N-Channel MOSFET, 30V, 3.9A, $40m\Omega$

General Description

The VAM3400AT utilizes the advanced Trench technology and low resistance package to achieve extremely low on-resistance device which makes the system design an efficient and reliable solution for use in a wide variety of applications.

Features

- 30V, 3.9A, max, $R_{DS(on)}$ =40m Ω @Vgs= 10V
- High Efficiency
- Improved dv/dt, di/dt capability
- 100% EAS Guaranteed
- Green Device

Application

Load Power Switching, VGA, SMPS

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	Condition
Drain-Source Voltage	V_{DS}	30	V	
	т	3.9		T _C =25°C
Continuous drain current ⁽¹⁾	I_D	3.1	A	$T_{\rm C}$ =70°C
Gate-Source Voltage	V_{GS}	±12	V	Static
Pulsed drain current ⁽²⁾	I _{DM}	16	A	Tc=25°C
Power dissipation @ T _C =25°C	P _{diss}	1	W	T _C =25°C
Storage Temperature Range	T_{STG}	-55 to150	°C	
Operation Junction Temperature Range	$T_{\rm J}$	-55 to 150	°C	

- (1)Limited by $T_{i \text{ max}}$.
- (2)Pulse width T_P limited by T_{j,max}

Thermal characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R_{thJC}	Thermal resistance, junction-case, max			80	°C/W
R _{thJA}	Thermal resistance, junction-ambient, max			125	°C

Product Summary

V _{DS} @T _{j,max}	30 V
R _{DS(on)} @V _{GS} =10V, max	40 mΩ
I _D Continuous Current	3.9 A

VAM3400AT 1 http://www.chip-lead.com

Package and Ordering Information (Marking for 2 Assembly Factory)

Device	Package	Marking	Packing
VAM3400AT	SOT23	S04	3000 ea / Reel
VAM3400AT	SOT23	3400	3000 ea / Reel

Marking Information: SOT23

Assembly Fctory 1:

(Engineer Samples & Capacity Shortage in middle of 2021)

Assembly Factory 2:

(Due to Factory 1 capacity shortage in 2021, currently production is factory 2 till now)

Electrical Characteristics (*T*_j=25°C, unless otherwise specified)

Parameter	Symbol	Min	Тур	Max	Unit	Test Condition
Static Characteristic						
Drain-Source breakdown Voltage	V _{(BR)DSS}	30			V	V _{GS} =0V, I _D =0.25mA
Gate Threshold Voltage	V _{(GS)th}	0.5	0.7	1.2	V	V _{DS} =V _{GS} , I _D =0.25mA
B : 6	D.		32	40	mΩ	V _{GS} =4.5V, I _D =3A, T _j =25° C
Drain-Source on resistance	R _{(DS)on}		38	47	mΩ	V _{GS} =2.5V, I _D =2A, T _j =25° C
Zero gate voltage drain current	I _{DSS}			1	uA	V _{DS} =24V, V _{GS} =0V, T _j =25° C
Gate-Source leakage current	I_{GSS}			±100	nA	V _{GS} =±12V, V _{DS} =0V
Dynamic Characteristic			•	•		
Input Capacitance	Ciss		662	927	pF	V _{GS} =0V, V _{DS} =15V, f=1MHz
Output Capacitance	Coss		51.3	72	pF	V _{GS} =0V, V _{DS} =15V, f=1MHz
Turn-on delay time	T _{d(on)}		3.2	6.4	nS	
Rise time	Tr		41.8	75	nS	$V_{DD}=15V, V_{GS}=4.5V, I_{D}=3A,$
Turn-off delay time	T _{d(off)}		21.2	42	nS	$R_G=3.3\Omega$; See Figure 8
Fall time	$T_{\rm f}$		6.4	12.8	nS	
Gate Charge Characteristic			•	•		
Gate to source charge	Q_{gs}		1.26	1.8	nC	
Gate to drain charge	Q_{gd}		1.88	2.6	пC	V_{DD} =15V, I_D =3A, V_{GS} = 4.5V
Gate charge total	Qg		8.34	11.7	пC	
Reverse diode characteristic			•	•		
Diode forward voltage	V _{FD}			1.2	V	V _{GS} =0V, I _F =1A, T _j =25° C
Continuous Source Current	I_{csc}			5.8	A	W W OWE
Pulsed Source Current	I_{sm}			16	A	V _G =V _D =0V, Force current
Reverse Recovery Time	trr		6.8		nS	1 24 H/h 1004/ G T 250G
Reverse Recovery Charge	Qrr		2.3		пC	$I_F=3A$, $dI/dt=100A/uS$, $T_j=25$ °C

Electrical Characteristic Diagrams

Figure 1 Typical Output Characteristic

Figure 3 Forward Characteristic of Reverse

Figure 5 Normalized V_{GS(th)} vs. T_J

Figure 2 On-Resistance vs. GS voltage

Figure 4 Gate Charge Waveform

Figure 6 Normalized Rdson vs. T_J

Figure 7 Capacitance Characteristic

Figure 8 Safe Operating Area

Figure 9 Normalized Maximum Transient Thermal Impedance

Parameter Test Circuits

Figure 10 Unclamped Inductive Switching (UIS) Test circuit and waveforms

Figure 11 Resistive Switching time Test circuit and waveforms

Figure 12 Gate charge Test circuit and waveforms

Package Information

C 1 1	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.900	1.000	0.035	0.039	
A1	0.000	0.100	0.000	0.004	
b	0.300	0.500	0.012	0.020	
c	0.090	0.110	0.003	0.004	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
e	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	1°	7°	1°	7°	

单击下面可查看定价,库存,交付和生命周期等信息

>>Chiplead(奇力科技)