

Specification for Approval Date: 2022/08/15 Customer : TAI-TECH P/N: TMPV1265SPV-Series(N)-D-HD CUSTOMER P/N: DESCRIPTION: QUANTITY: pcs REMARK: Customer Approval Feedback

- □ 西北臺慶科技股份有限公司 TAI-TECH Advanced Electronics Co., Ltd <u>Headquarter:</u> NO.1 YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C. TEL: +886-3-4641148 FAX: +886-3-4643565 http://www.tai-tech.com.tw E-mail: sales@tai-tech.com.tw
- □ 臺慶精密電子(昆山)有限公司 TAI-TECH ADVANCED ELECTRONICS(KUNSHAN) CO., LTD SHINWHA ROAD, KUNJIA HI-TECH INDUSTRIAL PARK, KUN-SHAN, JIANG-SU, CHINA TEL: +86-512-57619396 FAX: +86-512-57619688 E-mail: sales@tai-tech.cn

Sales Dep.

APPROVED	CHECKED
Eric Kuan	Zhang mengmeng

R&D Center

APPROVED	CHECKED	DRAWN
Sky Luo	Mr.Liang	Cui lingling

■ 慶邦電子元器件(泗洪)有限公司 TAIPAQ ELECTRONICS (SIHONG) CO., LTD JIN SHA JIANG ROAD, CONOMIC DEVELOPMENT ZONE SIHONG, JIANGSU, CHINA. TEL: +86-527-88601191 FAX: +86-527-88601190 E-mail: sales@taipaq.cn

SMD Power Inductor

TMPV1265SPV-Series(N)-D-HD

		ECN HISTORY	LIST		
REV	DATE	DESCRIPTION	APPROVED	CHECKED	DRAWN
1.0	22/08/15	New Issue	Sky Luo	Mr.Liang	Cui lingling
備				1	1
注					

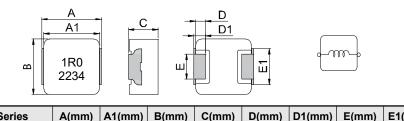
SMD Power Inductor

1. Features

- 1. Low loss realized with low DCR.
- 2. High performance realized by metal dust core.
- 3. Ultra low buzz noise, due to composite construction.
- 4. 100% Lead(Pb)-Free and RoHS compliant.
- 5. High reliability -Reliability test complied to AEC-Q200.

2. Applications

Automotive applications.


A(mm)

4. Part Numbering

Series

TMPV1265SPV

3. Dimensions

C(mm)

 6.2 ± 0.3

D(mm)

2.0±0.3

-	L
	1
	-c

E1(mm)	L(mm)	G(mm)	H(mm)
9.2±0.3	15.0	8.0	6.0

Note: 1.PCB layout is referred to standard IPC-7351B 2. The above PCB layout reference only. 3. Recommend solder paste thickness at

0.15mm and above.

TMPV SPV 1**R0** D HD G 1265 MN A П A: Series B: Dimension BxC C: Type

B(mm)

A1(mm)

13.6±0.4 12.6±0.3 12.6±0.2

- D: Inductance E: Inductance Tolerance
- F \ G: Code

Standard. 1R0=1.0uH M=±20% Marking direction cannot decide polarity. Marking: Black.1R0 and 2234 (22:YY,34:WW, follow production date).

D1(mm)

2.5±0.3

E(mm)

5.0±0.3

Recommend PC Board Pattern

TMPV1265SPV-Series(N)-D-HD

5. Specification

Part Number	Inductance L0 A(uH)			Saturation Current DC I sat (A)		DCR (mΩ)	DCR (mΩ)
	120%	Тур	Max	Тур	Max	Тур	Max
TMPV1265SPV-R68MN-D-HD	0.68	36.5	30.0	36.5	31.0	1.35	1.62
TMPV1265SPV-1R0MN-D-HD	1.00	32.0	27.0	32.0	28.0	1.75	2.10
TMPV1265SPV-1R5MN-D-HD	1.50	27.0	24.0	29.0	26.0	2.30	2.76
TMPV1265SPV-2R2MN-D-HD	2.20	23.0	20.0	26.0	23.0	3.6	4.2
TMPV1265SPV-3R3MN-D-HD	3.30	19.0	16.0	24.0	21.0	5.9	6.8
TMPV1265SPV-4R7MN-D-HD	4.70	17.0	14.0	20.0	18.0	7.3	8.4
TMPV1265SPV-5R6MN-D-HD	5.60	15.0	13.0	18.0	16.0	9.1	10.0
TMPV1265SPV-6R8MN-D-HD	6.80	14.0	12.0	17.0	15.0	9.7	11.2
TMPV1265SPV-8R2MN-D-HD	8.20	13.0	11.0	16.0	14.0	11.8	13.6
TMPV1265SPV-100MN-D-HD	10.0	12.0	10.0	13.5	12.0	14.3	16.5
TMPV1265SPV-150MN-D-HD	15.0	9.0	8.0	10.0	9.0	23.6	27.2
TMPV1265SPV-220MN-D-HD	22.0	7.5	6.5	8.0	7.0	34.1	39.2
TMPV1265SPV-330MN-D-HD	33.0	6.3	5.5	7.2	6.3	53.0	61.0
TMPV1265SPV-470MN-D-HD	47.0	5.2	4.3	6.0	5.1	74.1	89.0
TMPV1265SPV-680MN-D-HD	68.0	4.5	4.0	5.5	4.7	92.0	110.0
TMPV1265SPV-820MN-D-HD	82.0	4.0	3.5	5.2	4.5	115.0	138.0
TMPV1265SPV-101MN-D-HD	100.0	3.8	3.3	4.5	4.0	120.0	144.0

Note:

1. Test frequency : Ls : 100KHz /1.0V.

2. All test data referenced to $25^\circ\!\mathrm{C}$ $\,$ ambient.

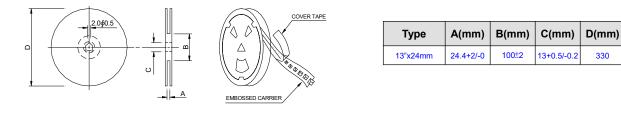
3. Testing Instrument(or equ) : Agilent 4284A,E4991A,4339B,KEYSIGHT E4980A/AL,chroma3302,3250,16502.

4. Heat Rated Current (Irms) will cause the coil temperature rise approximately $\,{\vartriangle}\, T$ of 40 $^\circ\! C$

5. Saturation Current (Isat) will cause L0 to drop approximately 30%.

6. The part temperature (ambient + temp rise) should not exceed 165°C under worst case operating conditions. Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

7. Irms Testing : Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components. Therefore temperature rise should be verified in application conditions.


8. Rated DC current: The lower value of Irms and Isat.

6. Material List

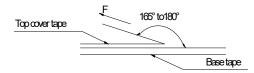
4			
	NO	Items	Materials
Marking	1	Core	Alloy Powder .
	2	Wire	Polyester Wire or equivalent.
	3	Clip	100% Pb free solder(Ni+SnPlating)
1 3	4	Ink	Halogen-free ketone
2			·

7. Packaging Information

(1) Reel Dimension



(2) Tape Dimension


🖽 Blank portions	Chip cavity	Blank portions	. Т
200mm or more		≝ 400mm or more	KO
	Direction of tape		AO

Series	Bo(mm)	Ao(mm)	Ko(mm)	P(mm)	P2(mm)	W(mm)	E(mm)	F(mm)	T(mm)	D(mm)	D1(mm)
TMPV1265	14.8±0.1	13.1±0.1	7.0±0.1	16.0±0.1	2.0±0.1	24.0±0.3	1.75±0.1	11.5±0.1	0.50±0.05	1.5+0.1/-0.0	1.5+0.1/-0.0

(3) Packaging Quantity

(4) Tearing Off Force

The force for tearing off cover tape is 10 to 130 grams in the arrow direction under the following conditions(referenced ANSI/EIA-481-D-2008 standard).

Tearing Speed	Room Temp.	Room Humidity	Room atm
mm	(℃)	(%)	(hPa)
300±10%	5~35	45~85	860~1060

8. Reliability and Test Condition

Item	Performance	Test Condition				
Operating temperature	-55~+165 $^\circ\!$	N/A				
Storage temperature and Humidity range	1. Less than40°C,85%RH (Product with taping) 255~+165°C (on board)	N/A				
Electrical Performance Test						
nductance		Agilent 4284A,E4991A,KEYSIGHT E4980A/AL,chroma 3302,3205				
DCR	Refer to standard electrical characteristics list.	Agilent 4339B,chrom16502				
Saturation Current (Isat)	Approximately △L30%	Saturation DC Current (Isat) will cause L0 to drop _∆L(%)				
Heat Rated Current (Irms)	Approximately △T40°C	Heat Rated Current (Irms) will cause the coil temperature rise T(C). 1.Applied the allowed DC current 2.Temperature measured by digital surface thermometer				
Reliability Test						
High Temperature Exposure(Storage) AEC-Q200 Temperature Cycling AEC-Q200		Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles Temperature: 165±2℃ (Inductor) Duration : 1000hrs Min.Unpowered. Measured at room temperature after placing for 24±2 hrs Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles Condition for 1 cycle Step1: -55±2℃ 30min Min.(Inductor) Step3: 165±2℃ 30min Min. Step4: Low temp. transition time 1min MAX. Number of cycles: 1000 Measured at room temperature after placing for 24±2 hrs				
Moisture Resistance (AEC-Q200)	Appearance : No damage. Inductance : within±10% of initial value Q : Shall not exceed the specification value. RDC : within ±15% of initial value and shall not exceed the specification value	t=24 hours/cycle. Note: Steps 7a & 7b Unpowered.				
Biased Humidity (AEC-Q200)		Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles Humidity : 85±3 % R.H, Temperature: 85℃±2℃ ,Unpowered. Duration : 1000hrs Min ,Unpowered. Measured at room temperature after placing for24±2hrs				
High Temperature Operational Life (AEC-Q200)		Preconditioning: Run through IR reflow for 2 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles Temperature: 165±2°C (Inductor) Duration : 1000hrs Min. with 100% rated current. Measured at room temperature after placing for24±2hrs				
External Visual	Appearance [;] No damage.	Inspect device construction, marking and workmanship. Electrical Test not required.				
Physical Dimension	According to the product specification size measurement	According to the product specification size measurement				
Resistance to Solvents	Appearance : No damage.	Add aqueous wash chemical - OKEM clean or equivalent.				
Mechanical Shock	Appearance : No damage. Impedance : within±15% of initial value Inductance : within±10% of initial value Q : Shall not exceed the specification value. RDC : within ±15% of initial value and shall not exceed the specification value	Type Peak value (g's) Normal duration (D) (ms) Wave form Velocity change (Vi)ft/sec SMD 100 6 Half-sine 12.3 Lead 100 6 Half-sine 12.3 3 shocks in each direction along 3 perpendicular axes(18 shocks).				

Item	Performance	Test Condition		
Vibration		IPC/JEDEC J-STD-020D Classification Reflow Profiles Oscillation Frequency: 10Hz~2KHz~10Hz for 20 minute Equipment : Vibration checker Total Amplitude: 5g Testing Time : 12 hours(20 minutes, 12 cycles each of 3 orientations) *		
Resistance to Soldering Heat	Appearance : No damage. Impedance : within±15% of initial value Inductance : within±10% of initial value Q : Shall not exceed the specification value. RDC : within ±15% of initial value and shall not exceed the specification value	Test condition:(MIL-STD-202 Condition B) Number of heat cycles:1 Temperature(°C) Time(s) Temperature ramp/immersion and emersion rate 260±5 (solder temp) 10±5 25mm/s±6 mm/s Depth: completely cover the termination		
Thermal shock (AEC-Q200)		Deput: Completely Cover the certification Preconditioning: Run through IR reflow for 3 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles Condition for 1 cycle Step1: -55±2℃ 15±1min(Inductor) Step3: 165±2℃ ti5±1min Number of cycles : 300 Measured at room fempraturc after placing fo24±2hrs		
ESD HBM>=2KV	Appearance : No damage.	Direct Contact and Air Discharge PASSIVE COMPONENT HBM ESD Discharge Waveform to a Coaxial Target Test mode: Contact Discharge Discharge level: 4 KV (Level: 2)		
Solderability	More than 95% of the terminal electrode should be covered with solder $^{\circ}$	a. Method B1, 4 hrs @155°C dry heat @255°C±5°C Test time:5 +0/-0.5 seconds. b. Method D category 3. (steam aging 8hours ± 15 min)@ 260°C±5°C Test time: 30 +0/-0.5 seconds.		
Electrical Characterization	Refer Specification for Approval	Summary to show Min, Max, Mean and Standard deviation .		
Flammability	Electrical Test not required.	V-0 or V-1 are acceptable.		
Board Flex	Appearance : No damage	Preconditioning: Run through IR reflow for 3 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles Place the 100mm X 40mm board into a fixture similar to the one shown in below Figure with the component facing down. The apparatus shall consist of mechanical means to apply a force which will bend the board (D) $x = 2$ mm minimum. The duration of the applied forces shall be 60 (+ 5) sec. The force is to be applied only once to the board.		
Terminal Strength(SMD)	Appearance : No damage	Printed circuit board under test Displacement Preconditioning: Run through IR reflow for 3 times.(IPC/JEDEC J-STD-020D Classification Reflow Profiles With the component mounted on a PCB with the device to be tested, apply a 17.7 N (1.8 Kg) force to the side of a device being tested. This force shall be applied for 60 + 1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. radius 0,5 mm DUT DUT Substrate press tool shear force		

Note : When there are questions concerning measurement result : measurement shall be made after 48 ± 2 hours of recovery under the standard condition.

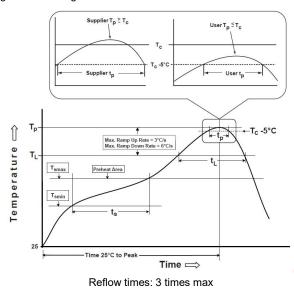
9. Soldering Specifications

(1) Soldering

Mildly activated rosin fluxes are preferred. TAI-TECH terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

(2) IR Soldering Reflow:

Recommended temperature profiles for lead free re-flow soldering in Figure 1. Table 1.1&1.2 (J-STD-020E)


(3) Iron Reflow:

- Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.(Fig. 2)
- Preheat circuit and products to 150°C · Never contact the ceramic with the iron tip • 355°C tip temperature (max)

Table (1.1): Reflow Profiles

- · 1.0mm tip diameter (max)
- $\boldsymbol{\cdot}$ Use a 20 watt soldering iron with tip diameter of 1.0mm Limit soldering time to 4~5sec.

Fig.1 IR Soldering Reflow

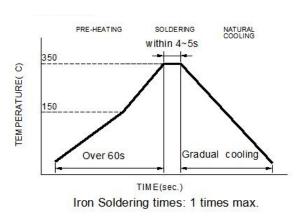


Fig.2 Iron soldering temperature profiles

Soldering iron Method : 350± 5℃ max

Profile Type:	Pb-Free Assembly	
Preheat		
-Temperature Min(T _{smin})	150 ℃	
-Temperature Max(T _{smax})	200 ℃	
-Time(ts)from(Tsmin to Tsmax)	60-120seconds	
Ramp-up rate(T₋to T₀)	3°C/second max.	
Liquidus temperature(T _L)	217℃	
Time(t∟)maintained above T∟	60-150 seconds	
Classification temperature(T _c)	See Table (1.2)	
$Time(t_p)$ at Tc- $5{}^\circ\!\mathrm{C}$ (Tp should be equal to or less than Tc.)	*< 30 seconds	
Ramp-down rate(T_p to T_L)	6℃ /second max.	
Time 25 $^\circ\!\!\!\!\!^\circ {\rm C}$ to peak temperature	8 minutes max.	

Tp: maximum peak package body temperature, Tc: the classification temperature.

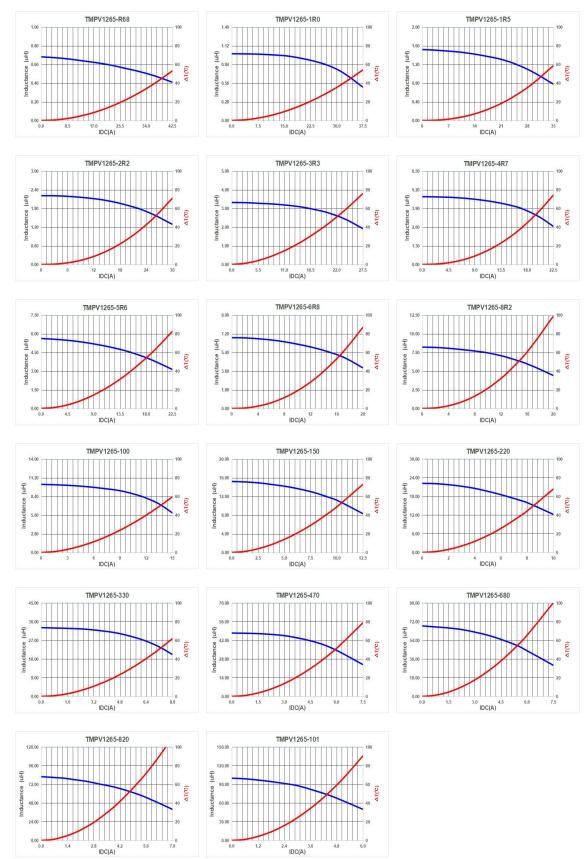
For user (customer) Tp should be equal to or less than Tc.

* Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

	Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
PB-Free Assembly	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
	≥2.5mm	250°C	245°C	245°C

Reflow is referred to standard IPC/JEDEC J-STD-020E °


10. Notes

- (1) When there are questions concerning measurement result : measurement shall be made after 48 ± 2 hours of recovery under the standard condition
- (2) This power choke coil itself does not have any protective function in abnormal condition such as overload, short-circuit and open-circuit conditions, etc. Therefore, it shall be confirmed as the end product that there is no risk of smoking, fire, dielectric withstand voltage, insulation resistance, etc. in abnormal conditions to provide protective devices and/or protection circuit in the end product.
- (3) When this power choke coil was used in a similar or new product to the original one, sometimes it might not be able to satisfy the specifications due to different condition of use.
- (4) Dielectric withstanding test with higher voltage than specific value will damage insulating material and shorten its life.
- (5) This power choke coil must not be used in wet condition by water, coffee or any liquid because insulation strength becomes very low in this condition.
- (6) Please consult our company to confirm the reliability of the process required to wash or use or exposure to a chemical solvent used in this product.PCB washing tested to MIL-STD-202 Method , and dry it off immediately .
- (7) The rated current as listed is either the saturation current or the heating current depending on which value is lower.
- (8) If this power choke is dipped in the cleaning agent, such as toluene, xylene, ketone, and ether system, there is a possibility that the performance decreases greatly, and marking disappearnc.
- (9) The high power ultrasonic washing may damage the choke body.
- (10) Before use, the user should determine whether this product is suitable for their own design, Our company only guarantees that the product meets the requirements of this specification.

Application Notice

- Storage Conditions(component level)
- To maintain the solderability of terminal electrodes:
- 1. TAI-TECH products meet IPC/JEDEC J-STD-020D standard-MSL, level 1.
- 2. Temperature and humidity conditions:Less than 40 $^\circ\!\mathrm{C}$,85% RH.
- Recommended products should be used within 12 months form the time of delivery.
 The packaging material should be kept where no chlorine or sulfur exists in the air.
- Transportation
 - 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- Bulk handling should ensure that abrasion and mechanical shock are minimized.

11. Typical Performance Curves

12、 Appearance criterion

– Introduction :

1. Scope :

This document was written for the purpose of helping customers better understand the **TMPA 、 TMHC 、 TMPV** products they are purchasing. It will give the customer an idea as to the type of cosmetic irregularities that may occur from time to time during the manufacturing of the component itself, or during their use of the component.

This document also discusses the criteria that have been developed for the rejection of irregularities that are determined to be excessive.

While it is desirable to have cosmetically perfect **TMPA
 TMPC**
 TMPV inductors, the powdered iron manufacturing technique has cosmetic limitations.

Certified test labs have performed extensive environmental testing on **TMPA
 TMPC TMPV** inductors with and without cosmetic imperfections according to AEC-Q200 standards for thermal shock ,mechanical shock, vibration, humidity, and others. This testing has shown that the cosmetic imperfections listed in this document do not affect the performance or reliability of the **TMPA
 TMPC TMPV** inductors.

Test results are available upon request.

2.Product :

The **TMPA TMHC TMPV** inductors are different from most inductors. The inductor body is a soft magnetic composite (SMC), not a ferrite. It is made from an iron powder mixture and cemented together using a resin binder. This powder mixture, when pressed around the inductor coil, greatly enhances the electrical properties of the inductor and gives protection from environmental forces. After pressing, the component is cured in an oven to increase the bonding strength of the resin binders with the iron powder, yielding excellent electrical and physical properties.

3. The TMPA 、 TMHC 、 TMPV inductors provide the best combination of:

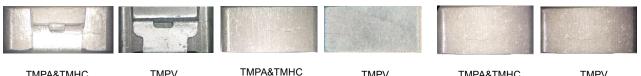
- Inductance
- · Low core loss
- Saturation
- Temperature stability
- Smallest footprint
- Lowest profile

二、Surface irregularities:

The following pages include descriptions of the most common irregularities seen on **TMPA 、 TMHC 、 TMPV** inductors. Common causes are described along with variations in their magnitude. Customers may sometimes see one or all of these irregularities.

Those that are determined to adversely affect the customer's use of the component are rejected, thought minor (acceptable) irregularities can occasionally be present. With the use of this guide, a customer will has better understand the effect of each irregularity.

Cracks


Chip off

Oxidation

1.Cracks :

Cracks within the inductor body are unavoidable during the manufacturing process. Small cracks are caused by die wall friction when the parts are ejected during the pressing process, and by expansion of the coil during the process of curing the resin binder in the powdered iron body. Unlike ferrite material, cracks on the body do not affect the electrical performance of the component.

Reliability testing has shown that even cracks in excess of 0.005 inch will not cause the component to fail electrically or physically in field applications. Acceptance widths are adopted based on the ability to detect cracks both at the component and circuit level.

TMPA&TMHC

TMPV

TMPV Negligible crack, acceptable

TMPA&TMHC

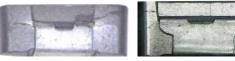
TMPV

Terminal area crack, acceptable Cracks coming from the top corner of the terminal are

Negligible cracks are those that are nearly normal and are caused by terminal expansion during invisible without magnification.

Minor crack, acceptable Minor cracks are those that are visible without magnification but are not apparent without close inspection.

1-1. Crack 3

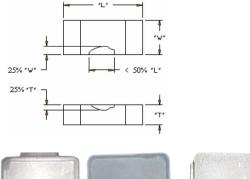

curing operations.

TMPA&TMHC

Moderate crack, rejectable

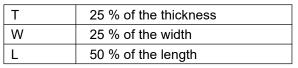
Moderate cracks are those that are obvious upon inspection and extend across most of the component.

TMPA&TMHC


Major crack, rejectable Major cracks are those that are obvious to a customer and would possibly

result in large chip-outs that would expose the coil and lead frame.

2.Chip off:


Chipping of the inductor body can occur during normal processing and testing of the inductor. The acceptance criteria for chipping vary with the size of the component, our current acceptance standards are based on IPC-A-610. The effect of chipping is negligible as long as the inductor coil is not showing.

See IPC standard for class 1 and 2 components below.

TMPV

Chips typically occur on the edges and corners of the inductor body They are slightly darker in color and rougher in appearance than the surrounding material.

TMPA&TMHC

TMPV

Minor chipping, acceptable

TMPA&TMHC

Minor chips in the inductor body are those that are typically shallow imperfections that occur on the corners and edge of components. No coil wire or lead frame is showing and the chip does not affect the performance or reliability of the component.

Major chipping, rejectable

Major chips in the inductor body are those that are very obvious to the customer and may expose the wire coil or lead frame.

3. Oxidation :

TMPV

The TMPA . TMHC . TMPV inductors is predominately iron, and oxidation may occur in a small percentage of inductors.

Resin binders give moderate protection, but some slight oxidation may occur. All components should be stored away from

heat, humidity, and ionized atmospheres as much as possible before mounting.

Basic steps should be taken in order to limit surface oxidation, including keeping the TMPA TMHC TMPV inductors sealed in their packaging until PCB mounting.

In case that oxidation does occur, the effects are contained only in the surface of the component and will not penetrate into the core material. No electrical effects have ever been documented due to oxidation of the TMPA . TMHC . TMPV products. Oxidation should never be considered a reliability risk.

4.Other:

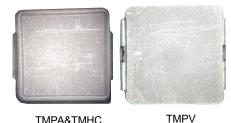
A very small number of other irregularities have been reported. These occur at an exceedingly low rates and typically do not affect the components electrically. These include: Foreign material may be seen pressed into the upper terminals. This material is of the same material as the inductor body and should not be a reason for rejection unless solderability is affected.

TMPA&TMHC

Foreign material: acceptable

TMPA&TMHC

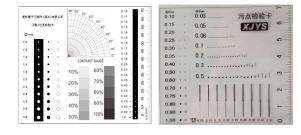
TMPV


Imprinting : acceptable

TMPA&TMHC

TMPV

Yellowing : PAD yellowing ratio less than 20% is OK


TMPA&TMHC Scratch: acceptable

Scratches may be seen on the surface of the inductor body. Scratches are an acceptable surface irregularity.

TMPV

Blackening:PAD black/ brightness ratio less than 20% is OK

三、Summary:

The **TMPA `TMHC `TMPV** inductors are comprised of an iron powder body compressed around a coil. Due to the fact that this iron powder body is not as solid like sintered ferrite material, irregularities such as cracks and chips do not affect the electrical properties or the reliability of the component. Criteria have been determined for the acceptability of the components that allow for a robust manufacturing process as well as an acceptable degree of cosmetic irregularity.

Reliability testing has been done on the effects of cracking of the iron powder body and on the oxidation of the iron particles that are present on the surface. Testing has shown no reliability issues from either of these cosmetic differences, Please feel free to use it!

The products described herein and this document technical questions and specific disclaimer, If you have any questions or need, please contact our corresponding business specialist or E-mail at sales@tai-tech.com.tw.

Thank you for your support!

单击下面可查看定价,库存,交付和生命周期等信息

>>TAI-TECH(台庆)