate Driver

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

DESCRIPTION

The MP18831 is an isolated half-bridge gate driver solution with up to 4A source and sink peak current capacity. The gate driver is designed to drive power switching devices with short propagation delay and pulse-width distortion. By utilizing **MPS** proprietary capacitive-based isolation technology. driver can provide up to 5kV_{RMS} withstand voltage (per UL1577) with SOIC wide-body package and greater than 100kV/µs commonmode transient immunity (CMTI) rating between the input side and output driver. With the advanced features, the drivers operate high efficiency, high power density, and robustness in a wide variety of power applications.

The MP18831 integrates dual-channel gate drivers in one package. Each output can be grounded to the separated grounds or connected to a positive or negative voltage reference. The secondary topology can be configured as a half-bridge high-side/low-side driver controlled respectively by two independent input signals. To prevent the occurrence of the shoot-through issue in half-bridge driver, the MP18831 provides the programmable dead-time set by an external resistor.

A wide primary-side VDDI supply range makes the driver suitable to be interfaced with 3.3V or 5V digital controllers. And the secondary-side driver accepts up to 30V supply. All the supply voltage pins are with various under voltage lock-out (UVLO) level protection.

The MP18831 is available in narrow-/wide-body SOIC-16 and LGA-13 5mmx5mm packages.

FEATURES

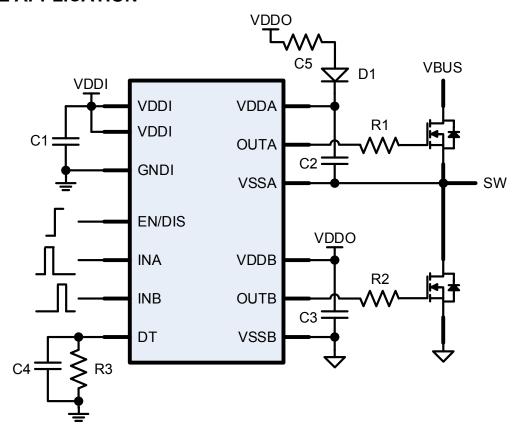
- Dual-Input Half-Bridge Driver
- Up to 5kV_{RMS} Input to Output Isolation (SOIC-16 WB)
- 1500V_{DC} Functional Isolation between Two Secondary-Side Drivers (SOIC-16 NB/WB)
- 700V_{DC} Functional Isolation between Two Secondary-Side Drivers (LGA-13 5mmx5mm)
- Common-Mode Transient Immunity (CMTI) >100kV/µs
- 2.8V to 5.5V Input VDDI Range to Interface with TTL and CMOS Compatible Inputs
- Up to 30V Output Drive Supply with Several UVLO Options
- 4A Source, 4A Sink Peak Current Output
- 50ns Typical Propagation Delay
- Overlap Protection and Programmable Dead-time Control
- Operating Temperature Range -40°C to +125°C
- UL 1577 Certified
 - SOIC-16 NB: 3kV_{RMS} Isolation for 60 secs.
 - SOIC-16 WB: 5kV_{RMS} Isolation for 60 secs.
 - LGA-13: 2.5kV_{RMS} Isolation for 60 secs.

APPLICATIONS

- Half/Full-Bridge Converters
- Isolated DC/DC Converters
- Offline Isolated AC/DC Converters
- DC/AC Inverters

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

MP18831 Rev. 0.8 MonolithicPower.com
10/18/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
Preliminary Specifications Subject to Change © 2021 MPS. All Rights Reserved.



SELECTION GUIDE

Part Number	Peak Output Current (A)	Output UVLO (V)	On/Off Logic	Input Logic	Configura -tion	Overlap Protection	Programm -able Dead-Time	Package Type
MP18831-4A		3						
MP18831-4B		5			High-Side			SOIC-16 NB
MP18831-4C	4	8	EN	INA/INB	/Low-Side	Y	Y	SOIC-16 WB LGA-13
MP18831-4D		10			Half-Bridge			(5mmx5mm)
MP18831-4E		12						
MP18831-A4A		3						
MP18831-A4B		5			High-Side			SOIC-16 NB
MP18831-A4C	4	8	DIS	INA/INB	/Low-Side	Y	Υ	SOIC-16 WB LGA-13
MP18831-A4D		10			Half-Bridge			(5mmx5mm)
MP18831-A4E		12						

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Rating
MP18831-4AGSE			
MP18831-4BGSE			
MP18831-4CGSE	SOIC-16 NB		2
MP18831-4DGSE			
MP18831-4EGSE			
MP18831-4AGY			
MP18831-4BGY			
MP18831-4CGY	SOIC-16 WB		3
MP18831-4DGY			
MP18831-4EGY			
MP18831-4AGLU			
MP18831-4BGLU			
MP18831-4CGLU	LGA-13 (5mmx5mm)		3
MP18831-4DGLU			
MP18831-4EGLU		See Below	
MP18831-A4AGSE		See Delow	
MP18831-A4BGSE			
MP18831-A4CGSE	SOIC-16 NB		2
MP18831-A4DGSE			
MP18831-A4EGSE			
MP18831-A4AGY			
MP18831-A4BGY			
MP18831-A4CGY	SOIC-16 WB		3
MP18831-A4DGY			
MP18831-A4EGY			
MP18831-A4AGLU			
MP18831-A4BGLU			
MP18831-A4CGLU	LGA-13 (5mmx5mm)		3
MP18831-A4DGLU			
MP18831-A4EGLU			

^{*} For Tape & Reel, add suffix -Z (e.g. MP18831-4AGSE-Z / MP18831-4AGY-Z / MP18831-4AGLU-Z)

Please contact local sales or our distributors to check the latest availability status for the ordering part numbers.

TOP MARKING

MP18831-4X (SOIC-16 NB & SOIC-16 WB)

MPS YYWW M18831-4X LLLLLLLL

MPS: MPS prefix YY: Year code WW: Week code

M18831-4X: Part number

X: UVLO level code, where X=A, B, C, D or E

LLLLLLLL: Lot number

TOP MARKING

MP18831-A4X (SOIC-16 NB & SOIC-16 WB)

MPS YYWW 18831-A4X LLLLLLLL

MPS: MPS prefix YY: Year code WW: Week code

18831-A4X: Part number

X: UVLO level code, where X=A, B, C, D or E

LLLLLLLL: Lot number

TOP MARKING

MP18831-4X (LGA-13 5mmx5mm)

MPSYYWW

MP18831

LLLLLLL

4X

MPS: MPS prefix YY: Year code WW: Week code MP18831: Part number LLLLLL: Lot number

4X: The rest alphanumeric characters of part number

X: UVLO level code, where X=A, B, C, D or E

TOP MARKING

MP18831-A4X (LGA-13 5mmx5mm)

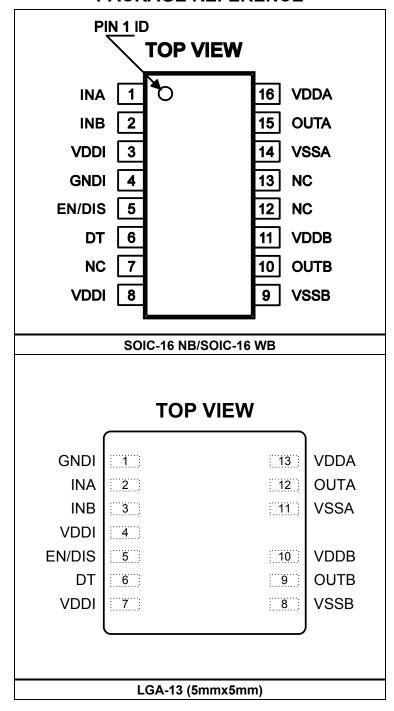
MPSYYWW

MP18831

LLLLLLL

A4X

MPS: MPS prefix YY: Year code WW: Week code MP18831: Part number LLLLLL: Lot number


A4X: The rest alphanumeric characters of part number

X: UVLO level code, where X=A, B, C, D or E

6

PACKAGE REFERENCE

MP18831 Rev. 0.8

10/18/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. Preliminary Specifications Subject to Change © 2021 MPS. All Rights Reserved.

PIN FUNCTIONS

Pin	#		Description						
SOIC-16	LGA-13	Name	Description						
1	2	INA	Non-Inverting Logic Control Signal Input for Driver A. INA pin can accept a TTL/CMOS level compatible input logic. This pin is internally pulled down to GNDI. It is recommended to tie this pin to GNDI if not used.						
2	3	INB	Non-Inverting Logic Control Signal Input for Driver B. INB pin can accept a TTL/CMOS level compatible input logic. This pin is internally pulled down to GNDI. It is recommended to tie this pin to GNDI if not used.						
3,8	4,7	VDDI	Input-Side Power Supply Input. These two pins are internally shorted. VDDI supplies power to the primary side control circuitry. Locally decoupled to GNDI using a low ESR/ESL bypass capacitor. The capacitor should be placed as close to the chip as possible.						
4	1	GNDI	Input-Side Ground. Ground reference for all input-side signal and internal control blocks.						
5	5	EN	Enable Control Input. EN pin can be driven by an external TTL/CMOS level compatible input logic signal to enable/disable the chip. This pin is internally pulled high. Turn on the chip if set high or left open, shutdown the driver output if pulled low.						
5	5	DIS	Disable Control Input. DIS pin can be driven by an external TTL/CMOS level compatible input logic signal to enable/disable the chip. This pin is internally pulled low. Turn on the chip if set low or left open, shutdown the driver output if pulled high.						
6	6	DT	Dead-Time Programming Input. Leaving DT open sets the dead time to the minimal value. Tie a $2k\Omega$ to $150k\Omega$ resistor between DT and GNDI to program the dead-time. It is recommended to parallel a 220pF or above ceramic capacitor with this resistor for improved noise immunity.						
7,12,13		NC	No Connection.						
9	8	VSSB	Output-Side Ground for Driver B. Ground reference for output driver B.						
10	9	OUTB	Gate Drive Output of Driver B. Connect to the gate of power device in channel B.						
11	10	VDDB	Output-Side Driver Power Supply Input for Driver B. This pin supplies power to the secondary side driver B circuitry. Locally decoupled to VSSB using a low ESR/ESL bypass capacitor. The capacitor should be placed as close to the chip as possible.						
14	11	VSSA	Output-Side Ground for Driver A. Ground reference for output driver A.						
15	12	OUTA	Gate Drive Output of Driver A. Connect to the gate of power device in channel A.						
16	13	VDDA	Output-Side Driver Power Supply Input for Driver A. This pin supplies power to the secondary side driver A circuitry. Locally decoupled to VSSA using a low ESR/ESL bypass capacitor. The capacitor should be placed as close to the chip as possible.						

MP18831 Rev. 0.8

MonolithicPower.com

10/18/2021

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

Preliminary Specifications Subject to Change

© 2021 MPS. All Rights Reserved.

ABSOLUTE MAXIMUM RATINGS (1)
VDDI-GNDI0.3V to 6.5V
$V_{\text{INA}},V_{\text{INB}},V_{\text{EN/DIS}},V_{\text{DT}}$
(GNDI-0.3V) to (VDDI+0.3V)
$V_{\text{INA}}, V_{\text{INB}}, V_{\text{EN/DIS}}$ Transient for 50ns
(GNDI-5.0V) to (VDDI+0.3V)
VDDA-VSSA, VDDB-VSSB0.3V to 35V
V _{OUTA} (VSSA-0.3V) to (VDDA+0.3V)
V _{OUTA} Transient for 200ns
(VSSA-2.0V) to (VDDA+0.3V)
V _{OUTB} (VSSB-0.3V) to (VDDB+0.3V)
V _{OUTB} Transient for 200ns
(VSSB-2.0V) to (VDDB+0.3V)
VSSA-VSSB
SOIC-16 NB/WB1500V to +1500V
LGA-13 (5mmx5mm)700V to +700V
Continuous Power Dissipation ($T_A = +25$ °C) (2) SOIC-16 WB2215mW
SOIC-16 WB
LGA-13 (5mmx5mm)1175mW
Junction Temperature
Lead Temperature
Storage Temperature65°C to +150°C
ESD Ratings
Human body model (HBM)4000V
Charged device model (CDM)2000V

Recommended Operation	ng Con	dition	S ⁽³⁾
VDDI-GNDI		2.8V to	5.5V
VINA, VINB, VEN/DIS	G	NDI to	VDDI
VDDA-VSSA, VDDB-VSSB			
4.2V to	30V (3V	UVLC	rev.)
6.5V to			
9.2V to	30V (8V	UVLC	rev.)
12V to 3			
14.5V to 3	30V (12V	UVLC	O rev.)
Operating Junction Temp. (T _J)40°	C to +	125°C
Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	$\boldsymbol{\theta}_{JC}$	
SOIC-16 WB	56	30	.°C/W
SOIC-16 NB	59	35	.°C/W
LGA-13 (5mmx5mm)	106	50	.°C/W

Notes

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.

9

Measured on MP18831 evaluation board, 2-layer PCB.

ELECTRICAL CHARACTERISTICS

 $2.8V \le VDDI\text{-GNDI} \le 5.5V$, VDDA-VSSA = VDDB-VSSB = 5V/12V/15V (5), $T_J = -40^{\circ}C$ to +125°C, typical value is tested at $T_J = +25^{\circ}C$, all voltages with respect to the corresponding grounds, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
Input Side Supply Voltage						•
VDDI Under-Voltage Lockout Threshold	VDDI _{UVLO}	(VDDI-GNDI) falling	2.42	2.6	2.78	V
VDDI Under-Voltage Lockout Hysteresis	VDDI _{UVLO_HYS}		110	135	160	mV
Input Side Supply Current						
VDDI Shutdown Current	Ivddi_sd	V _{EN} =GNDI or V _{DIS} =VDDI		1.0	1.3	mA
VDDI Quiescent Current	Ivddi_q	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =GNDI		1.0	1.3	mA
VDDI Operation Current	I _{VDDI}	f=500kHz, 50% duty, C _{LOAD} =100pF		2.0	2.8	mA
Logic Input (INA, INB, EN/DIS)						
Logic Input High Threshold	V _{LI_H}	(V _{LI} -GNDI) rising		1.6	1.8	V
Logic Input Low Threshold	V _{LI_L}	(V _{LI} -GNDI) falling	1.0	1.2		V
Logic Input Hysteresis Voltage	V _{LI_HYS}		360	400	440	mV
Internal Pull-Up Resistance	R _{LI_PU}	EN		200		kΩ
Internal Pull-Down Resistance	R _{LI_PD}	INA/INB, DIS		200		kΩ
Output Side Supply Voltage						
		-A, 3V threshold	2.7	3.2	3.7	V
VDDA/VDDB Under-Voltage Lockout	\ (D.D.A	-B, 5V threshold	5	5.5	6	V
Threshold	VDDA _{UVLO} VDDB _{UVLO}	-C, 8V threshold	7.5	8	8.5	V
(VDDA-VSSA)/(VDDB-VSSB) falling	VDDBUVLO	-D, 10V threshold	9.3	10	10.7	V
		-E, 12V threshold	11	12	13	V
		-A/-B, 3V/5V threshold	200	300	400	mV
VDDA/VDDB Under-Voltage Lockout		-C, 8V threshold	420	520	620	mV
Hysteresis	VDDB _{UVLO_HYS}	-D/-E, 10V/12V threshold	0.8	1	1.2	٧
Output Side Supply Current						
VDDA/VDDB Shutdown Current	I _{VDDA_SD} I _{VDDB_SD}	V _{EN} =GNDI or V _{DIS} =VDDI		1.0	1.3	mA
VDDA/VDDB Quiescent Current (current per channel)	Ivdda_q Ivddb_q	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =GNDI		1.0	1.3	mA
VDDA/VDDB Operation Current	I _{VDDA}	f=500kHz, C _{LOAD} =100pF, VDDA/VDDB=12V		2.5	3.0	mA
(current per channel)	I _{VDDB}	f=500kHz, C _{LOAD} =100pF, VDDA/VDDB=15V		3.0	4.6	mA

MP18831 Rev. 0.8 MonolithicPower.com 10

ELECTRICAL CHARACTERISTICS (continued)

 $2.8V \le VDDI$ -GNDI $\le 5.5V$, VDDA-VSSA = VDDB-VSSB = 5V/12V/15V (5), $T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical value is tested at $T_J = +25^{\circ}C$, all voltages with respect to the corresponding grounds, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
Gate Driver	-				I	I.
Logic High Output Voltage	Vоита_н Vоитв_н	I _{OUTA/OUTB} =-10mA	VDDA/ VDDB -0.03	VDDA/ VDDB -0.01		V
Logic Low Output Voltage	Vouta_l Voutb_l	IOUTA/OUTB=10mA		VSSA/ VSSB +0.01	VSSA/ VSSB +0.03	V
Output Peak Source Current (6)	louta_src loutb_src	VDDA-VSSA=VDDB- VSSB=15V, VOUTA/OUTB-VSSA/VSSB =5V (5V miller plateau) f=1kHz		-4		A
Output Peak Sink Current (6)	louta_snk loutb_snk	VDDA-VSSA=VDDB- VSSB=15V, VOUTA/OUTB-VSSA/VSSB =5V (5V miller plateau) f=1kHz		4		А
Output Source Resistance	Rоита_н Rоитв_н	Іоита/оитв=-10mA		1.3	2.5	Ω
Output Sink Resistance	Routa_l Routb_l	Іоита/оитв=10mA		1.0	2.0	Ω
Dead-time and Overlap Protection						
Dood Time		Leave DT open, (minimum dead-time)		10	30	ns
Dead-Time	t _{DT}	R_{DT} =20k Ω	130	190	250	ns
		R _{DT} =100kΩ	700	900	1100	ns
Dead-Time Matching tdtab-tdtba	t _{DTM}			0	10	ns
Bias Voltage for Dead-Time Set	V _{DT}	R _{DT} =20kΩ	0.6	0.65	0.7	V
DT Resistance Range	R _{DT}		2		150	kΩ
Switching (Refer to the time seque	nce diagram	for details)				
Output Rise Time	t _R	(Vouta/outb- VSSA/VSSB) rising, C _{LOAD} =1.8nF		10	20	ns
Output Fall Time	t _F	(Vouta/outb- VSSA/VSSB) falling C _{LOAD} =1.8nF		10	20	ns
Minimum Pulse Width	t _{PW_MIN}	Output pulse off if shorter than tpw_MIN, CLOAD=0pF		23	35	ns
Propagation Delay from INA/INB to OUTA/OUTB Rising Edge	tpDLH	V _{EN} =VDDI or V _{DIS} =GNDI, C _{LOAD} =0pF	35	50	65	ns
Propagation Delay from INA/INB to OUTA/OUTB Falling Edge	t _{PDHL}	V _{EN} =VDDI or V _{DIS} =GNDI, C _{LOAD} =0pF	35	50	65	ns

MP18831 Rev. 0.8 MonolithicPower.com 11

10/18/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. Preliminary Specifications Subject to Change © 2021 MPS. All Rights Reserved.

ELECTRICAL CHARACTERISTICS (continued)

 $2.8V \le VDDI$ -GNDI $\le 5.5V$, VDDA-VSSA = VDDB-VSSB = 5V/12V/15V (5), $T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical value is tested at $T_J = +25^{\circ}C$, all voltages with respect to the corresponding grounds, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units						
Switching (Refer to the time sequence diagram for details)												
Propagation Delay from Enable True to OUTA/OUTB Rising Edge	tpden	V _{INA/INB} =VDDI, C _{LOAD} =0pF	35	50	65	ns						
Propagation Delay from Disable True to OUTA/OUTB Falling Edge	t _{PDDIS}	V _{INA/INB} =VDDI, C _{LOAD} =0pF	35	50	65	ns						
Pulse Width Distortion tpdlh-tpdhl	t _{PWD}	C _{LOAD} =0pF		1	6	ns						
Propagation Delay Matching (Channel-to-Channel)	t _{РDМ}	C _{LOAD} =0pF		1	6	ns						
Startup Delay from Input Supply UVLO Exit to Output Rising Edge	tstu_vddi	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =VDDI, C _{LOAD} =0pF	15	25	35	μs						
Shutdown Delay from Input Supply UVLO Entry to Output Falling Edge ⁽⁷⁾	tshd_vddi	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =VDDI, C _{LOAD} =0pF		500		ns						
Startup Delay from Output Supply UVLO Exit to Output Rising Edge	tstu_vdda tstu_vddb	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =VDDI, C _{LOAD} =0pF	10	20	30	μs						
Shutdown Delay from Output Supply UVLO Entry to Output Falling Edge ⁽⁷⁾	tshd_vdda tshd_vddb	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =VDDI, C _{LOAD} =0pF		500		ns						
Static Common-Mode Transient Immunity (6)	CMTI _{STC}	V _{EN} =VDDI or V _{DIS} =GNDI, V _{INA/INB} =GNDI or VDDI, slew rate of GNDI versus VSSA/VSSB, V _{CM} =1500V	100			kV/µs						
Dynamic Common-Mode Transient Immunity (6)	CMTI _{DYN}	V _{EN} =VDDI or V _{DIS} =GNDI, f=100kHz pulse at INA/INB, slew rate of GNDI versus VSSA/VSSB, V _{CM} =1500V	100			kV/μs						

Notes:

12

⁵⁾ For the test condition, VDDA-VSSA=VDDB-VSSB=5V is used for 3V UVLO devices; VDDA-VSSA=VDDB-VSSB =12V is used for 5V and 8V UVLO devices; VDDA-VSSA=VDDB-VSSB =15V is used for 10V and 12V UVLO devices.

⁶⁾ Guaranteed by characterization, not production tested.

⁷⁾ Guaranteed by design.

INSULATION & SAFETY-RELATED SPECIFICATIONS

Parameters	Symbol	Condition	SOIC-16 WB	SOIC-16 NB	LGA-13 5x5	Units
External Air Gap (Clearance) (8)	CLR	Shortest pin-to-pin distance through air between primary and secondary side	>4	3.5	mm	
External Tracking (Creepage) (8)	CPG	Shortest pin-to-pin distance across the package surface between primary and secondary side	he package surface between >8 >4 3.5			
Distance Through Insulation	DTI	Internal Clearance	>20	>20	>20	μm
Comparative Tracking Index	СТІ	According to IEC60112	>600	>600	>600	V
Material Group		According to IEC 60664-1	I	I	I	
0 " 0 "		Rated mains voltages ≤ 150V _{RMS}	I-IV	I-IV	I-IV	
Overvoltage Category per IEC 60664-1		Rated mains voltages ≤ 300V _{RMS}	I-IV	I-III	I-III	
per 12.0 00004-1		Rated mains voltages ≤ 600V _{RMS}	1-111	I-II		
UL 1577, 5th Ed						
Recognized under UL 157	7 Compor	ent Recognition Program, Single Pro	tection. Fil	e number:	E322138	
Dielectric Withstand Insulation Voltage	V _{ISO}	V _{TEST} =V _{ISO} for t=60 sec. (qualification), V _{TEST} =1.2 x V _{ISO} for t=1 sec. (100% production)	5000	3000	2500	V _{RMS}
DIN V VDE V 0884-11: 20	17-01					
Certified according to DIN	V VDE V	0884-11 (VDE V 0884-11): 2017-01.	Certificatio	n number:	pending	
Maximum Repetitive Peak Isolation Voltage	VIORM	AC voltage (bipolar)	891	560	560	V _{PK}
Maximum Working	VIOWM	AC voltage (sine wave)	630	400	400	V_{RMS}
Isolation Voltage	VIOWM	DC voltage	891	560	560	V_{DC}
Maximum Transient Isolation Voltage	V _{ІОТМ}	V _{TEST} =V _{IOTM} for t=60 sec (qualification); V _{TEST} =1.2 x V _{IOTM} for t=1 sec (100% production)	7071	4242	3535	V _{PK}
Apparent Charge ⁽⁹⁾ Measuring Voltage	Charge (9) Method b1, at routine test (100% production). V (5) 7=1.2 × V(5) 1.5 = 1.5 = 5.		1061	VPK		
Maximum Surge Isolation Voltage (10)	Viosm	Tested per IEC 62368-1 with 1.2/50µs pulse, V _{TEST} =1.3 x V _{IOSM} (qualification)	ested per IEC 62368-1 with 2/50µs pulse, 4000 4000 3500		3500	V _{PK}
Barrier Capacitance (11)	Cıo	f=1MHz	~1	~1	~1	pF
		V _{IO} =500V, T _A =25°C		>10 ¹²		Ω
Insulation Resistance (11)	R _{IO}	V _{IO} =500V, 100°C≤T _A ≤125°C			Ω	
		V _{IO} =500V, T _A =T _S =150°C		>109		Ω
Pollution Degree		per DIN VDE 0110, Table 1				
Climatic Category				40/125/21		

MP18831 Rev. 0.8 MonolithicPower.com 13
10/18/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

© 2021 MPS. All Rights Reserved.

Preliminary Specifications Subject to Change

MP18831 - ISOLATED DUAL-INPUT HALF-BRIDGE GATE DRIVER

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Notes:

- 8) Refer to package information for detailed dimensions. As isolated solution, the recommended land pattern is helpful to keep enough safety creepage and clearance distances on a printed-circuit board.
- 9) Electrical discharge caused by a partial discharge in the coupler.
- 10) Surge test is carried out in oil.
- 11) The primary side terminals as well as the secondary side terminals of the barrier are connected together forming a two-terminal device. Then C_{IO} and R_{IO} are measured between the two terminals of the coupler.

SAFETY LIMITING VALUES (12)

Parameters	Symbol	Condition	SOIC-16 WB	SOIC-16 NB	LGA-13 5x5	Units
Maximum Safety Temperature (13)	Ts		150	150	150	°C
Maximum Output Safety Current	I _{S_O}	VDDA-VSSA=VDDB-VSSB =12V (14), T _J =150°C, T _A =25°C	91	87	48	mA
(current per channel)	5_5	VDDA-VSSA=VDDB-VSSB=30V, T _J =150°C, T _A =25°C	36	35	19	mA
	Ps	Input side	15	15	15	mW
Safety Power Dissipation		Output side, channel A		1050	580	mW
(15)		Output side, channel B	1100	1050	580	mW
		Total	2215	2115	1175	mW

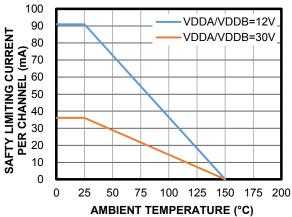
Notes:

- 12) Maximum value allowed in the event of a failure.
- 13) The maximum safety temperature T_S has the same value as the maximum junction temperature T_J (MAX) specified in ABSOLUTE MAXIMUM RATINGS.
- 14) Tested for 5V and 8V UVLO devices
- 15) Test condition: VDDI-GNDI=5.5V, VDDA-VSSA=VDDB-VSSB=30V, T_J=150°C, T_A=25°C.

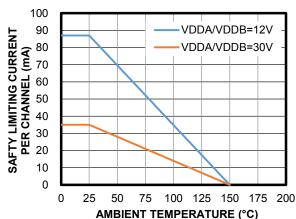
The safety power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A :

 $T_S=T_J(MAX)=T_A+(\theta_{JA} \times P_S),$

 $P_S=I_S \times V_I$, where V_I is the input voltage


14

THERMAL DERATING CURVE FOR SAFETY LIMITING VALUES


Thermal Derating Curve for Safety Limiting Current

Thermal Derating Curve for Safety Limiting Current

SOIC-16 NB

Thermal Derating Curve for Safety Limiting Current LGA-13 5x5

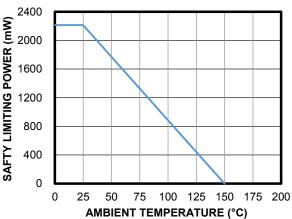
75

60

0

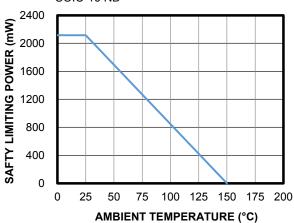
0

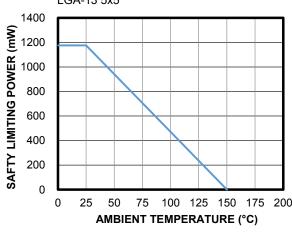
25


50

AMBIENT TEMPERATURE (°C)

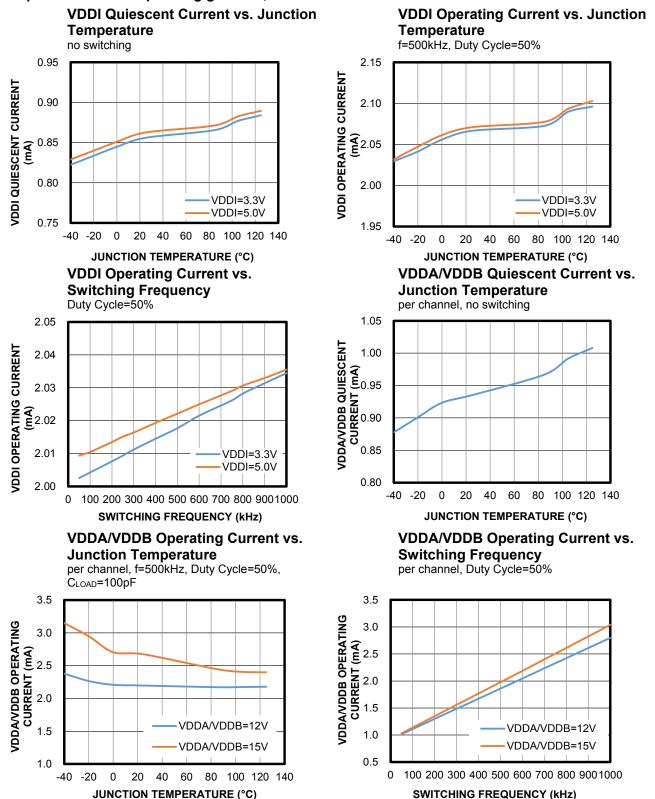
100 125 150 175 200


Thermal Derating Curve for Safety Limiting Power


Thermal Derating Curve for Safety Limiting Power

SOIC-16 NB

Thermal Derating Curve for Safety Limiting Power


LGA-13 5x5

TYPICAL CHARACTERISTICS

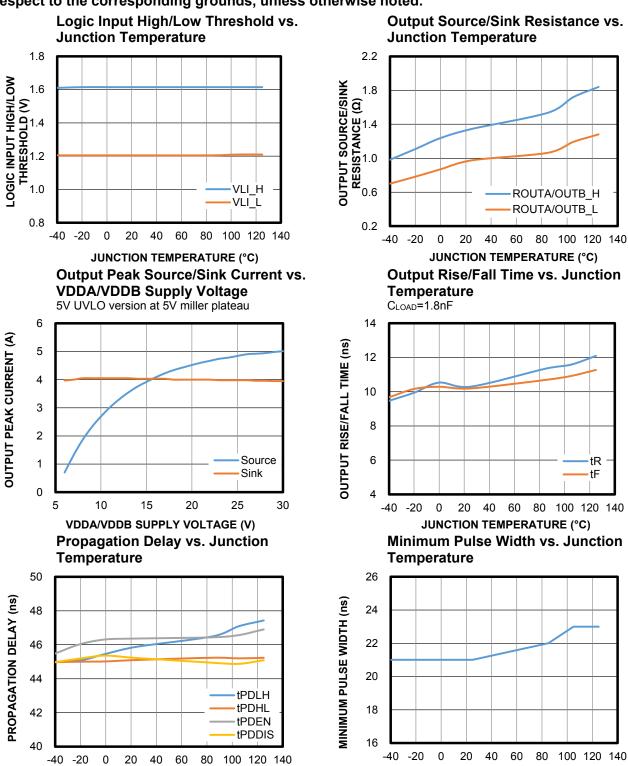
VDDI-GNDI = 5V, VDDA-VSSA = VDDB-VSSB = 12V, C_{LOAD} =0pF, T_J = 25°C, all voltages with respect to the corresponding grounds, unless otherwise noted.

MP18831 Rev. 0.8

MonolithicPower.com

10/18/2021

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.


Preliminary Specifications Subject to Change

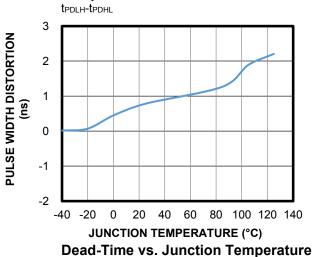
© 2021 MPS. All Rights Reserved.

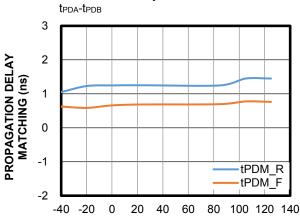
TYPICAL CHARACTERISTICS (continued)

VDDI-GNDI = 5V, VDDA-VSSA = VDDB-VSSB = 12V, C_{LOAD} =0pF, T_J = 25°C, all voltages with respect to the corresponding grounds, unless otherwise noted.

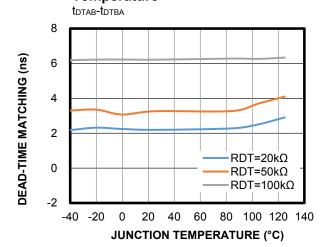
JUNCTION TEMPERATURE (°C)

JUNCTION TEMPERATURE (°C)

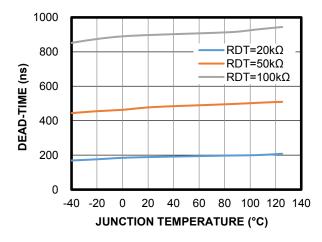

17


TYPICAL CHARACTERISTICS (continued)

VDDI-GNDI = 5V, VDDA-VSSA = VDDB-VSSB = 12V, C_{LOAD} =0pF, T_J = 25°C, all voltages with respect to the corresponding grounds, unless otherwise noted.



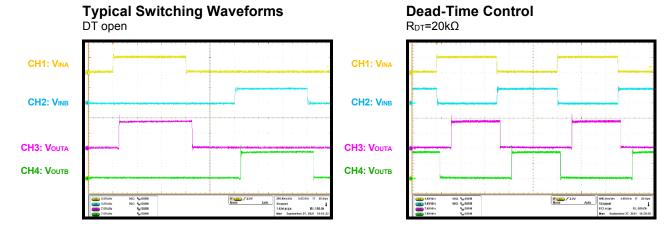
Propagation Delay Matching vs. Junction Temperature

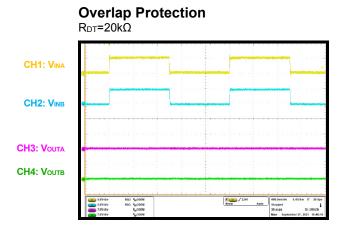


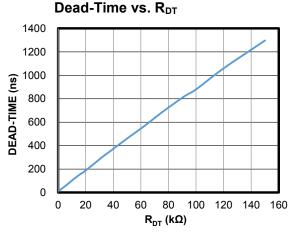
Dead-Time Matching vs. Junction Temperature

JUNCTION TEMPERATURE (°C)

18






TYPICAL PERFORMANCE CHARACTERISTICS

Performance waveforms are tested on the evaluation board.

VDDI-GNDI = 5V, VDDA-VSSA = VDDB-VSSB = 12V, C_{LOAD} =0pF, T_A = 25°C, all voltages with respect to the corresponding grounds, unless otherwise noted.

DEFINITIONS OF DYNAMIC PARAMETERS

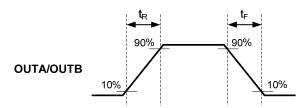


Figure 1: Output Rising and Falling Time

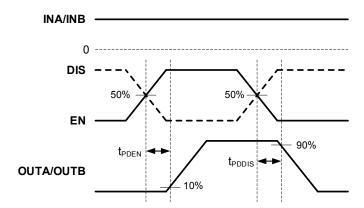


Figure 2: Enable/Disable Response Time

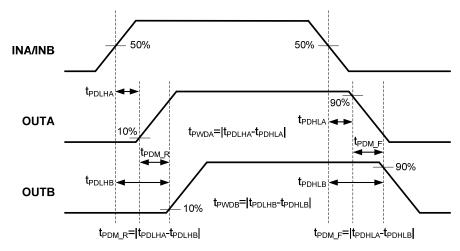


Figure 3: Propagation Delay Matching and Pulse Width Distortion

DEFINITIONS OF DYNAMIC PARAMETERS (continued)

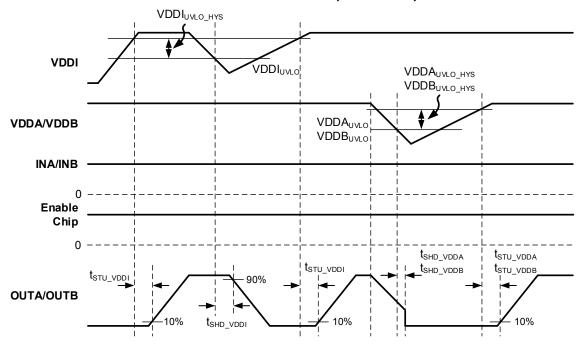


Figure 4: VDDI and VDDA/VDDB Under-Voltage Lockout (UVLO)

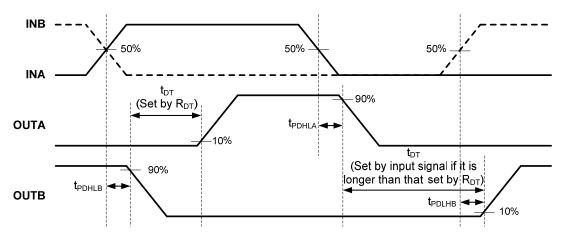


Figure 5: Dead-Time Set

DEFINITIONS OF DYNAMIC PARAMETERS (continued)

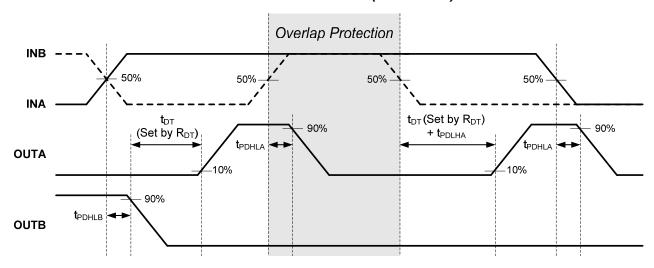


Figure 6: Overlap Protection and Recovery

DEVICE FUNCTIONAL MODES

Table 1: Logic True Table (16)(17)

	Inp	outs		P	ower Sup	ply	Outputs			
INA	INB	EN	DIS	VDDI	VDDA	VDDB	OUTA	OUTB	Notes	
L or O	L or O	H or O	L or O	Р	Р	Р	L	L		
L or O	Н	H or O	L or O	Р	Р	Р	L	Н	Output transition occurs after the dead-time expires.	
Н	L or O	H or O	L or O	Р	Р	Р	Н	L	·	
Н	Н	H or O	L or O	Р	Х	Х	L	L	Invalid, overlap protection.	
Х	Х	L	Н	Р	Х	Х	L	L	Disable chip.	
Х	Х	Х	Х	UP	Х	Х	L	L	VDDI is unpowered.	
Х	L or O	H or O	L or O	Р	UP	Р	L	L	VDDA is uppowered	
L or O	Н	H or O	L or O	Р	UP	Р	L	Н	VDDA is unpowered.	
L or O	Х	H or O	L or O	Р	Р	UP	L	L	VDDD :	
Н	L or O	H or O	L or O	Р	Р	UP	Н	L	VDDB is unpowered.	

¹⁶⁾ L: Logic Low; H: Logic High; O: Left Open; X: Irrelevant; P: Powered; UP: Unpowered, UVLO condition.
17) If VDDI is powered, the output can operate functionally as long as this channel is powered normally.

BLOCK DIAGRAM

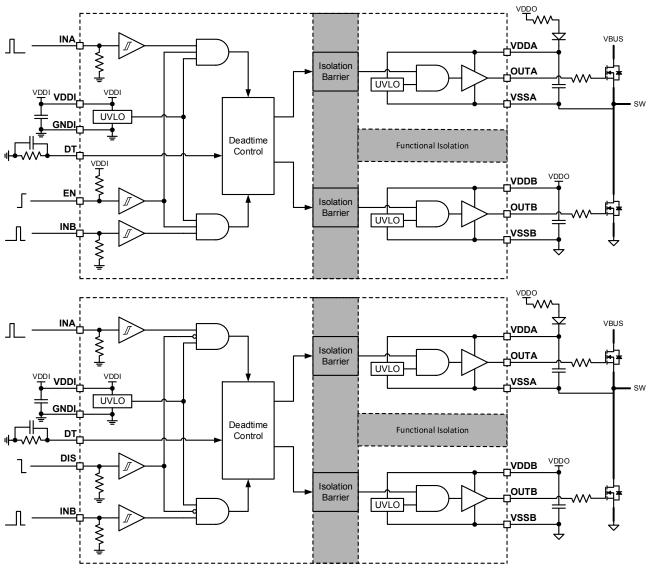


Figure 7: Functional Block Diagram

OPERATION

The MP18831 is an isolated dual-input control, half-bridge gate driver solution with 4A peak output current capacity. This IC is designed to drive power switching devices with short propagation delay and pulse-width distortion. With the advanced features, the MP18831 operates high efficiency, high power density, and robustness in a wide variety of power applications.

Please see Table 1 for whole device functional modes.

Under-Voltage Lockout (UVLO)

Under-voltage lockout (UVLO) is implemented to avoid the chip or some blocks from operating at insufficient supply voltage. The MP18831 incorporates the internal UVLO comparators for all input and output supply circuit blocks to monitor VDDI, VDDA and VDDB, respectively. Figure 4 shows the input and output supply UVLO time sequence diagram.

If the input bias voltage VDDI is unpowered or under supply UVLO level, the chip is not activated and the output stages does not receive the control signals from the input stage. Then the UVLO mechanism holds the output forced low, regardless of the present logic levels of the input signals (including EN/DIS and INA/INB).

When either output stage of the driver is unpowered or below UVLO level, the corresponding channel's output is also pulled low. As long as either channel is powered normally, the corresponding channel can accept the related control signal functionally.

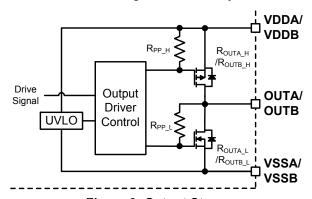


Figure 8: Output Stage

Input Stage and On/Off Control

All of the control input pins (EN/DIS and INA/INB) accept a TTL/CMOS compatible logic inputs that is reliably isolated from each output. These control pins are easy to be driven with common logic-level signals from a digital controller. But, any input signal applied to these control pins must never be at a higher level than the input stage supply VDDI. So, it is recommended to tie VDDI to the same power supply of the control signal sources. The control logics of EN/INA/INB are active-high while the control logic of DIS are active-low.

If the INA/INB inputs are left open, they are forced logic low thru the internal pull-down resistors. This configuration ensures the corresponding output keeps low if the control input is not connected. If either logic input pin INA/INB is not being used, it is still recommended to externally ground it for better noise immunity and stable operation.

Similarly, for on/off control, the EN pin is tied to VDDI thru the internal pull-up resistor while the DIS pin is connected to GNDI thru the internal pull-down resistor. Although leaving EN/DIS pin floating enables the chip to operate normally after start-up, it is still recommended to provide stable external signal input for on/off control in actual applications.

Output Stage

The output stage comprises an upper P-channel MOSFET and a lower N-channel MOSFET (refer to Figure 8). The effective output pull-up source resistance $R_{\text{OUTA_H}}/R_{\text{OUTB_H}}$ is the on-resistance of the upper P-channel MOSFET, which delivers the large peak source current during the external power-switch turn-on transition. The pull-down structure is simply an N-channel MOSFET, whose on-resistance $R_{\text{OUTA_L}}/R_{\text{OUTB_L}}$ is the output effective pull-down impedance during the drive-low state of the device.

The output stage is optimized to provide strong driving capacity to a power device during the miller plateau interval of the switching on/off procedure. So the MP18831 is capable of delivering 4A peak source/sink current pulses. And the rail-to-rail output ensures the voltage swings between VDDA/VDDB and VSSA/VSSB, respectively.

Programmable Dead-Time and Overlap Protection

To prevent the occurrence of the shoot-through issue in half-bridge driver, the MP18831 allows the user to adjust dead-time (DT), which inserts a user-programmable delay between transitions of OUTA and OUTB. Generally, the MP18831 always selects the longer delay time between the driver's programmed dead-time and the input control signals' own dead-time as the operating dead-time.

When the dead-time control is enabled, in the meanwhile, the overlap protection scheme is activated. If both control inputs are logic-high synchronously, both channels' outputs are blocked and clamped low at once. This overlap protection doesn't affect the dead-time setting of normal operation. The output low-clamping status maintains until either input signal drops to logic-low.

The dead-time delay operation is present on all output transitions from low to high, including normal switching and overlap protection recovery. Refer to Figure 5 and Figure 6 for more information about the operations of dead-time and overlap protection mechanism.

The chip's dead-time is set thru the DT pin. An around 0.65V steady-state bias voltage is generated at DT pin, and the DT pin's source current is monitored to adjust the dead-time delay. When leave DT pin open, a minimum dead-time duration (t_{DT}) is set. Normally, the dead-time is programmed by placing a single resistor R_{DT} connected from the DT pin to input stage's ground GNDI. This R_{DT} resistance should be between the values of $2k\Omega$ and $150k\Omega$ and a filter capacitor of 220pF or above in parallel is recommended. The curve of the dead-time vs. R_{DT} is illustrated in TYPICAL PERFORMANCE CHARACTERISTICS.

Common-Mode Transient Immunity

Common-Mode Transient Immunity (CMTI) is one of the key characteristics that correlate to an isolator's robustness, especially important in high-voltage applications with fast transient devices (like SiC/GaN FET). When a power device is switching, the high slew rate dv/dt or di/dt transient noise can corrupt the signal transmission across the isolation barrier. CMTI is defined as maximum tolerable rate-of-rise (or fall) of a common-mode voltage applied between two isolated circuits, given in volts per second (V/ns or kV/µs). Below the maximum slew rate of a common mode voltage, the output of the isolator remains at the specific logic level and at the specified timing.

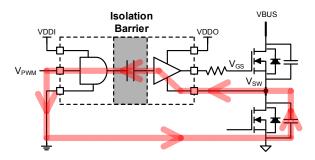


Figure 9: High Slew Rate Transient Noise Coupling Path

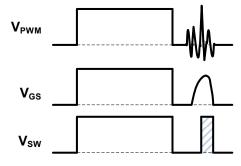


Figure 10: Abnormal Pulse Caused by Coupled Noise if dv/dt > CMTI

Figure 11 shows the CMTI test setup to measure the CMTI of a coupler in both static and dynamic operation, under specified common-mode pulse magnitude (V_{CM}) and specified slew rate of the common-mode pulse (dV_{CM}/dt) and other specified test or ambient conditions. The isolator's output should stay in the correct state as long as the pulse magnitude and the slew rate meet the CMTI specification.

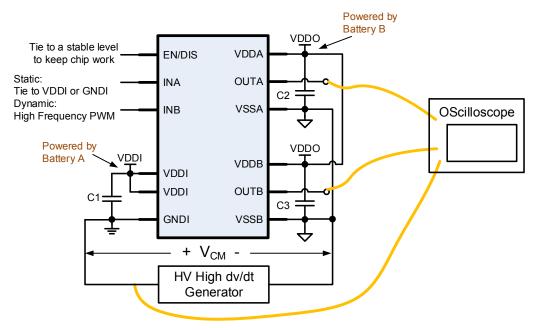


Figure 11: CMTI Test Setup

APPLICATION INFORMATION

Figure 14 is a reference design for typical application circuit.

Selecting the VDDI Capacitor

The input supply VDDI capacitor reduces the surge current drawn from the input supply and supports the current consumption for the primary logic interface and transmitter block. Since the input side's operating current is only a few mA, a 100nF ceramic capacitor with X5R or X7R dielectrics is highly recommended because of its low ESR and small temperature coefficients. For most applications, add a >1 μ F capacitor in parallel with this 100nF as the bypass capacitor if the real supply power is far away from the VDDI pin.

Selecting the VDDA/VDDB Capacitor

As the bypass capacitor of the output gate driver, besides the consumption of driving control block, the VDDA/VDDB capacitor maintains the stable driving voltage and supports up to 4A the transient source current.

Assume the allowable VDDA/VDDB voltage ripple is Δ VDDA/VDDB which guarantees that the driver supply voltage cannot drop close to UVLO level, the minimum VDDA/VDDB capacitor is

$$C_{\text{VDDA/VDDB}} = \frac{I_{\text{VDDA/VDDB}} \times \frac{1}{f_{\text{SW}}} + Q_{\text{G}}}{\Delta \text{VDDA/VDDB}}$$
 (1)

where.

 $I_{VDDA/VDDB}$ is VDDA/VDDB operation current; f_{SW} is the switching frequency; Q_G is the gate charge of the power device.

Care should be taken when the loop resistance,

Care should be taken when the loop resistance, voltage drop and DC bias voltage ripple have impact on supply voltage. Especially for channel A which usually operates as the high-side driver in a half-bridge converter and is powered by a bootstrap circuity, too large VDDA capacitor is not a good option. It may not be charged fast at system power-up or bootstrap cycle. VDDA could stay below UVLO level and fails to power the high-side driver. Generally, a 1µF capacitor is chosen for channel A. If channel A is powered by a special supply, a larger VDDA capacitor can be selected.

Channel B is powered by a special supply and the VDDB capacitor needs to support the VDDA capacitor's charging current thru bootstrap, so a large bypass capacitor can be chosen, like a 10µF ceramic capacitor. Similarly, a secondary high frequency bypass capacitor of 100nF in parallel is recommended.

Selecting the Bootstrap Diode and Series Resistor

A bootstrap configuration is often applied to power the high-side driver in a half-bridge converter. The bootstrap capacitor is charged thru the bootstrap diode and series resistor during the low-side turn-on interval. And the diode needs to load the high reverse voltage (higher than bus voltage) during the low-side turn-on interval. To reduce the conduction losses and reverse recovery losses, a high-voltage, fast recovery diode or schottky diode should be chosen.

Meanwhile, a bootstrap series resistor is also used to limit the inrush charging current, which could generate a spike on VDDA pin. The recommended value is not larger than 10Ω . Then the estimated peak charging current is

$$I_{BST} = \frac{VDDA/VDDB - V_{D_BST}}{R_{BST}}$$
 (2)

where,

V_{D_BST} is the forward voltage drop of the bootstrap diode;

R_{BST} is the bootstrap series resistor.

Selecting the Input Filter for INA/INB

Theoretically, the INA/INB input filter is not necessary. The low pass filter slows the PWM signal's rising/falling edge and affects the propagation delay. However, it is still recommended to add a simply RC filter at input close to INA/INB pin if the high frequency ringing introduced by PCB traces is terrible.

Generally, to avoid increasing the input resistance, a smaller than 100Ω resistor can be selected. When selecting the filter capacitor, make sure the filter's cut-off frequency is at least ten times higher than the switching frequency, a dozens of PF capacitor should be enough.

Selecting the External Driving Resistor

The external driving resistor can be applied to limit the ringing noise on driving signal and adjust the switching speed to improve EMI performance. But large driving resistor increases the switching losses, reduces system efficiency and brings thermal issue. In actual applications, the turn-on and turn-off speeds can be adjusted by different driving resistors, respectively. The sink resistor is in series with an anti-parallel diode to be separated from the source resistor. And the total driving resistor when pulling down the power device is the sink resistor in parallel with the source resistor.

The peak driving current is the key feature to evaluate the effect of the driving resistors. Without driving resistor, the MP18831 can drive both 4A peak source/sink current.

Considering the driving resistor, the peak source driving current is

$$I_{\text{OUTA_SRC}} = \frac{\text{VDDA}}{R_{\text{OUTA_H}} + R_{\text{G_SRC}} + R_{\text{G(int)}}}$$
 (3)

$$I_{\text{OUTB_SRC}} = \frac{\text{VDDB}}{R_{\text{OUTB H}} + R_{\text{G SRC}} + R_{\text{G(int)}}}$$
 (4)

The peak sink driving current is

$$I_{\text{OUTA_SNK}} = \frac{V_{\text{GSA_ON}}}{R_{\text{OUTA_L}} + R_{\text{G_SRC}} \parallel R_{\text{G_SNK}} + R_{\text{G(int)}}}$$
(5)

$$I_{\text{OUTB_SNK}} = \frac{V_{\text{GSB_ON}}}{R_{\text{OUTB_L}} + R_{\text{G_SRC}} || R_{\text{G_SNK}} + R_{\text{G(int)}}}$$
 (6)

where,

 R_{G_SRC} is the external source resistor; R_{G_SNK} is the external sink resistor; $R_{G(int)}$ is internal gate resistance of the power device:

V_{GSA_ON}/V_{GSB_ON} is the stable gate-source voltage of the power device in ON interval. Generally, it should be close to VDDA/VDDB.

Since the driving current cannot higher than 4A, select the smaller value of the estimated I_{OUTA_SRC/OUTB_SRC} or I_{OUTA_SNK/OUTB_SNK} and 4A as the actual peak driving current.

Setting the Dead-Time on DT pin

In half-bridge power converter, a dead-time is inserted during dynamic switching transition between high-side and low-side power devices to prevent shoot-through. The MP18831's dead-time can be controlled by INA/INB or DT setting. The chip always selects the longer delay time between the driver's programmed dead-time and the input control signals' own dead-time as the operating dead-time.

The dead-time setting needs to be determined by actual system requirements. By observing the real $V_{\rm GS}$, $V_{\rm DS}$ and switch node's waveforms of both high-/low-side devices and considering ZVS control logic. Make sure the dead-time interval is with enough margin at any load condition.

The MP18831's dead-time setting is programmed by DT pin. Select the suitable resistor according to the curve of the dead-time vs. $R_{\rm DT}$.

Estimate Gate Driver's Power Loss

The total power loss on the gate driver is used to estimate the thermal performance. The MP18831 needs to operate under Safety Limiting Values.

The first element is the chip's operation power consumption P_{OP} :

$$P_{\text{OP}} = \text{VDDI} \times I_{\text{VDDI}} + \text{VDDA} \times I_{\text{VDDA}} + \text{VDDB} \times I_{\text{VDDB}}$$
(7)

The driver self-power consumption is related to the switching frequency and supply voltage. Typical Characteristics provide the relationship reference of input and output channels' current consumption vs. operating frequency.

The key element is the driving power loss at switching operation. As a conventional totempole gate driver, the MP18831's each channel charges and discharges the gate capacitance of the power device one time during every switching cycle.

During the charging and the discharging period, the total energy is supplied by VDDA/VDDB. If there is no external gate driving resistor, the equation of power dissipation is given as

$$P_{\text{SW}} = \left(VDDA \times \int\limits_{0}^{t_{\text{ON}}} i_{\text{GA}}(t)dt + VDDB \times \int\limits_{0}^{t_{\text{ON}}} i_{\text{GB}}(t)dt \right) \times f_{\text{SW}}$$

$$= (VDDA + VDDB) \times Q_G \times f_{SW}$$
 (8)

where.

t_{ON} is the turn-on time;

i_{GA/GB}(t) is the driving current.

Considering the action of the external source/sink resistors, the dynamic power dissipation estimation becomes complicated.

If the driving current is not saturated to 4A in whole switching cycle with external gate resistors, this power dissipation is shared between the internal source/sink resistances of the gate driver and the external gate driving resistors based on the ratio of these series resistances (see Equation 9).

$$P_{\text{SW}} = \frac{\text{VDDA} \times Q_{\text{G}} \times f_{\text{SW}}}{2} \times \left(\frac{R_{\text{OUTA_H}}}{R_{\text{OUTA_H}} + R_{\text{G_SRC}} + R_{\text{G(int)}}} + \frac{R_{\text{OUTA_L}}}{R_{\text{OUTA_L}} + R_{\text{G_SRC}} \parallel R_{\text{G_SNK}} + R_{\text{G(int)}}} \right) \\ + \frac{\text{VDDB} \times Q_{\text{G}} \times f_{\text{SW}}}{2} \times \left(\frac{R_{\text{OUTB_H}}}{R_{\text{OUTB_H}} + R_{\text{G_SRC}} + R_{\text{G(int)}}} + \frac{R_{\text{OUTA_L}}}{R_{\text{OUTB_L}} + R_{\text{G_SRC}} \parallel R_{\text{G_SNK}} + R_{\text{G(int)}}} \right)$$
(9)

$$\begin{split} P_{SW_SAT} &= 4A \times \int\limits_{0}^{t_{ON_SAT}} \left(VDDA - V_{GSA}(t) \right) dt + 4A \times \int\limits_{0}^{t_{OFF_SAT}} \left(V_{GSA}(t) \right) dt \\ &+ 4A \times \int\limits_{0}^{t_{ON_SAT}} \left(VDDB - V_{GSB}(t) \right) dt + 4A \times \int\limits_{0}^{t_{OFF_SAT}} \left(V_{GSB}(t) \right) dt \end{split} \tag{10}$$

where.

 $t_{\text{ON_SAT/OFF_SAT}}$ is the turn-on/off time with saturated 4A current output; $V_{\text{GSA/GSB}}(t)$ is the gate voltage of the power device in these saturation time.

In some conditions, the MP18831 outputs the saturated 4A current at the beginning of the turn-on/off interval. It results in the power loss calculation in these saturation time becomes Equation 10.

The actual power loss should be the combination of Equation 9 and Equation 10. Then the total power loss dissipated in the MP18831 is

$$P_{LOSS} = P_{OP} + P_{SW}$$
 (11)

Taking the total power loss multiplied by Junction-to-Ambient Thermal Resistance θ_{JA} to know the junction temperature rise above the ambient temperature. Make sure the junction temperature T_J is below the maximum safety temperature T_S .

PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. For best results, refer to the guidelines below.

- Place the bypass/decoupling capacitors as close as possible to the VDDI/VDDA/VDDB supply pins and the corresponding grounds. For each supply pin, it is recommended to add a low ESR/ESL, high frequency bypass capacitor of 100nF.
- 2. Place the dead-time setting resistor and its bypassing capacitor close to DT pin.
- 3. If input RC filter is used, it is recommended to place this filter close to the corresponding control pin.
- 4. Place the high current paths, like supply path, drive path and the connection between the source of the external power device and VSSA/VSSB pin very close to the driver chip with short, direct, and wide traces to minimize the parasitic inductances and avoid large transient and ringing noise.
- 5. It is highly recommended to place large power and ground planes or multiple layers to help dissipate heat from the gate driver chip to PCB to improve the thermal performance. However, must take care of splitting the traces or coppers to allow sufficient insulation distance between different low-/high-voltage planes.
- 6. Keep the driving loop, form OUTA/OUTB, the gate-to-source of the power device to VSSA/VSSB, short in a minimal area. Try to avoid the driving trace across different PCB layers thru vias, since it can bring parasitic inductances. Meanwhile, the driver IC should be placed as close as possible to the power device.
- 7. Refer to the recommended land pattern design of each package type for adequate insulation space between the primary and secondary side. Avoid placing any components, tracks or copper below the chip's body in any PCB layer.
- A board cutout under the chip is not necessary, but it is still recommended to create it to extend the creepage distance on PCB surface, except for small size LGA

- package. The LGA package's bottom side is pressed on the PCB surface, so the PCB cutout is not effective but can make the board easy to be twisted.
- If the driver chip is used in half-bridge configuration, keep enough space and try to increase creepage distance between dual channels.

Take a 2-layer PCB layout with SOIC-16 WB package as an example. Figure 12 and 13 shows the layout around the chip. The components labels are consistent with those in Figure 14.

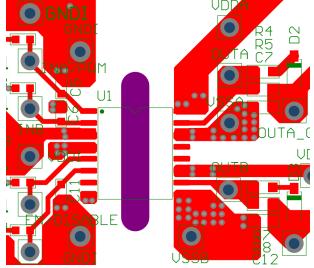


Figure 12: Top Layer Layout Reference

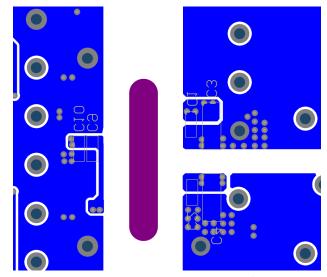
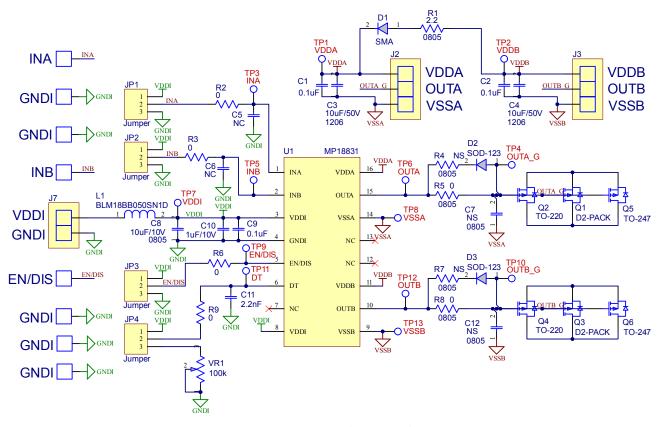
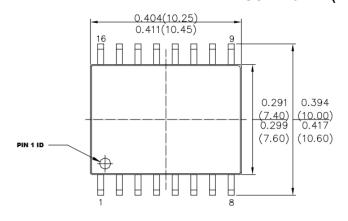
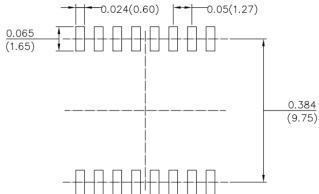


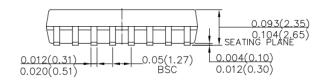
Figure 13: Bottom Layer Layout Reference

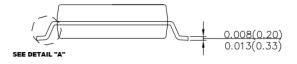
TYPICAL APPLICATION CIRCUITS

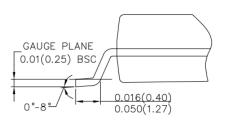

Figure 14: Typical Application Circuit Reference Design

PACKAGE INFORMATION


SOIC-16 WB (HV ISOLATION)



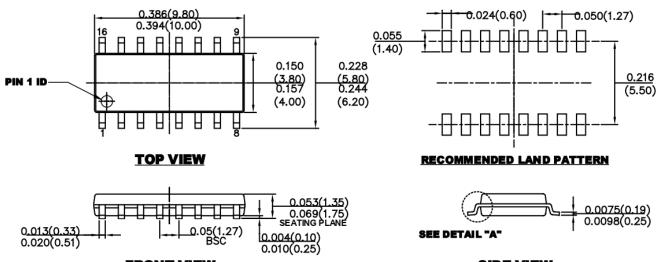
TOP VIEW


RECOMMENDED LAND PATTERN

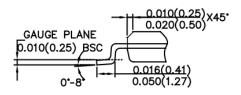
FRONT VIEW

SIDE VIEW

DETAIL "A"


NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-013, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

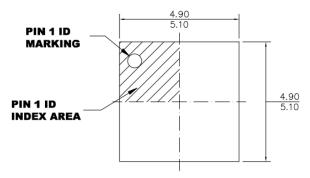

PACKAGE INFORMATION (continued)

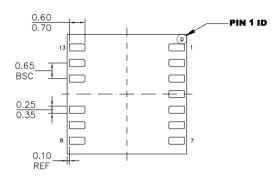
SOIC-16 NB (HV ISOLATION)

FRONT VIEW

SIDE VIEW

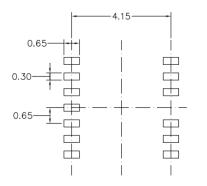
DETAIL "A"


NOTE:


- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION BC.
- 6) DRAWING IS NOT TO SCALE.

PACKAGE INFORMATION (continued)

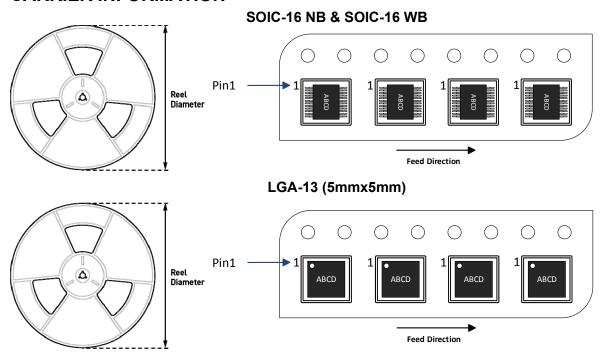
LGA-13 (5mmx5mm)



TOP VIEW

BOTTOM VIEW

SIDE VIEW


RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
- 3) JEDEC REFERENCE IS MO-303.
- 4) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MP18831-4AGSE-Z						
MP18831-4BGSE-Z						
MP18831-4CGSE-Z	SOIC-16 NB	2500	50	13in.	16mm	8mm
MP18831-4DGSE-Z						
MP18831-4EGSE-Z						
MP18831-4AGY-Z			47	13in.	24mm	
MP18831-4BGY-Z						
MP18831-4CGY-Z	SOIC-16 WB	1000				12mm
MP18831-4DGY-Z						
MP18831-4EGY-Z						
MP18831-4AGLU-Z						
MP18831-4BGLU-Z	1.04.12					
MP18831-4CGLU-Z	LGA-13 (5mmx5mm)	5000	N/A	13in.	12mm	8mm
MP18831-4DGLU-Z						
MP18831-4EGLU-Z						

MP18831 - ISOLATED DUAL-INPUT HALF-BRIDGE GATE DRIVER

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

CARRIER INFORMATION (continued)

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MP18831-A4AGSE-Z	SOIC-16 NB	2500	50	13in.	16mm	8mm
MP18831-A4BGSE-Z						
MP18831-A4CGSE-Z						
MP18831-A4DGSE-Z						
MP18831-A4EGSE-Z						
MP18831-A4AGY-Z	SOIC-16 WB	1000	47	13in.	24mm	12mm
MP18831-A4BGY-Z						
MP18831-A4CGY-Z						
MP18831-A4DGY-Z						
MP18831-A4EGY-Z						
MP18831-A4AGLU-Z	LGA-13 (5mmx5mm)	5000	N/A	13in.	12mm	8mm
MP18831-A4BGLU-Z						
MP18831-A4CGLU-Z						
MP18831-A4DGLU-Z						
MP18831-A4EGLU-Z						

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

36

单击下面可查看定价,库存,交付和生命周期等信息

>>MPS(芯源系统)