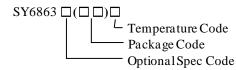


5.5V, 3A Low Loss Power Distribution Switch with Reverse Block Rating Up to 28V


General Description

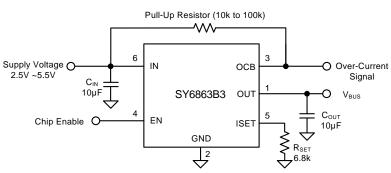
SY6863B3 is an ultra-low R_{DS(ON)}, 3A Low Loss power distribution switch with current limit to protect the power source from over current and short circuit conditions.

SY6863B3 has over voltage protection and the output pin can withstand 28V. It incorporates the over-temperature protection and reverse blocking functions.

SY6863B3 supports USB PD3.0 fast role swap. The output voltage can recover to USB valid voltage range within 110µs during USB PD fast role swap event.

Ordering Information

Ordering Number	Package Type	Note
SY6863B3ABC	SOT23-6	Active High


Features

- Input Voltage: 2.5V to 5.5V
- Output Voltage Withstanding 28V
- Extremely Low Power Path Resistance: $45m\Omega$ (typ.)
- 3A Load Current Capability
- Reverse Blocking in Normal Operation or Shutdown
- Fault Flag (OCB) Output For Over Current and Fault Conditions
- Fast Role Swap Support
- Compact Package: SOT23-6
- RoHS Compliant and Halogen Free

Applications

- USB 3.1 Application
- USB 3G Datacard
- USB Dongle
- MiniPCI Accessories
- USB Charger
- Public Place Multi-USB Charger

Typical Applications

Note: If 1uF input cap will lead to large Vin voltage spike, it is strongly recommended to add additional 10uF ceramic cap.

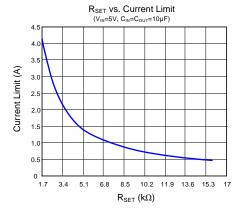
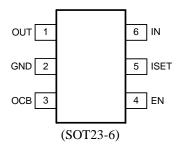



Figure 2. R_{SET} vs. Current Limit

Pinout (top view)

Top Mark: dExyz for SY6863B3ABC (Device code: dE; x=year code, y=week code, z= lot number code)

Pin Name	Pin number	Pin Description
OUT	1	Output pin.
GND	2	Ground pin.
OCB	3	Fault Flag. Open drain under normal conditions, grounded under fault operation.
EN	4	ON/OFF control. Active high. Do not leave it floating.
ISET	5	Current limit programming pin. Connect a resistor R_{SET} from this pin to ground to program the current limit: $I_{LIM}(A)=7100/R_{SET}(\Omega)$
IN	6	Input pin.

Block Diagram

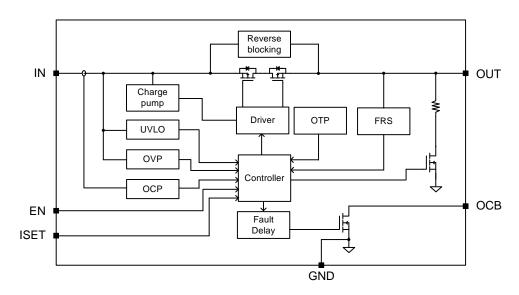


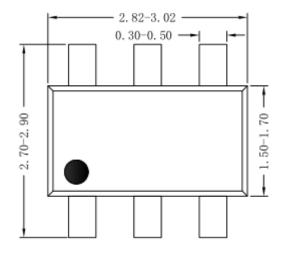
Figure 3. Block Diagram

Absolute Maximum Ratings (Note 1)	
IN	0.3V to 7V
ISET	0.3V to 3.6V
OCB, EN, OUT	
Power Dissipation, P _D @ T _A = 25°C SOT23-6	1.2W
Package Thermal Resistance (Note 2)	
heta Ja	81°C/W
θ ις	14°C/W
Junction Temperature Range	40°C to 150°C
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	
Recommended Operating Conditions (Note 3)	
IN	2.5V to 5.5V
ISET	
OCB, EN, OUT	
Junction Temperature Range	40°C to 125°C
Ambient Temperature Range	40°C to 85°C

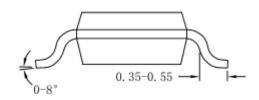
Electrical Characteristics

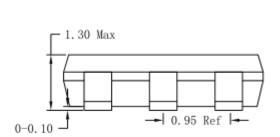
 $(V_{IN} = 5V, C_{OUT} = 10\mu F, T_A = 25^{\circ}C, unless otherwise specified)$

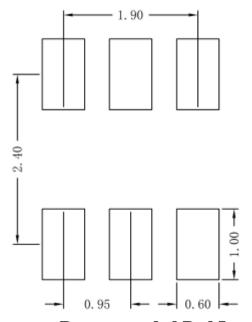
Parameter	-10μ1, 1 _A = 25 °C,	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage R	ange	$V_{\rm IN}$		2.5		5.5	V
Output Over Vo	oltage Protection	V _{OVP}			5.6		V
OVP Hysteresis	OVP Hysteresis				0.1		V
Shutdown Input Current		I _{SHDN}	Open load, switch OFF		5	30	μA
			Output grounded, switch OFF		5	30	μA
Quiescent Supply Current		I_Q	Open load, switch ON		150		μA
FET R _{DS(ON)}		R _{DS(ON)}	$V_{IN}=5V$, $I_{OUT}=2A$		45	50	mΩ
Current Limit		I_{LIM}	R_{SET} =1.878k, V_{IN} =5V, V_{OUT} =4.75V	3.47	3.78	4.08	A
Programmable (Range	Current Limit	I _{LIM_RANGE}		0.4		4	A
EN Threshold	Logic-Low Voltage	$V_{\rm IL}$				0.4	V
	Logic-High Voltage	V_{IH}		1.0			V
IN UVLO Thres	IN UVLO Threshold					2.45	V
IN UVLO Hyste	eresis	$V_{\rm IN, \scriptscriptstyle HYS}$			0.1		V
Rise Time		t _{RISE}	$V_{IN}=3.3V, R_{L}=10\Omega, C_{L}=1\mu F$	1.0	1.9	3.0	ms
Risc Time	Rise Time		$V_{IN}=5.0V, R_L=10\Omega, C_L=1\mu F$	1.5	3.0	4.5	ms
OCB Low Resistance		R _{OCB}			125		Ω
OCB Delay Time		t _{OCB_Delay}			15		ms
OUT Shutdown Discharge Resistance		R_{DSG}		90	115	140	Ω
Discharge Time		t_{DSG}			130		ms
Fast Role Swap Response		t _{FRS}	From V _{OUT} drops below 4.75V to V _{OUT} back to 4.75V		100		μs
Thermal Shutdown Temperature		T_{SD}			150		°C
Thermal Shutdown Hysteresis		T_{HYS}			20		°C


Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a Silergy's test board. Pin 2 of SOT23-6 package is the case position for θ_{JC} measurement.


Note 3: The device is not guaranteed to function outside its operating conditions.

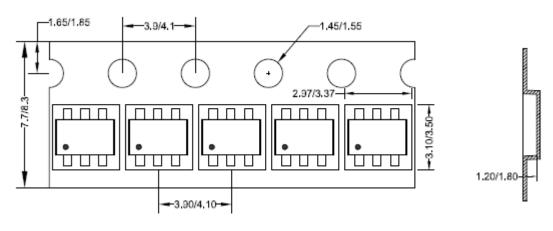

SOT23-6 Package Outline & PCB Layout


Top View

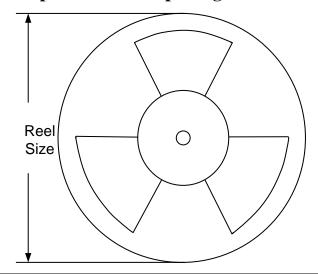
Side View

Side View

Recommended Pad Layout


Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

SOT23-6

Feeding direction ----

2. Carrier Tape & Reel specification for packages

Package type	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
SOT23-6	8	4	7''	280	160	3000

3. Others: NA

单击下面可查看定价,库存,交付和生命周期等信息

>>SILERGY(矽力杰)