Qualcom

RF360 Europe GmbH

Data sheet

SAW multiplexer EN-DC 4G/5G bands 20 + 28a

Series/type:M5006Ordering code:B39851M5006D310

Date:November 06, 2019Version:2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1	Application	4
2	Features	4
3	Package	5
4	Pin configuration	5
5	Matching circuit	6
6	Characteristics EN-DC 4G/5G B20	7
7	Characteristics EN-DC 4G/5G B28a	.10
8	Maximum ratings	. 12
9	Transmission coefficients EN-DC 4G/5G B20	.13
10	Transmission coefficient (LTE) EN-DC 4G/5G B20	15
11	Reflection coefficients EN-DC 4G/5G B20	.19
12	Transmission coefficient EN-DC 4G/5G B28a	.20
13	Transmission coefficients (LTE) EN-DC 4G/5G B28a	21
14	Reflection coefficients EN-DC 4G/5G B28a	.25
15	Packing material	.26
16	Marking	.29
17	Soldering profile	. 30
18	Annotations	.31
19	Cautions and warnings	. 32
20	Important notes	. 33

1 Application

- Low-loss SAW multiplexer for mobile telephone EN-DC 4G/5G Band 28a systems and EN-DC 4G/5G Band 20 systems
- Usable pass bands: 30 MHz for Band 28a and 30 MHz for Band 20
- High out of band selectivity
- Low insertion attenuation
- Unbalanced to unbalanced operation
- Terminating impedances 50 Ω

2 Features

- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.58±0.036 mm
- Approximate weight 9 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

3 Package

BOTTOM VIEW Pad sizes: (0.1)1,5,8,12: 0.275 x 0.275 mm² 2<u>x0.5</u>=1 C0.15x45 2-4,9-11:0.250 x 0.275 mm² 0.25 6,7,13,14: 0.275 x 0.250 mm² 2 5 3 4 \square (0.1) 15 6 0.75 7 П Ш 12 11 10 9 8 1.25 Pad and pitch tolerance ±0.05 SIDE VIEW ∢

//0.03

TOP VIEW

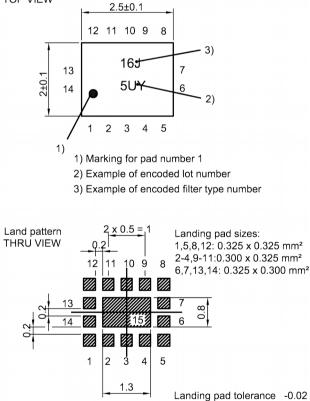
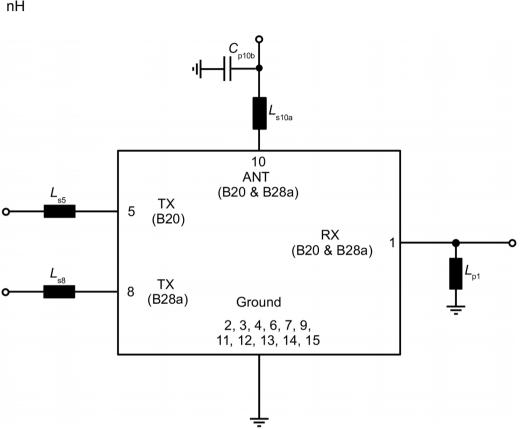



Figure 1: Drawing of package with package height A = 0.58±0.036 mm. See Sec. Package information (p. 32).

Pin configuration 4

- RX (B20 & B28a) 1
- TX (B20) **5**
- ∎ 8 TX (B28a)
- 10 ANT (B20 & B28a)
- 2, 3, 4, 6, Ground
 - 7, 9, 11,
 - 12, 13,
 - 14, 15

- 5 Matching circuit
- C_{p10b} = 5.6 pF
- *L*_{n1} = 12.4 nH
- *L*_{s5} = 4.1 nH

■ *L*_{s8} = 10.4 nH

■ *L*_{s10a} = 10.6 nH

Figure 2: Schematic of matching circuit.

External shunt inductor for ESD protection is recommended at any ports towards antenna.

6 Characteristics EN-DC 4G/5G B20

TX – ANT 6.1

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B20 TX terminating impedance	Ζ _{B20 TX}	= 50 Ω + 4.1 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω with ext. circuitry. ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 12.4 nH ¹⁾

Characteristics EN-DC 4G/5G B20 TX – ANT			min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency				847	_	MHz
Insertion Loss		2)				
	832 862	MHz	—	1.2	2.0 ³⁾	dB
	832 862	MHz	—	1.2	2.5	dB
Amplitude Ripple (p-p)		4)				
	832 862	MHz	_	0.7	1.5	dB
VSWR						
@ B20 TX port	832 862	MHz	_	1.4	2.0	
@ ANT port	832 862	MHz	_	1.5	2.0	
Attenuation						
	10 758	MHz	40	44		dB
	703 733	MHz	45	49	—	dB
	758 788	MHz	45	57	_	dB
	791 821	MHz	45	57	_	dB
	880 915	MHz	40	45	_	dB
	925 960	MHz	40	46	_	dB
	1166.22 1186.68	MHz	45	61	_	dB
	1559 1606	MHz	50	68	_	dB
	1664 1724	MHz	50	70	_	dB
	1710 2170	MHz	50	66	_	dB
	2400 2500	MHz	50	70	—	dB
	2500 2690	MHz	50	72	—	dB
	3300 4900	MHz	40	50	—	dB
	4900 5950	MHz	40	65	—	dB

1) See Sec. Matching circuit (p. 6).

2) Integrated attenuation: Averaged power |S_i|² over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

Valid for typical temperature T = +25 °C. Over any 5 MHz. 3)

4)

6.2 ANT – RX

Temperature range for specification B20 TX terminating impedance ANT terminating impedance RX terminating impedance

 $T_{_{\rm SPEC}}$ = -30 °C ... +85 °C Z_{B20 TX} = 50 Ω + 4.1 nH¹⁾ = 50 Ω with ext. circuitry.¹⁾ = 50 Ω // 12.4 nH¹⁾

Z_{ant}

Ź_{RX}

Characteristics EN-DC 4G/5G B20 & ANT – RX	& EN-DC 4G/5G B28a			min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Center frequency							
				—	806	_	MHz
				—	773	—	MHz
Insertion Loss							
	758 788	MHz	2)	—	1.5	2.9	dB
	758 821	MHz	3)	—	1.8	2.5 ⁴⁾	dB
	791 821	MHz	3)	—	1.8	2.9	dB
Amplitude Ripple (p-p)			5)				
	758 788	MHz		_	0.6	1.3	dB
	758 821	MHz		_	0.7	2.0	dB
	791 821	MHz		_	0.7	2.0	dB
VSWR							
@ ANT port	758 788	MHz		—	1.6	2.0	
	791 821	MHz		—	1.6	2.0	
@ RX port	758 788	MHz			1.5	2.0	
	791 821	MHz			1.5	2.0	
Attenuation							
	10 703	MHz		30	37	_	dB
	41 65	MHz		50	72	_	dB
	703 733	MHz		45	58	_	dB
	733 748	MHz		5	10	_	dB
	832 862	MHz		35	55	—	dB
	880 915	MHz		30	36	—	dB
	1516 1683	MHz		40	59	—	dB
	1710 1990	MHz		45	53	—	dB
	2274 2463	MHz		50	65	_	dB
	2400 2500	MHz		50	72	—	dB
	2500 2690	MHz		50	72	—	dB
	3300 3800	MHz		50	69	—	dB
	3800 5950	MHz		40	46	—	dB

1) See Sec. Matching circuit (p. 6).

2) Integrated attenuation: Averaged power $|S_{ij}|^2$ over the center 2.7 MHz of LTE 3 MHz (15 RB) channels.

3) Integrated attenuation: Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

4) Valid for typical temperature T = +25 °C.

5) Over any 5 MHz.

6.3 TX – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B20 TX terminating impedance	Ζ _{B20 TX}	= 50 Ω + 4.1 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω with ext. circuitry. ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 12.4 nH ¹⁾

Characteristics EN-DC 4G/5G B20 TX – RX				min. for $T_{_{ m SPEC}}$	typ. @ +25 °C	max. for T _{SPEC}	
Isolation			2)				
	758 788	MHz		55	59	_	dB
	791 821	MHz		55	58	_	dB
	832 857	MHz		55	58	_	dB
	847 862	MHz		53	56	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation: Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5 MHz (25 RB) channels.

7 Characteristics EN-DC 4G/5G B28a

7.1 TX – ANT

Temperature range for specification	T _{SPEC}	= −30 °C +85 °C
B28a TX terminating impedance	Z _{B28a TX}	= 50 Ω + 10.4 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω with ext. circuitry. ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 12.4 nH ¹⁾

Characteristics EN-DC 4G/5G B28a TX – ANT			min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{_{\rm SPEC}}$	
Center frequency				718		MHz
Insertion Loss		2)				
	703 733	MHz	_	1.1	2.0 ³⁾	dB
	703 733	MHz	—	1.1	2.2	dB
Amplitude Ripple (p-p)		4)				
	703 733	MHz	—	0.7	1.4	dB
VSWR						
@ B28a TX port	703 733	MHz	—	1.6	2.0	
@ ANT port	703 733	MHz	—	1.6	2.0	
Attenuation						
	10 670	MHz	35	43		dB
	470 694	MHz ⁵⁾	12	38	—	dB
	692 698	MHz ⁶⁾	,	19		dB
	758 788	MHz	45	58	—	dB
	773 803	MHz	45	57	—	dB
	791 821	MHz	45	56	—	dB
	832 862	MHz	45	52		dB
	859 894	MHz	35	40	—	dB
	880 915	MHz	35	40	—	dB
	925 960	MHz	35	53	_	dB
	1166.22 1186.68	MHz	35	44	_	dB
	1225 1250	MHz	35	45	_	dB
	1406 1466	MHz	40	47	_	dB
	1559 1606	MHz	43	48	_	dB
	2400 2700	MHz	40	48	_	dB
	2812 2932	MHz	40	49	_	dB
	3300 4900	MHz	40	66	_	dB
	4900 5950	MHz	40	83	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Integrated attenuation: Averaged power $|S_{ij}|^2$ over the center 2.7 MHz of LTE 3 MHz (15 RB) channels.

³⁾ Valid for typical temperature T = +25 °C.

⁴⁾ Over any 5 MHz.

⁵⁾ Integrated attenuation: Averaged power $|S_{ij}|^2$ over the center 7.2 MHz of LTE 8 MHz (40 RB) channels.

⁶⁾ Integrated attenuation: Averaged power $|S_{ij}^{y}|^2$ over the center 5.4 MHz of LTE 6 MHz (30 RB) channels.

7.2 TX – RX

Temperature range for specification	$T_{_{\rm SPEC}}$	= −30 °C +85 °C
B28a TX terminating impedance	Z _{B28a TX}	= 50 Ω + 10.4 nH ¹⁾
ANT terminating impedance	Z	= 50 Ω with ext. circuitry. ¹⁾
RX terminating impedance	Z _{RX}	= 50 Ω // 12.4 nH ¹⁾

Characteristics EN-DC 4G/5G B28a TX – RX				min. for $T_{_{\rm SPEC}}$	typ. @ +25 °C	max. for $T_{_{\rm SPEC}}$	
Isolation			2)				
	703 733	MHz		55	60	_	dB
	758 788	MHz		55	62	_	dB
	791 821	MHz		55	63	_	dB

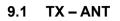
1)

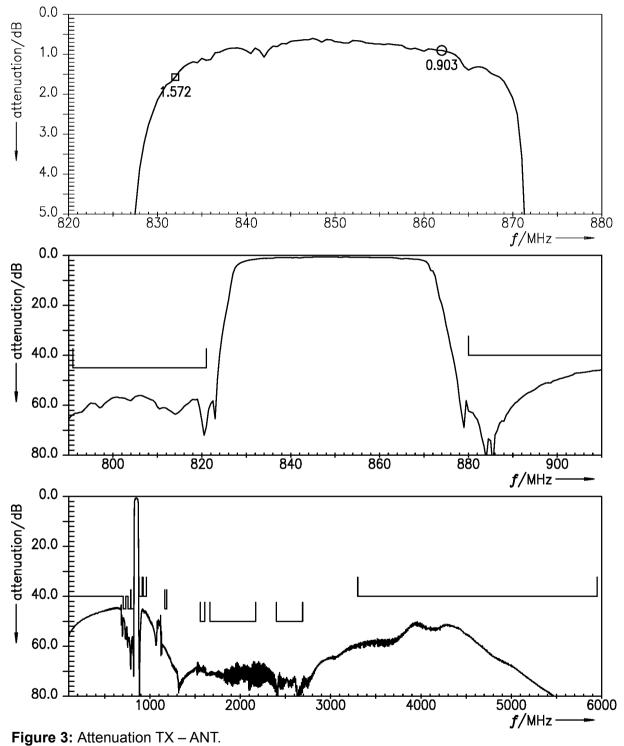
See Sec. Matching circuit (p. 6). Integrated attenuation: Averaged power $|S_{ij}|^2$ over the center 2.7 MHz of LTE 3 MHz (15 RB) channels. 2)

8 **Maximum ratings**

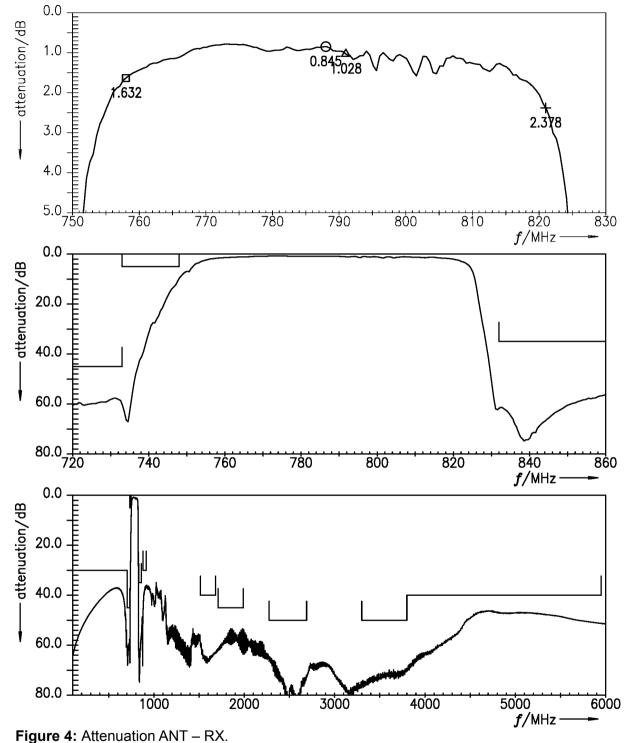
0		
Operable temperature	$T_{\rm OP} = -30 ^{\circ}{\rm C} \dots +85 ^{\circ}{\rm C}$	
Storage temperature	$T_{\rm STG}^{1)} = -40 ^{\circ}{\rm C} \dots +85 ^{\circ}{\rm C}$	
DC voltage	$ V_{\rm DC} ^{2)} = 0 V$	
ESD voltage		
	V _{ESD} ³⁾ = 250 V	Human body model.
	$V_{\rm ESD}^{4)} = 1000 \rm V$	Charged device model.
	$V_{\rm ESD}^{5)}$ = 100 V	Machine model.
Input power	P _{IN}	
@ B20 TX port: 832 862 MHz	30 dBm	Continuous wave for 3000 h @ 50 °C.
@ B20 TX port: 832 862 MHz	29 dBm	Continuous wave for 5000 h @ 85 °C.
@ B20 TX port: 832 862 MHz	30 dBm	Continuous wave for 2 h @ 85 °C.
@ B20 TX port: 832 862 MHz	29 dBm	5 MHz LTE uplink signal (1 RB UP) for 5000 h @ 85 °C.
@ B20 TX port: 832 862 MHz	30 dBm	5 MHz LTE uplink signal (1 RB UP) for 2 h @ 85 °C.
@ B28a TX port: 703 733 MHz	30 dBm	Continuous wave for 3000 h @ 50 °C.
@ B28a TX port: 703 733 MHz	29 dBm	Continuous wave for 5000 h @ 85 °C.
@ B28a TX port: 703 733 MHz	30 dBm	Continuous wave for 2 h @ 85 °C.
@ B28a TX port: 703 733 MHz	29 dBm	3 MHz LTE uplink signal (1 RB UP) for 5000 h @ 85 °C.
@ B28a TX port: 703 733 MHz	30 dBm	3 MHz LTE uplink signal (1 RB UP) for 2 h @ 85 °C.

1) Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C.

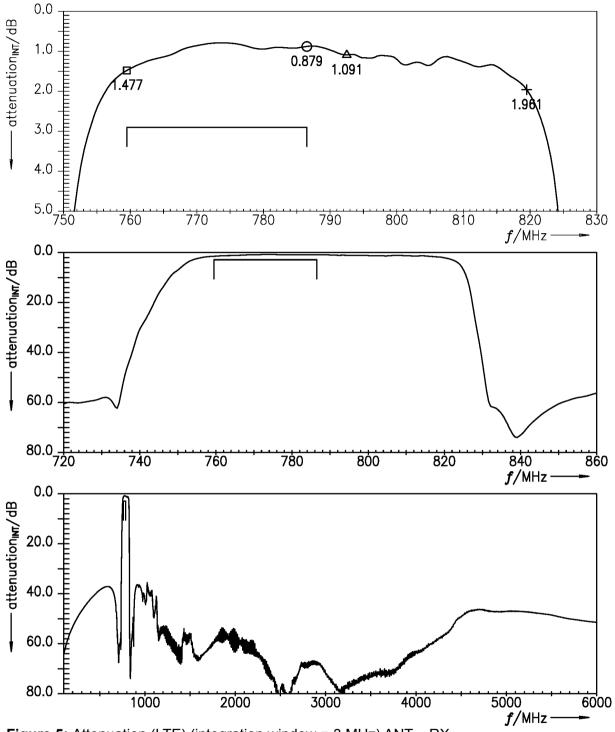

2) In case of applied DC voltage blocking capacitors are mandatory.


3)

According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse. According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses. 4)


5) According to JESD22-A115B (MM - Machine Model), 10 negative & 10 positive pulses. Qualcomme RF360 Europe GmbH

9 Transmission coefficients EN-DC 4G/5G B20



10 Transmission coefficient (LTE) EN-DC 4G/5G B20

Figure 5: Attenuation (LTE) (integration window = 3 MHz) ANT – RX.

Qualconn RF360 Europe GmbH

10.1 TX – ANT

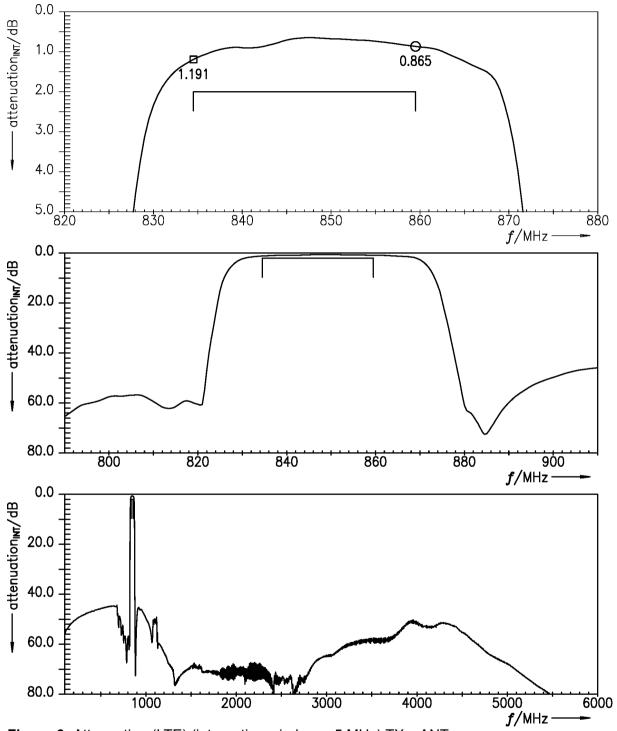


Figure 6: Attenuation (LTE) (integration window = 5 MHz) TX – ANT.

10.2 ANT – RX

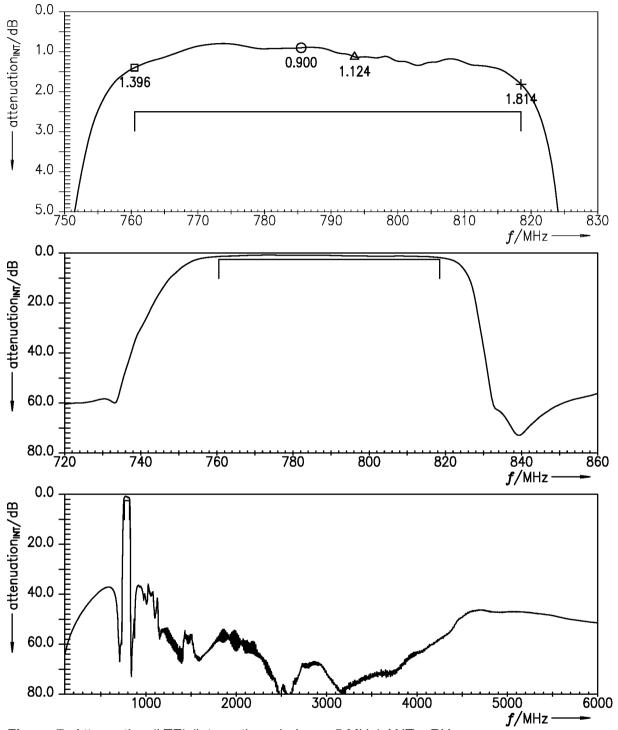
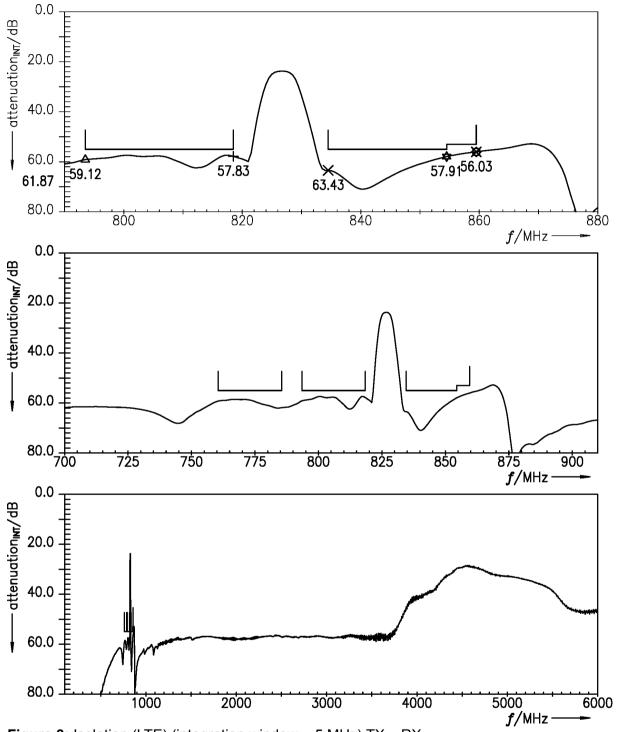
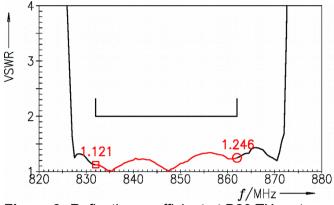


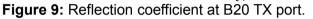
Figure 7: Attenuation (LTE) (integration window = 5 MHz) ANT – RX.

Qualconversion RF360 Europe GmbH

10.3 TX – RX



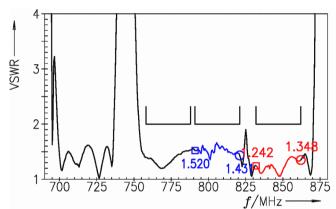
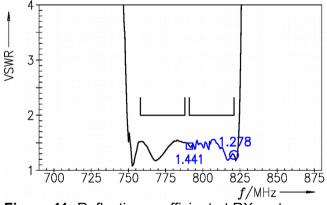
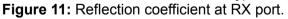
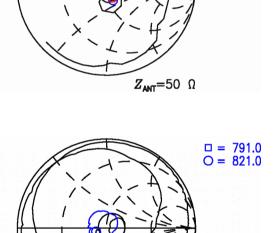

Figure 8: Isolation (LTE) (integration window = 5 MHz) TX – RX.

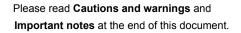


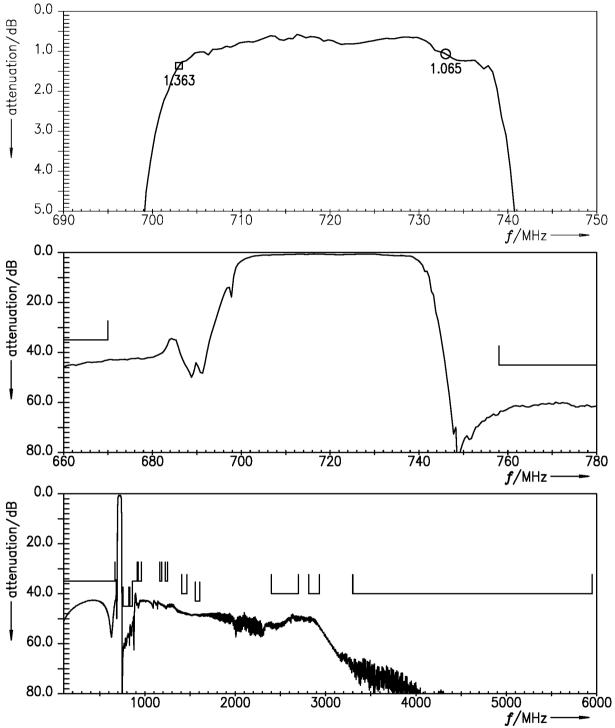
□ = 832.0 O = 862.0

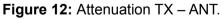
 $\Box = 791.0$ O = 821.0 $\Box = 832.0$ O = 862.0

11 Reflection coefficients EN-DC 4G/5G B20


Figure 10: Reflection coefficient at ANT port.


Z_{B20 TX}=50 Ω



Z_{RX}=50 Ω

12 Transmission coefficient EN-DC 4G/5G B28a

Qualconversion RF360 Europe GmbH

13 Transmission coefficients (LTE) EN-DC 4G/5G B28a

13.1 TX – ANT

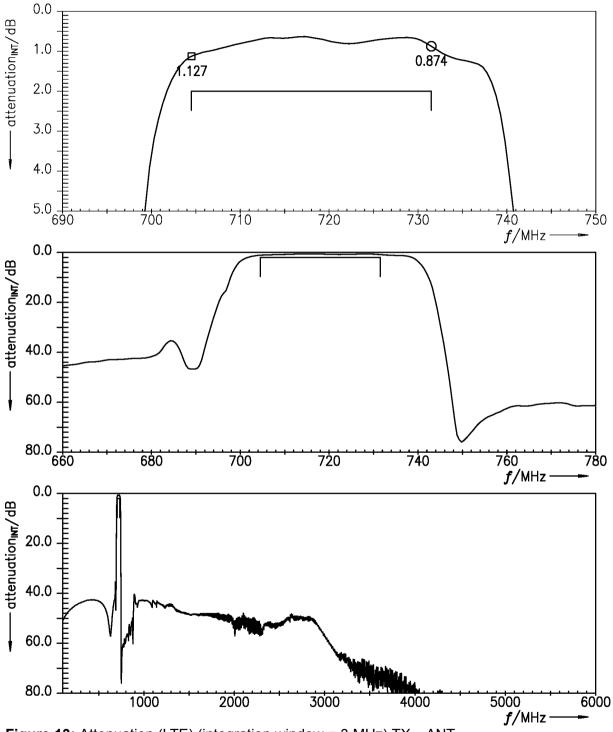


Figure 13: Attenuation (LTE) (integration window = 3 MHz) TX – ANT.

Qualcomm RF360 Europe GmbH

13.2 TX – RX

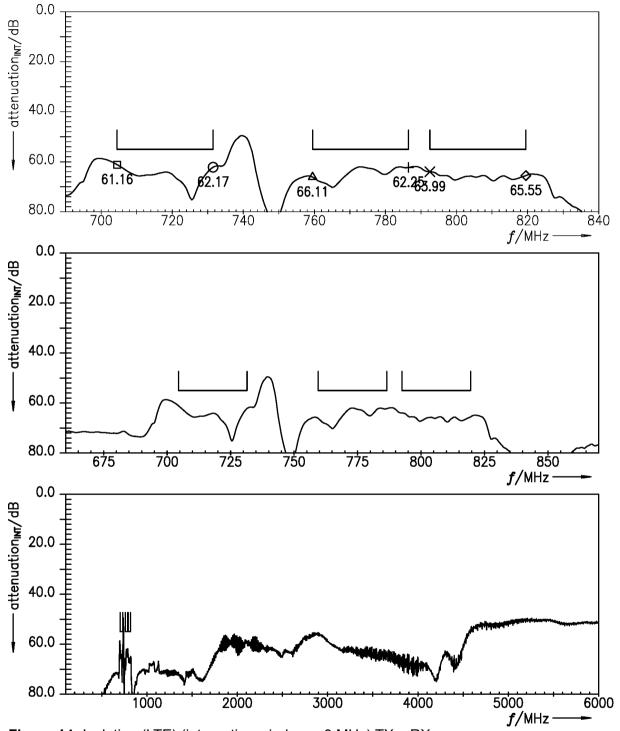


Figure 14: Isolation (LTE) (integration window = 3 MHz) TX – RX.

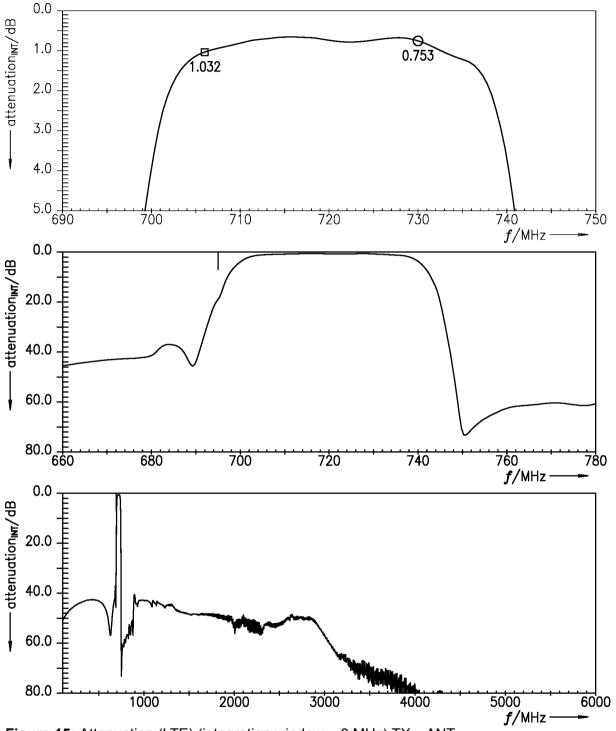


Figure 15: Attenuation (LTE) (integration window = 6 MHz) TX – ANT.

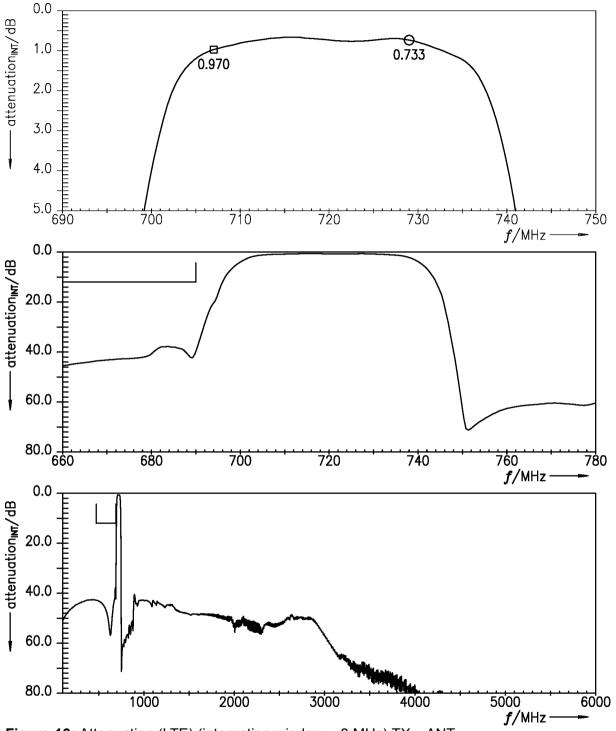
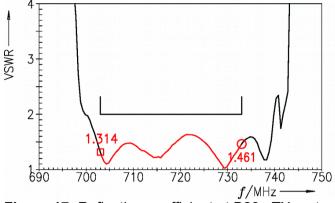
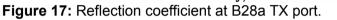




Figure 16: Attenuation (LTE) (integration window = 8 MHz) TX – ANT.

14 Reflection coefficients EN-DC 4G/5G B28a

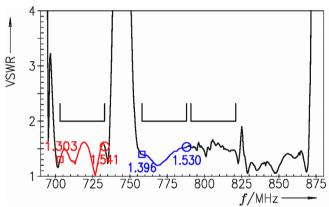
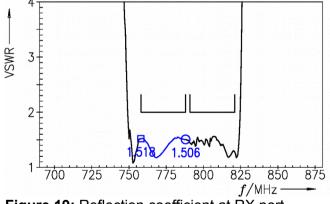
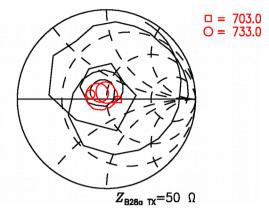
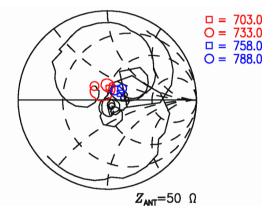
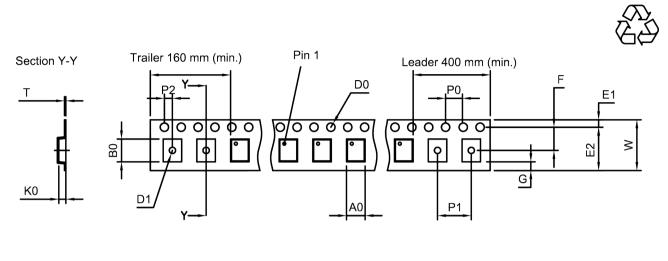





Figure 18: Reflection coefficient at ANT port.



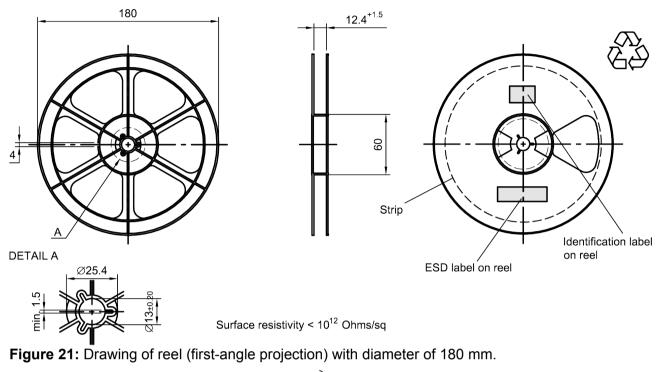
15 Packing material

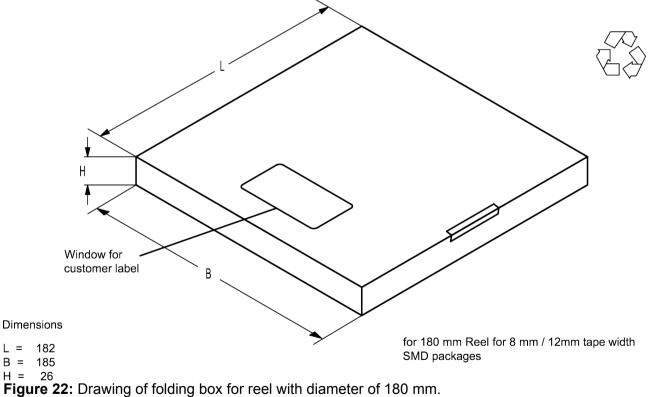
15.1 Tape

User direction of unreeling

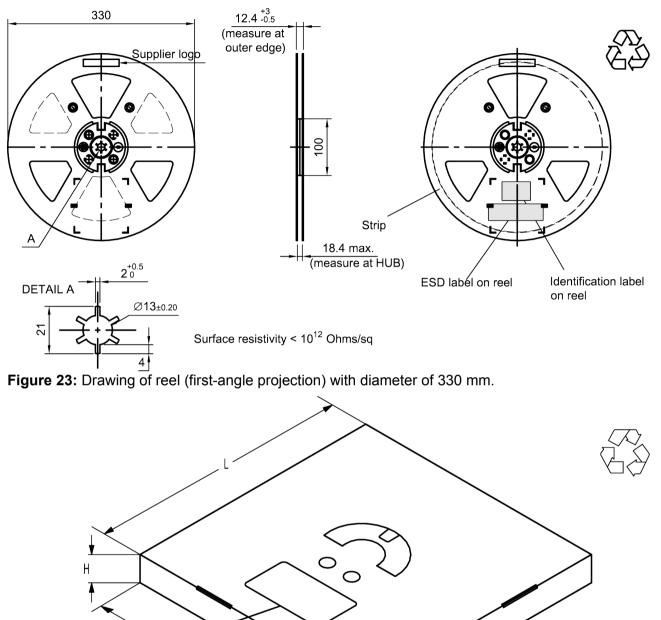
Figure 20: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	2.25±0.05 mm
B ₀	2.75±0.05 mm
D ₀	1.5+0.1/-0 mm
D ₁	1.5 mm (min.)
E1	1.75±0.1 mm


Table 1: Tape dimensions.


E2	10.25+0.2/-0 mm
F	5.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.84±0.1 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P ₂	2.0±0.05 mm
Т	0.3±0.03 mm
W	12.0+0.3/-0.1 mm


15.2 Reel with diameter of 180 mm

15.3 Reel with diameter of 330 mm

Window for customer label

В

12345,

Jalcomm **RF360 Europe GmbH**

16 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3 digit m	arking.	e.g., B3xxxxB <u>1234</u> xxxx,
Example of decoding type number marking on de 16J 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0	evice => =	in decimal code. 1234 1234
The BASE32 code for product type M5006 is 4WE.		1204
Lot number:		

The last 5 digits of the lot number, e.g.,

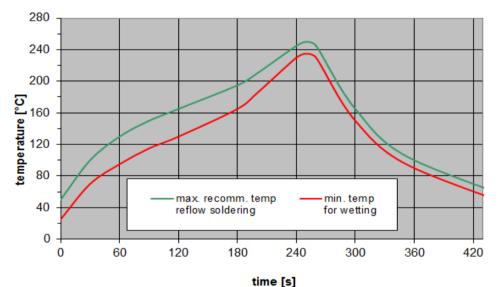
are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device

ple of decoding lot number marking on device		in decimal code.
5UY	=>	12345
5 x 47 ² + 27 (=U) x 47 ¹ + 31 (=Y) x 47 ⁰	=	12345

Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	К
4	4	20	М
5	5	21	Ν
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	A	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adop	Adopted BASE47 code for lot number		
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	Α	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	Н	41	١
18	J	42	?
19	К	43	{
20	L	44	}
21	М	45	<
22	N	46	>
23	Р		


Table 2: Lists for encoding and decoding of marking.

17 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3^{rd} edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
<i>T</i> > 220 °C	30 s to 70 s
<i>T</i> > 230 °C	min. 10 s
<i>T</i> > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	_
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 25: Recommended reflow profile for convection and infrared soldering – lead-free solder.

18 Annotations

18.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

18.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

18.3 Ordering codes and packing units

Ordering code	Packing unit
B39851M5006D310	10000 pcs

Table 4: Ordering codes and packing units.

19 Cautions and warnings

19.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.qualcomm.com/.

19.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

19.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

19.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

20 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (<u>https://rffe.qualcomm.com</u>). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360