

Data sheet

SAW multiplexer EN-DC 4G/5G band n1 + n66 + n3 + n7

Project: M5009

Ordering code: B39272M5009D310

Date: November 30, 2021

Version: 2.1

DCN: 80-PA243-592 Rev. B

Qualcomm products mentioned herein are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

RF360 Europe GmbH
Anzinger Straße 13
81671 Munich, Germany
© 2021 Qualcomm Technologies, Inc. and/or its subsidiaries. All rights reserved

These materials, including the information contained herein, may be used only for informational purposes by the customer. Qualcomm Technologies, Inc. and/or its subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein and reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, without warranty, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1	Application	4
	Features.	4
	Package	5
	Pin configuration.	5
	Matching circuit.	6
	Characteristics EN-DC 4G/5G n1	
	Characteristics EN-DC 4G/5G n3	8
8	Characteristics EN-DC 4G/5G n7	.11
9	Characteristics EN-DC 4G/5G n66	. 14
10	<u>Cross-isolations</u> .	. 15
11	Maximum ratings	. 22
12	Transmission coefficient EN-DC 4G/5G n1	.23
13	Reflection coefficients EN-DC 4G/5G n1	.24
14	Transmission coefficients EN-DC 4G/5G n3.	.25
15	Transmission coefficient (LTE) EN-DC 4G/5G n3	28
16	Reflection coefficients EN-DC 4G/5G n3	.29
17	<u>Transmission coefficients EN-DC 4G/5G n7</u>	.30
18	Transmission coefficient (WLAN) EN-DC 4G/5G n7	33
19	<u>Transmission coefficient (integrated) EN-DC 4G/5G n7</u>	34
20	Reflection coefficients EN-DC 4G/5G n7	.35
21	<u>Transmission coefficient EN-DC 4G/5G n66</u>	.36
22	Reflection coefficients EN-DC 4G/5G n66	.37
23	<u>Transmission coefficients cross-isolations</u>	.38
24	Packing material	.45
25	Marking	.49
26	Soldering profile	. 50
27	<u>Annotations</u>	.51
28	Cautions and warnings	. 52
20	Important notes	53

1 Application

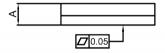
- Low-loss SAW multiplexer for mobile telephone EN-DC 4G/5G Band n1, Band n66, Band n3 and Band n7 systems.
- EN-DC 4G/5G band n1 uplink: 1950 MHz (pass band 60 MHz)
- EN-DC 4G/5G band n1 downlink: 2140 MHz (pass band 60 MHz)
- EN-DC 4G/5G band n3 uplink: 1747.5 MHz (pass band 75 MHz)
- EN-DC 4G/5G band n3 downlink: 1842.5 MHz (pass band 75 MHz)
- EN-DC 4G/5G band n7 uplink: 2535 MHz (pass band 70 MHz)
- EN-DC 4G/5G band n7 downlink: 2655 MHz (pass band 70 MHz)
- EN-DC 4G/5G band n66 uplink: 1745 MHz (pass band 70 MHz)
- EN-DC 4G/5G band n66 downlink: 2155 MHz (pass band 90 MHz)
- Usable pass bands: 60MHz for Band n1, 70/90MHz for Band n66, 75MHz for Band n3 and 70MHz for Band n7.
- High out of band selectivity
- High TX-RX isolation
- Terminating impedance 50Ω
- Unbalanced to unbalanced operation

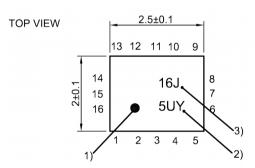
2 Features

- Package size 2.5±0.1 mm × 2.0±0.1 mm
- Package height 0.65 mm (max.)
- Approximate weight 0.008 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

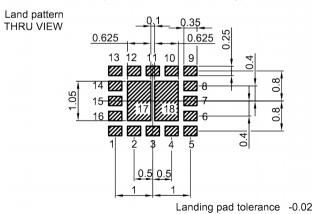
3 Package

Europe GmbH



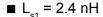

4 Pin configuration

- 1 TX (n1)
- 5 RX (n3)
- 7 RX (n66)
- 9 RX (n7)
- 11 ANT (n1, n3, n7, & n66)
- 13 TX (n7)
- 15 TX (n3)
- 2, 3, 4, 6, Ground 8, 10, 12, 14, 16,


17, 18

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number


Figure 1: Drawing of package with package height A = 0.65 mm (max.). See Sec. Package

Please read Cautions and warnings and

Important notes at the end of this document.

information (p. 52).

5 Matching circuit

Europe GmbH

■
$$L_{s15}$$
 = 1.8 nH

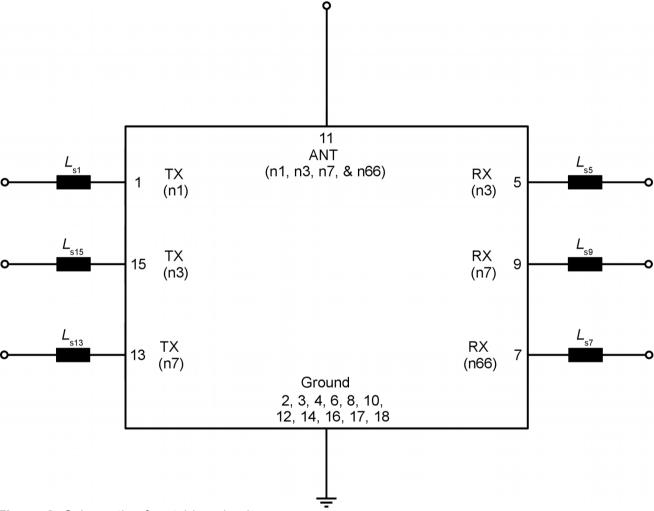


Figure 2: Schematic of matching circuit.

External shunt inductor for ESD protection is recommended at any ports towards antenna.

6 Characteristics EN-DC 4G/5G n1

Temperature range for specification n1 TX terminating impedance ANT terminating impedance $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ $Z_{\text{n1 TX}} = 50 \,\Omega + 2.4 \,\text{nH}^{1)}$ $Z_{\text{ANT}} = 50 \,\Omega$

Characteristics EN-DC 4G/5G n1 TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Maximum insertion attenuation			α_{max}				
	1920 1980	MHz		_	1.6	2.4	dB
Amplitude ripple (p-p)			$\Delta \alpha^{2)}$				
	1920 1980	MHz		_	0.2	2.0	dB
Maximum VSWR			VSWR _{max}				
@ n1 TX port	1920 1980	MHz		_	1.6	2.0	
@ ANT port	1920 1980	MHz		_	1.5	2.0	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	10 1574	MHz		40	56	_	dB
	1166 1187	MHz		44	56	_	dB
	1559 1606	MHz		43	66	_	dB
	1710 1785	MHz		40	48	_	dB
	1805 1880	MHz		45	58	_	dB
	1880 1895	MHz		10	15	_	dB
	2010 2025	MHz		203)	37	_	dB
	2110 2200	MHz		45	63	_	dB
	2400 2500	MHz		40	55	_	dB
	2496 2690	MHz		45	55	_	dB
	2500 2570	MHz		40	55	_	dB
	3300 4200	MHz		40	61	_	dB
	3840 3960	MHz		40	69	_	dB
	4400 5000	MHz		40	64	_	dB
	5150 5925	MHz		40	60	_	dB

See Sec. Matching circuit (p. 6).

Over any 5 MHz.

Valid for temperature $T = +15 \,^{\circ}\text{C...} + 85 \,^{\circ}\text{C.}$

7 Characteristics EN-DC 4G/5G n3

7.1 TX - ANT

Temperature range for specification $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ n3 TX terminating impedance $Z_{\text{n3 TX}} = 50 \,\Omega + 1.8 \,\text{nH}^{1)}$

ANT terminating impedance $Z_{ANT} = 50 \Omega$

n3 RX terminating impedance $Z_{n3 \text{ RX}}^{-} = 50 \Omega + 3.8 \text{ nH}^{1)}$

Characteristics EN-DC 4G/5G n3 TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Maximum insertion attenuation			α_{max}				
	1710 1785	MHz		_	2.1	2.8	dB
Amplitude ripple (p-p)			$\Delta\alpha^{\scriptscriptstyle 2)}$				
	1710 1785	MHz		_	0.6	2.0	dB
Maximum VSWR			$VSWR_{max}$				
@ n3 TX port	1710 1785	MHz		_	1.5	2.0	
@ ANT port	1710 1785	MHz		_	1.5	2.0	
Minimum attenuation			$\boldsymbol{\alpha}_{min}$				
	10 1566	MHz		40	47	_	dB
	703 960	MHz		40	48	_	dB
	1166 1187	MHz		44	47	_	dB
	1559 1606	MHz		45	60	_	dB
	1805 1880	MHz		45	61	_	dB
	1920 1980	MHz		35	42	_	dB
	2110 2200	MHz		45	62	_	dB
	2400 2500	MHz		36	40	_	dB
	2496 2690	MHz		35	41	_	dB
	2500 2570	MHz		35	41	_	dB
	3300 4200	MHz		35	54	_	dB
	3420 3570	MHz		35	54	_	dB
	4400 5000	MHz		35	54	_	dB
	5130 5925	MHz		35	53	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Over any 5 MHz.

7.2 ANT – RX

Europe GmbH

Temperature range for specification n3 TX terminating impedance ANT terminating impedance n3 RX terminating impedance T_{SPEC} = -30 °C ... +85 °C Z_{n3TX} = 50 Ω + 1.8 nH¹⁾

 $Z_{\text{ANT}} = 50 \ \Omega$

 $Z_{\text{n3 RX}}^{\text{NN}} = 50 \ \Omega + 3.8 \ \text{nH}^{1)}$

Characteristics EN-DC 4G/5G n3 ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Maximum insertion attenuation			α_{max}				
	1805 1880	MHz		_	2.0	3.3	dB
Amplitude ripple (p-p)			$\Delta\alpha^{\scriptscriptstyle 2)}$				
	1805 1880	MHz		_	0.4	2.0	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	1805 1880	MHz		_	1.5	2.0	
@ n3 RX port	1805 1880	MHz		_	1.6	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	10 1720	MHz		45	56	_	dB
	95	MHz		50	102	_	dB
	1615 1690	MHz		40	56	_	dB
	1710 1785	MHz		45	55	_	dB
	1720 1755	MHz		12	60	_	dB
	1785 1790	MHz		10	34	_	dB
	1920 1980	MHz		45	61	_	dB
	1940 1965	MHz		12	61	_	dB
	1965 6000	MHz		25	41	_	dB
	2400 2500	MHz		35	53	_	dB
	2496 2690	MHz		38	50	_	dB
	2500 2570	MHz		45	58	_	dB
	3300 4200	MHz		35	60	_	dB
	3610 3760	MHz		35	62	_	dB
	4400 5000	MHz		35	65	_	dB
	5150 5925	MHz		35	66	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Over any 5 MHz.

7.3 TX - RX

Temperature range for specification $T_{\rm SPEC} = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C}$ n3 TX terminating impedance $Z_{\rm n3~TX} = 50~\Omega + 1.8~{\rm nH^{1)}}$ ANT terminating impedance $Z_{\rm ANT} = 50~\Omega$ n3 RX terminating impedance $Z_{\rm sa~RX} = 50~\Omega + 3.8~{\rm nH^{1)}}$

Characteristics EN-DC 4G/5G n3 TX - RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Minimum isolation							
	1710 1785	MHz	$\alpha_{\text{INT,min}}^{2)}$	55	62	_	dB
	1805 1880	MHz	α	55	64		dB

See Sec. Matching circuit (p. 6).

Integrated attenuation α_{INT} : Averaged power $|S_{ij}|^2$ over the center 4.5 MHz of LTE 5.0 MHz (25 RB) channels.

8 Characteristics EN-DC 4G/5G n7

8.1 TX - ANT

Europe GmbH

Temperature range for specification $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ n7 TX terminating impedance $Z_{\text{n7 TX}} = 50 \,\Omega + 1.2 \,\text{nH}^{1)}$ ANT terminating impedance $Z_{\text{...T}} = 50 \,\Omega$

n7 RX terminating impedance $Z_{n7RX} = 50 \Omega + 2.1 \text{ nH}^{1)}$

Characteristics EN-DC 4G/5G n7 TX – ANT				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Maximum insertion attenuation			α_{max}				
	2500 2570	MHz		_	1.8	2.4	dB
Amplitude ripple (p-p)			$\Delta\alpha^{\scriptscriptstyle 2)}$				
	2500 2570	MHz		_	0.3	2.0	dB
Maximum VSWR			$VSWR_{max}$				
@ n7 TX port	2500 2570	MHz		_	1.3	2.0	
@ ANT port	2500 2570	MHz		_	1.6	2.0	
Minimum attenuation							
	10 1566	MHz	$\boldsymbol{\alpha}_{\text{min}}$	40	55	_	dB
	1452 1496	MHz	$\boldsymbol{\alpha}_{\text{min}}$	45	63	_	dB
	1559 1606	MHz	$\boldsymbol{\alpha}_{min}$	35	70	_	dB
	1606 1680	MHz	$\alpha_{_{min}}$	35	57	_	dB
	1710 1785	MHz	$\alpha_{_{min}}$	40	44	_	dB
	1805 1880	MHz	$\alpha_{_{min}}$	45	62	_	dB
	1900 1920	MHz	$\boldsymbol{\alpha}_{\text{min}}$	30	60	_	dB
	1920 1980	MHz	$\boldsymbol{\alpha}_{_{min}}$	40	59	_	dB
	2010 2025	MHz	α_{min}	30	74	_	dB
	2110 2200	MHz	α_{min}	45	61	_	dB
	2300 2400	MHz	α_{min}		44	_	dB
	2403 2471	MHz	α _{WLAN,min} ³⁾	35	44	_	dB
	2458 2476	MHz	α _{WLAN,min} 3)	20	31	_	dB
	2463 2481	MHz	α _{WLAN,min} 3)	10	19	_	dB
	2595 2620	MHz	α_{min}	124)	17	_	dB
	2620 2690	MHz	α_{\min}	45	59	_	dB
	3300 3800	MHz	α_{\min}	25	34	_	dB
	3400 3600	MHz	α_{\min}	35	47	_	dB
	5000 5140	MHz			37	_	dB
	5150 5925	MHz	α_{min}		35	_	dB
	0100 0020	1711 12	$\boldsymbol{\alpha}_{min}$	02			الالا

See Sec. Matching circuit (p. 6).

²⁾ Over any 5 MHz.

Average over each WLAN channel with band width of 18 MHz.

Valid for temperature $T = +25 \,^{\circ}\text{C...} + 85 \,^{\circ}\text{C.}$

8.2 ANT - RX

Temperature range for specification n7 TX terminating impedance ANT terminating impedance n7 RX terminating impedance $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ $Z_{\text{n7 TX}} = 50 \,\Omega + 1.2 \,\text{nH}^{1)}$ $Z_{\text{ANT}} = 50 \,\Omega$

 $Z_{n7 RX}^{(N)} = 50 \Omega + 2.1 \text{ nH}^{1)}$

Characteristics EN-DC 4G/5G n7 ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Maximum insertion attenuation			α_{max}				
	2620 2690	MHz		_	1.8	2.6	dB
Amplitude ripple (p-p)			$\Delta \alpha^{2)}$				
	2620 2690	MHz		_	0.3	2.0	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	2620 2690	MHz		_	1.5	2.0	
@ n7 RX port	2620 2690	MHz		_	1.3	2.0	
Minimum attenuation							
	1.0 2500	MHz	$\boldsymbol{\alpha}_{\text{min}}$	40	43	_	dB
	40 50	MHz	$\boldsymbol{\alpha}_{\text{min}}$	50	103	_	dB
	880 915	MHz	$\boldsymbol{\alpha}_{_{min}}$	45	57	_	dB
	1310 1345	MHz	$\boldsymbol{\alpha}_{_{min}}$	40	59	_	dB
	1710 1785	MHz	$\alpha_{_{min}}$	45	58	_	dB
	1920 1980	MHz	$\alpha_{_{min}}$	45	58	_	dB
	2400 2480	MHz	$\boldsymbol{\alpha}_{_{min}}$	40	58	_	dB
	2500 2570	MHz	$\alpha_{_{min}}$		56	_	dB
	2750 2775	MHz	$\boldsymbol{\alpha}_{min}$		72	_	dB
	2775 3300	MHz	α_{min}		54	_	dB
	3300 3800	MHz	α _{INT,min} ³⁾		51	_	dB
	3800 4200	MHz	α _{INT,min} ³⁾	30	34	_	dB
	4200 6000	MHz	α_{\min}	40	51	_	dB
	5150 5925	MHz	α_{\min}	40	51	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Over any 5 MHz.

³⁾ Integrated over 10 MHz.

8.3 TX - RX

Temperature range for specification $T_{\rm SPEC} = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C}$ n7 TX terminating impedance $Z_{\rm n7~TX} = 50~\Omega + 1.2~{\rm nH^{1)}}$ ANT terminating impedance $Z_{\rm ANT} = 50~\Omega$

n7 RX terminating impedance $Z_{n7 RX} = 50 \Omega + 2.1 \text{ nH}^{1)}$

Characteristics EN-DC 4G/5G n7 TX – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum isolation			α_{min}				
	2500 2570	MHz		55	60	_	dB
	2620 2690	MHz		55	61	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

9 Characteristics EN-DC 4G/5G n66

Temperature range for specification $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$

ANT terminating impedance $Z_{ANT}^{SLEO} = 50 \Omega$

n66 RX terminating impedance $Z_{n66 RX} = 50 \Omega + 2.9 \text{ nH}^{1)}$

Characteristics EN-DC 4G/5G n66 ANT – RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Maximum insertion attenuation			α_{max}				
	2110 2200	MHz		_	1.8	2.4	dB
Amplitude ripple (p-p)			$\Delta \alpha^{2)}$				
	2110 2200	MHz		_	0.3	1.5	dB
Maximum VSWR			$VSWR_{max}$				
@ ANT port	2110 2200	MHz		_	1.4	2.0	
@ n66 RX port	2110 2200	MHz		_	1.4	2.0	
Minimum attenuation			$\alpha_{_{min}}$				
	10 2025	MHz		40	43	_	dB
	190	MHz		50	90	_	dB
	699 748	MHz		40	66	_	dB
	1055 1085	MHz		48	61	_	dB
	1710 1785	MHz		45	61	_	dB
	1730 1790	MHz		40	61	_	dB
	1920 1980	MHz		45	63	_	dB
	2015 2025	MHz		37	52	_	dB
	2025 2050	MHz		22	57	_	dB
	2050 2075	MHz		8	40	_	dB
	2230 2255	MHz		12	53	_	dB
	2255 6000	MHz		25	42	_	dB
	2400 2500	MHz		38	63	_	dB
	2500 2570	MHz		45	60	_	dB
	3300 4200	MHz		38	60	_	dB
	4030 4150	MHz		40	61	_	dB
	4220 4340	MHz		35	64	_	dB
	4400 5500	MHz		35	64	_	dB
	5150 5950	MHz		35	65	_	dB
	5950 6000	MHz		35	67	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

²⁾ Over any 5 MHz.

10 Cross-isolations

10.1 EN-DC 4G/5G n1 TX - n3 RX

Temperature range for specification n1 TX terminating impedance n3 RX terminating impedance T_{SPEC} = -30 °C ... +85 °C $Z_{\text{n1 TX}}$ = 50 Ω + 2.4 nH¹⁾ $Z_{\text{-3 PY}}$ = 50 Ω + 3.8 nH¹⁾

Characteristics cross-isolation EN-DC 4G/5G n1 TX - n3 RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation			α_{min}				
	1805 1880	MHz		55	60	_	dB
	1920 1980	MHz		55	61	_	dB

See Sec. Matching circuit (p. 6).

Europe GmbH

10.2 EN-DC 4G/5G n1 TX - n7 RX

Temperature range for specification n1 TX terminating impedance n7 RX terminating impedance T_{SPEC} = -30 °C ... +85 °C $Z_{\text{n1 TX}}$ = 50 Ω + 2.4 nH¹⁾ $Z_{\text{27 PY}}$ = 50 Ω + 2.1 nH¹⁾

Characteristics cross-isolation EN-DC 4G/5G n1 TX – n7 RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation			$\boldsymbol{\alpha}_{_{min}}$				
192	20 1980	MHz		53	58	_	dB
262	20 2690	MHz		55	62	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

10.3 EN-DC 4G/5G n1 TX - n66 RX

Temperature range for specification n1 TX terminating impedance n66 RX terminating impedance $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} ... +85 \,^{\circ}\text{C}$ $Z_{\text{n1 TX}} = 50 \,\Omega + 2.4 \,\text{nH}^{1)}$ $Z_{\text{n66 PY}} = 50 \,\Omega + 2.9 \,\text{nH}^{1)}$

Characteristics cross-isolation EN-DC 4G/5G n1 TX – n66 RX				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation			$\alpha_{\scriptscriptstyle min}$				
	1574 1577	MHz		40	74	_	dB
	1920 1980	MHz		55	64	_	dB
	2110 2200	MHz		55	64	_	dB
	3830 3970	MHz		30	70	_	dB
	5750 5950	MHz		30	73	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

10.4 EN-DC 4G/5G n3 TX - n7 RX

Temperature range for specification n3 TX terminating impedance n7 RX terminating impedance $T_{\text{SPEC}} = -30 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ $Z_{\text{n3 TX}} = 50 \,\Omega + 1.8 \,\text{nH}^{1)}$ $Z_{\text{n7 RX}} = 50 \,\Omega + 2.1 \,\text{nH}^{1)}$

Characteristics cross-isolation EN-DC 4G/5G n3 TX - n7 RX			$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation		$\alpha_{_{min}}$				
1710 178	B5 MHz		55	59	_	dB
2620 269	90 MHz		55	61	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

10.5 EN-DC 4G/5G n3 TX - n66 RX

Temperature range for specification n3 TX terminating impedance n66 RX terminating impedance T_{SPEC} = -30 °C ... +85 °C $Z_{\text{n3 TX}}$ = 50 Ω + 1.8 nH¹⁾ $Z_{\text{n66 BY}}$ = 50 Ω + 2.9 nH¹⁾

Characteristics cross-isolation EN-DC 4G/5G n3 TX – n66 RX			$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation		$\alpha_{_{min}}$				
1710 1785	MHz		55	63	_	dB
2110 2200	MHz		55	62	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

10.6 EN-DC 4G/5G n7 TX - n3 RX

Temperature range for specification n7 TX terminating impedance n3 RX terminating impedance T_{SPEC} = -30 °C ... +85 °C $Z_{\text{n7 TX}}$ = 50 Ω + 1.2 nH¹⁾ $Z_{\text{n3 RX}}$ = 50 Ω + 3.8 nH¹⁾

Characteristics cross-isolation EN-DC 4G/5G n7 TX – n3 RX			$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation		$\alpha_{_{min}}$				
1805 1880	MHz		55	64	_	dB
2500 2570	MHz		53	57	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

Europe GmbH

10.7 EN-DC 4G/5G n7 TX - n66 RX

Temperature range for specification $T_{\rm SPEC} = -30~{\rm ^{\circ}C}~...~+85~{\rm ^{\circ}C}$ n7 TX terminating impedance $Z_{\rm n7~TX} = 50~\Omega + 1.2~{\rm nH^{1)}}$ = $50~\Omega + 2.9~{\rm nH^{1)}}$

Characteristics cross-isolation EN-DC 4G/5G n7 TX – EN-DC 4G/5G n66 RX			$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @ +25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Minimum cross-isolation		$\alpha_{_{min}}$				
2110 2200	MHz		55	60	_	dB
2500 2570	MHz		55	59	_	dB

¹⁾ See Sec. Matching circuit (p. 6).

Europe GmbH

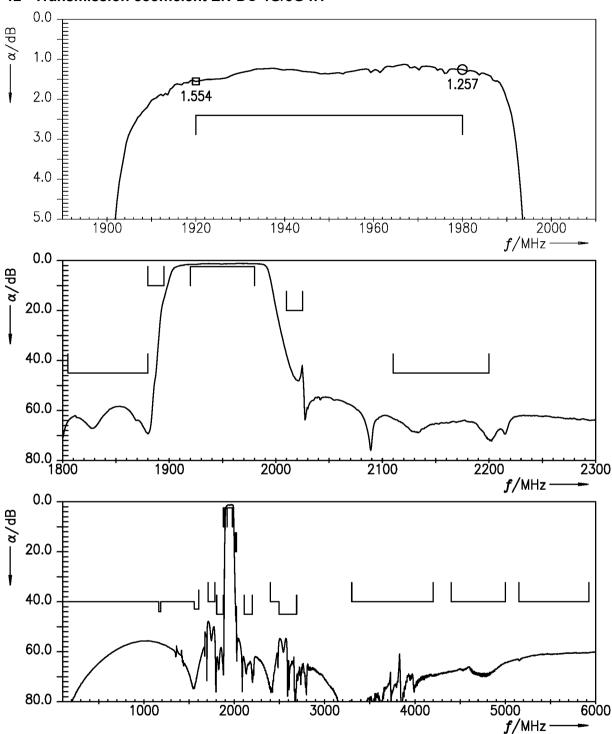
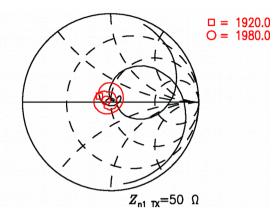
11 Maximum ratings

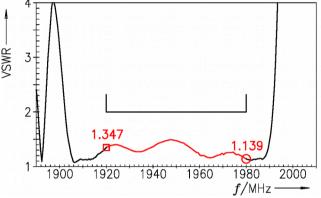
Storage temperature	T _{STG} ¹⁾ = -40 °C +85 °C	
DC voltage	$ V_{DC} = 0 \text{ V (max.)}$	
ESD voltage	$V_{ESD}^{3)} = 225 \text{ V (max.)}$	Human body model.
Input power	P _{IN}	
@ n1 TX port: 1920 1980 MHz	30 dBm	Continuous wave for 5000 h @ 50 °C. 5 MHz LTE uplink signal (1 RB) for 5000 h @ 50 °C. 5 MHz 5G NR (DFT-s-OFDM) (1 RB) for 5000 h @ 50 °C.
@ n1 TX port: 1920 1980 MHz	28.5 dBm	5 MHz 5G NR (CP-OFDM) (1 RB) for 5000 h @ 50 °C.
@ n3 TX port: 1710 1785 MHz	30 dBm	Continuous wave for 5000 h @ 50 °C. 5 MHz LTE uplink signal (1 RB) for 5000 h @ 50 °C. 5 MHz 5G NR (DFT-s-OFDM) (1 RB) for 5000 h @ 50 °C.
@ n3 TX port: 1710 1785 MHz	28.5 dBm	5 MHz 5G NR (CP-OFDM) (1 RB) for 5000 h @ 50 °C.
@ n7 TX port: 2500 2570 MHz	30 dBm	Continuous wave for 5000 h @ 50 °C. 5 MHz LTE uplink signal (1 RB) for 5000 h @ 50 °C. 5 MHz 5G NR (DFT-s-OFDM) (1 RB) for 5000 h @ 50 °C.
@ n7 TX port: 2500 2570 MHz	28.5 dBm	5 MHz 5G NR (CP-OFDM) (1 RB) for 5000 h @ 50 °C.

Not valid for packaging material. Storage temperature for packaging material is -25 °C to +40 °C. In case of applied DC voltage blocking capacitors are mandatory.

According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.

12 Transmission coefficient EN-DC 4G/5G n1


Figure 3: Attenuation TX – ANT.

Reflection coefficients EN-DC 4G/5G n1

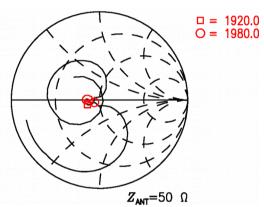
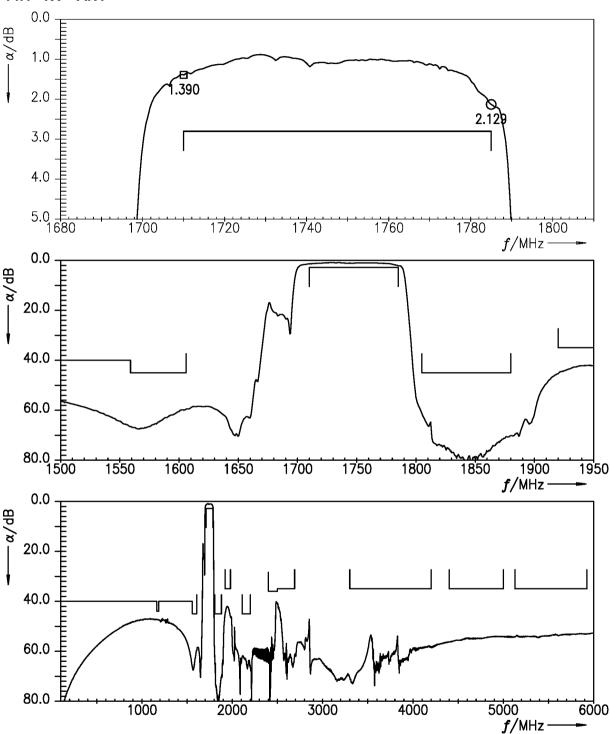



Figure 5: Reflection coefficient at ANT port (TX frequencies).

14 Transmission coefficients EN-DC 4G/5G n3

14.1 TX - ANT

Figure 6: Attenuation TX – ANT.

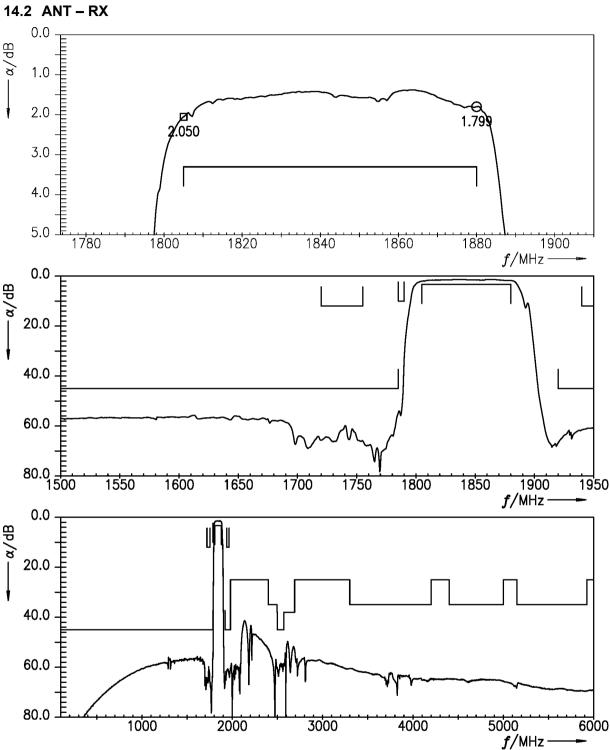


Figure 7: Attenuation ANT - RX.

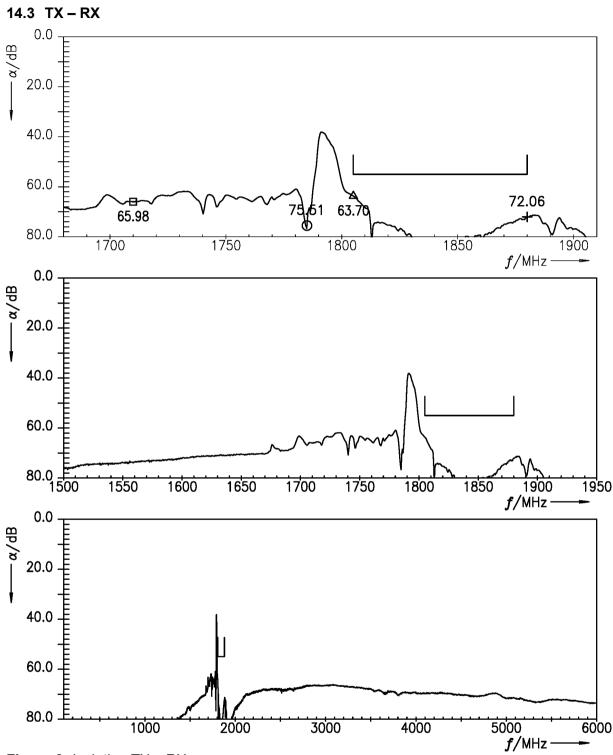


Figure 8: Isolation TX – RX.

15 Transmission coefficient (LTE) EN-DC 4G/5G n3

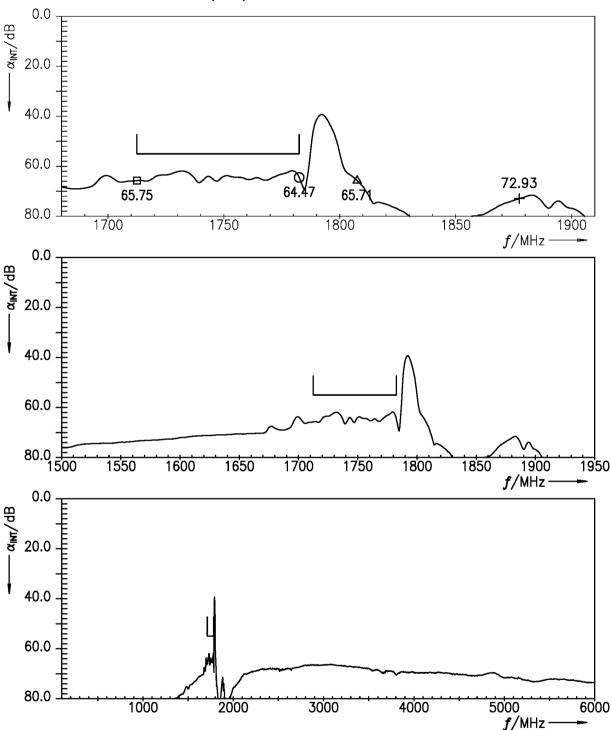
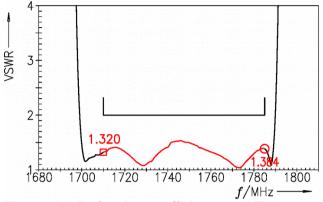



Figure 9: Isolation (LTE) (integration window = 5.0 MHz) TX – RX.

16 Reflection coefficients EN-DC 4G/5G n3

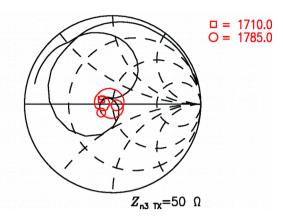
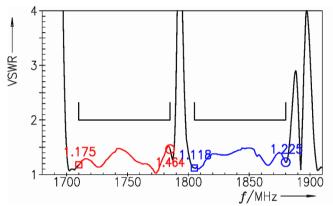



Figure 10: Reflection coefficient at n3 TX port.

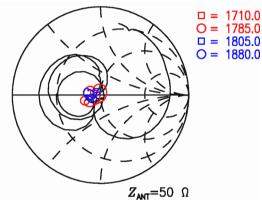
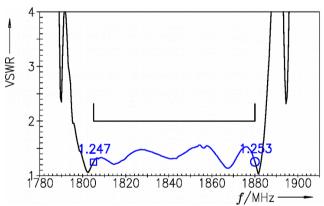



Figure 11: Reflection coefficient at ANT port (TX and RX frequencies).

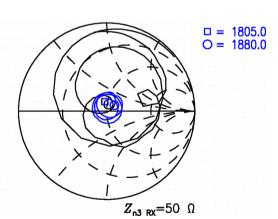


Figure 12: Reflection coefficient at n3 RX port.

17 Transmission coefficients EN-DC 4G/5G n7

17.1 TX - ANT

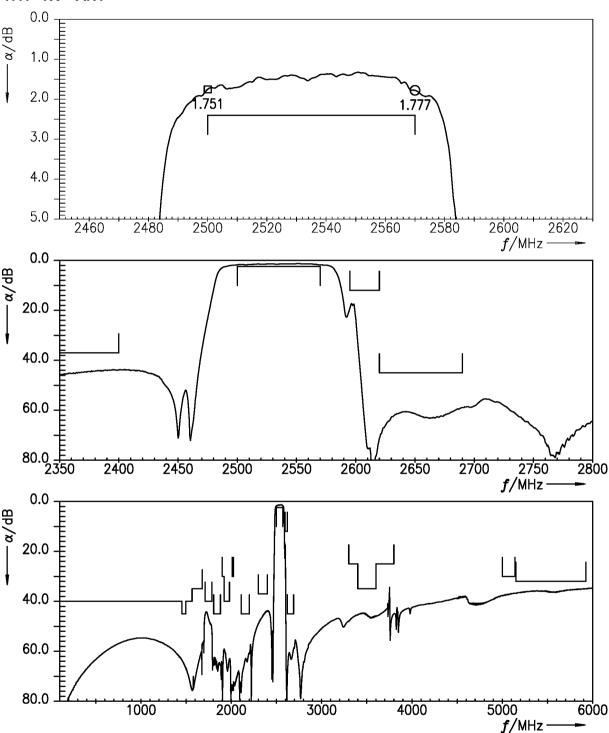


Figure 13: Attenuation TX – ANT.

Europe GmbH

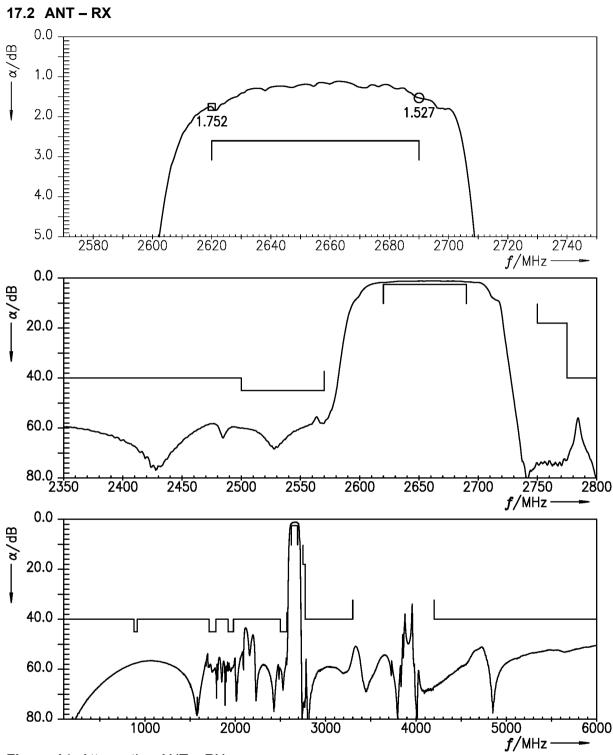


Figure 14: Attenuation ANT – RX.

Europe GmbH

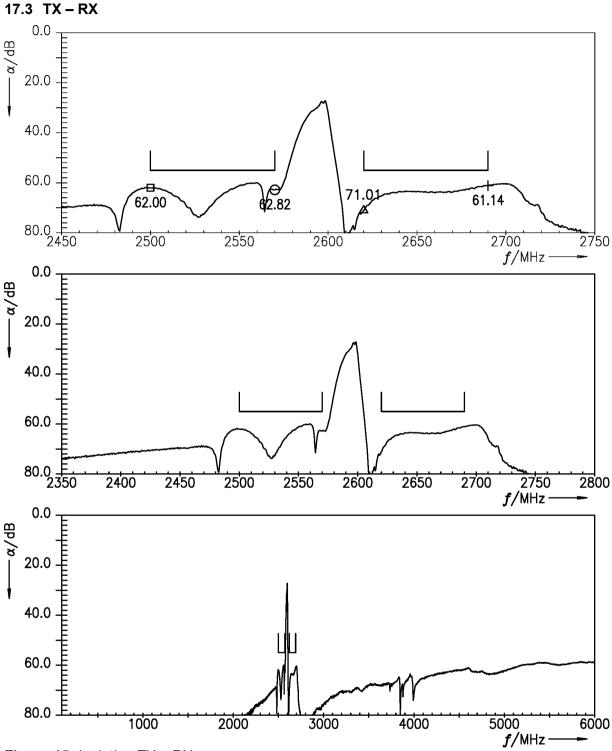


Figure 15: Isolation TX – RX.

18 Transmission coefficient (WLAN) EN-DC 4G/5G n7

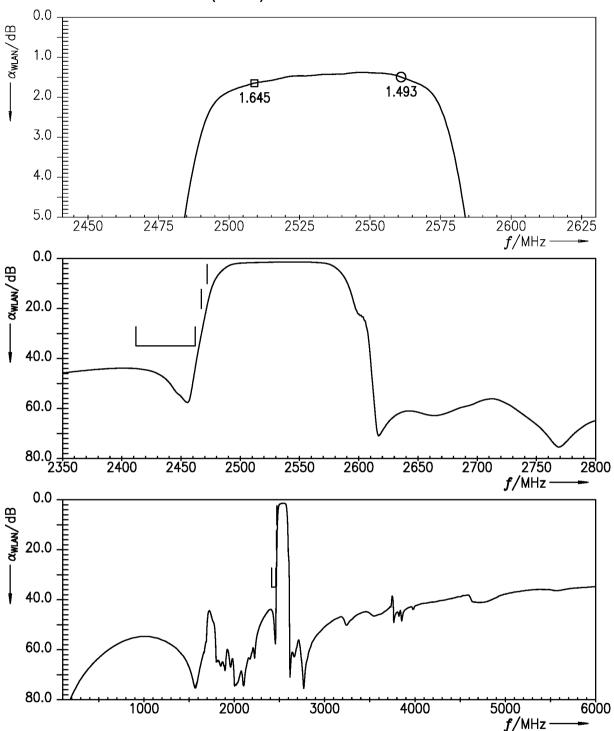


Figure 16: Attenuation (WLAN) (integration window = 18 MHz) TX – ANT.

19 Transmission coefficient (integrated) EN-DC 4G/5G n7

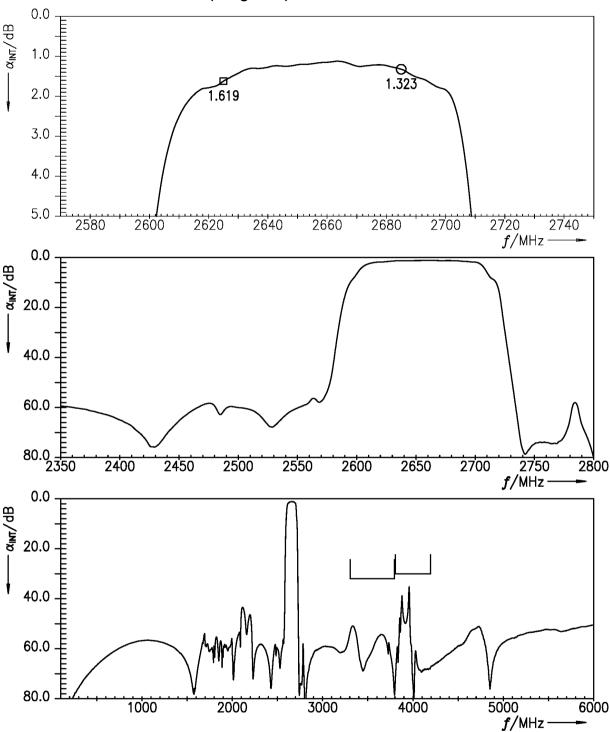
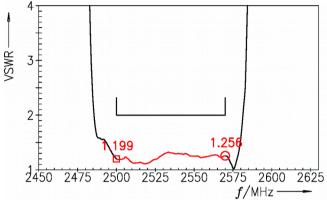



Figure 17: Integrated attenuation (integration window = 10 MHz) ANT – RX.

20 Reflection coefficients EN-DC 4G/5G n7

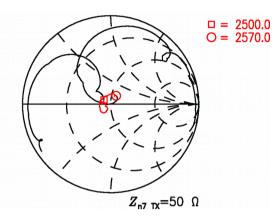
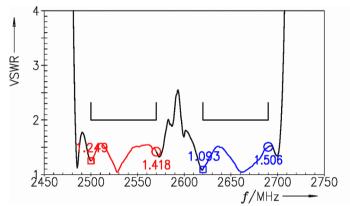



Figure 18: Reflection coefficient at n7 TX port.

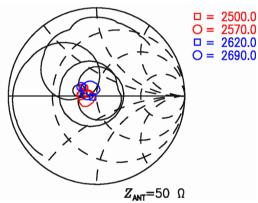
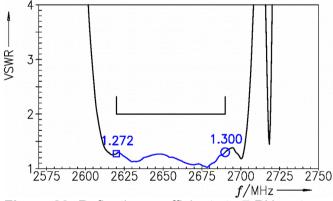



Figure 19: Reflection coefficient at ANT port (TX and RX frequencies).

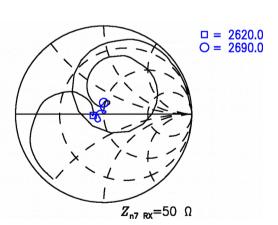


Figure 20: Reflection coefficient at n7 RX port.

21 Transmission coefficient EN-DC 4G/5G n66

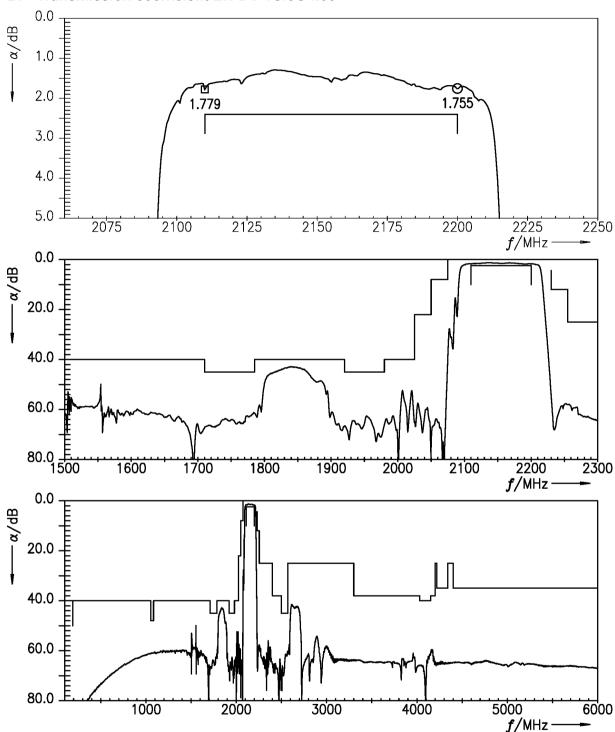


Figure 21: Attenuation ANT – RX.

22 Reflection coefficients EN-DC 4G/5G n66

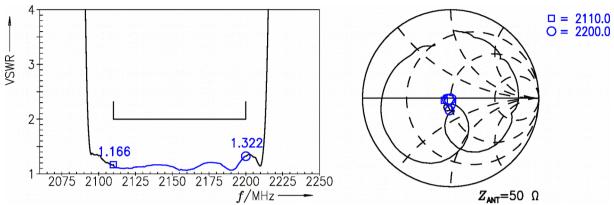


Figure 22: Reflection coefficient at ANT port (RX frequencies).

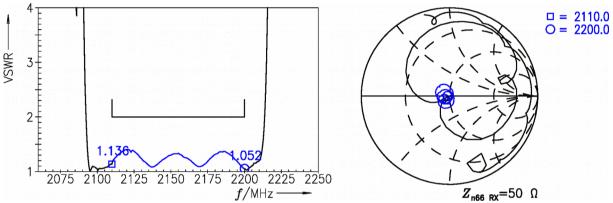


Figure 23: Reflection coefficient at n66 RX port.

23 Transmission coefficients cross-isolations

23.1 EN-DC 4G/5G n1 TX - EN-DC 4G/5G n3 RX

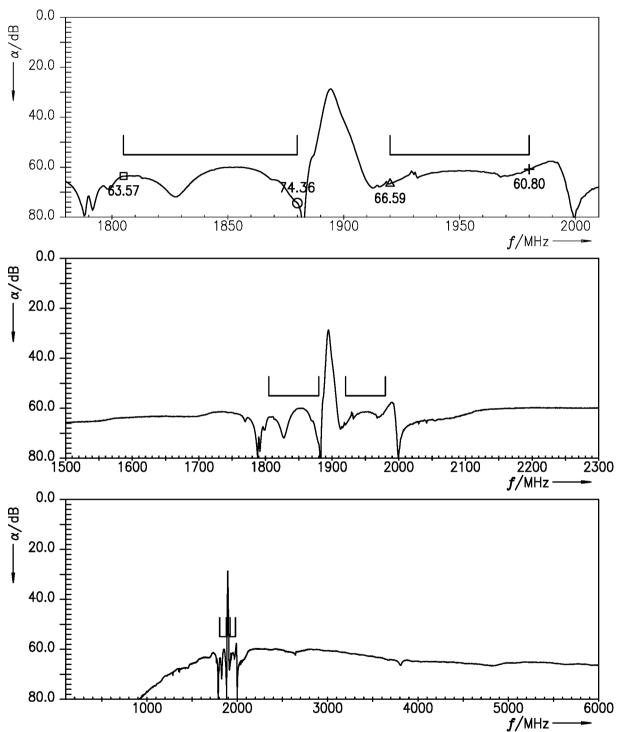


Figure 24: Cross-isolation EN-DC 4G/5G n1 TX – EN-DC 4G/5G n3 RX.

23.2 EN-DC 4G/5G n1 TX - EN-DC 4G/5G n7 RX

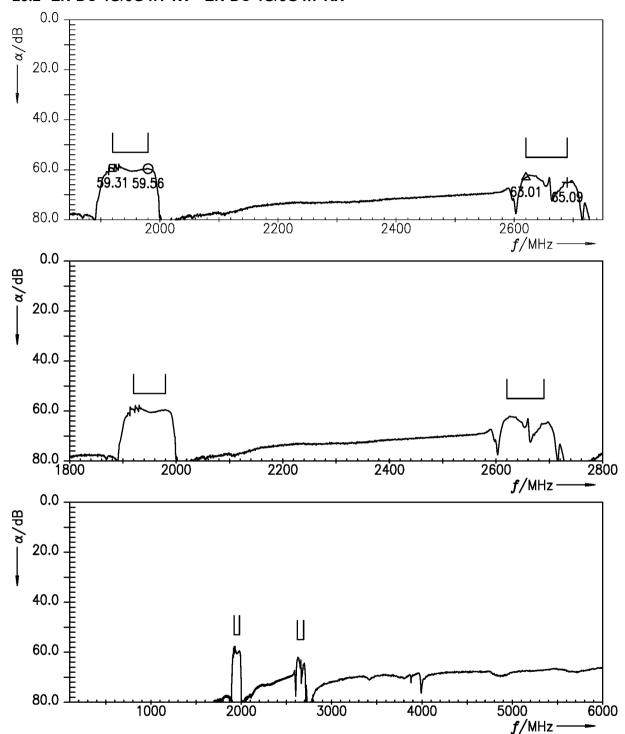


Figure 25: Cross-isolation EN-DC 4G/5G n1 TX – EN-DC 4G/5G n7 RX.

23.3 EN-DC 4G/5G n1 TX - EN-DC 4G/5G n66 RX

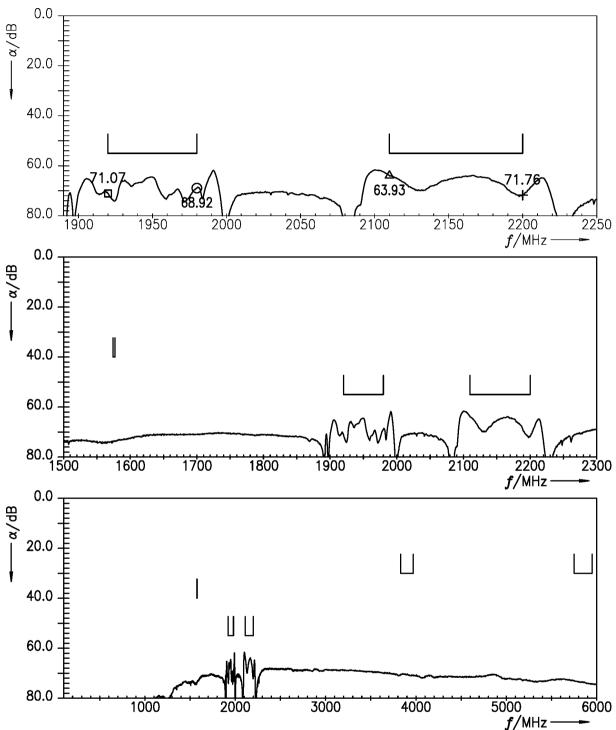


Figure 26: Cross-isolation EN-DC 4G/5G n1 TX - EN-DC 4G/5G n66 RX.

23.4 EN-DC 4G/5G n3 TX - EN-DC 4G/5G n7 RX



Figure 27: Cross-isolation EN-DC 4G/5G n3 TX – EN-DC 4G/5G n7 RX.

23.5 EN-DC 4G/5G n3 TX - EN-DC 4G/5G n66 RX

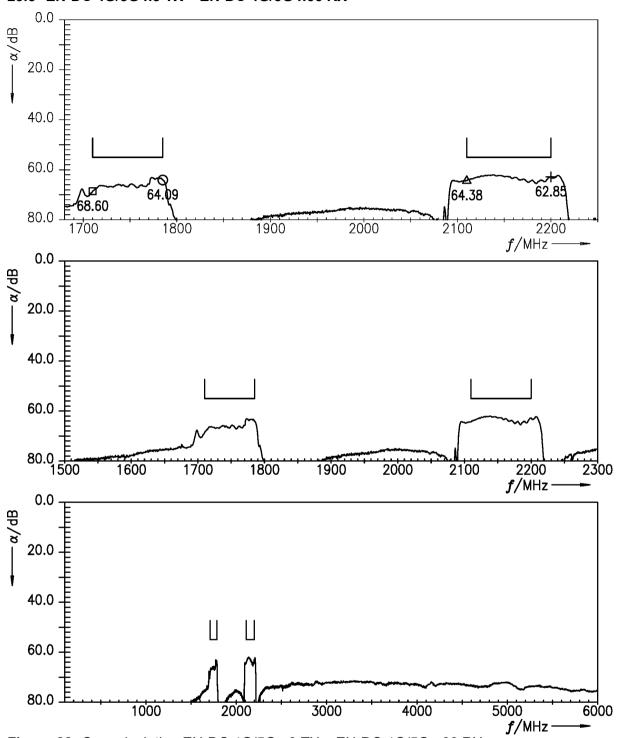


Figure 28: Cross-isolation EN-DC 4G/5G n3 TX - EN-DC 4G/5G n66 RX.

23.6 EN-DC 4G/5G n7 TX - EN-DC 4G/5G n3 RX

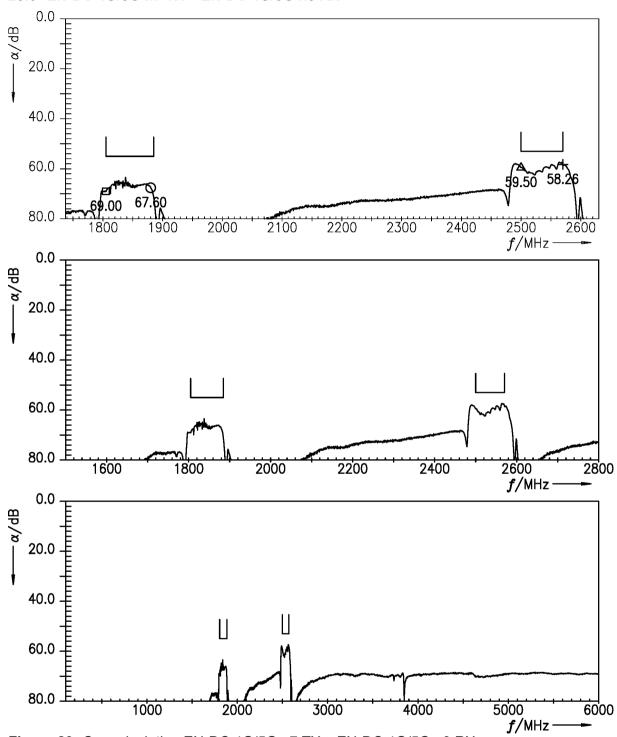
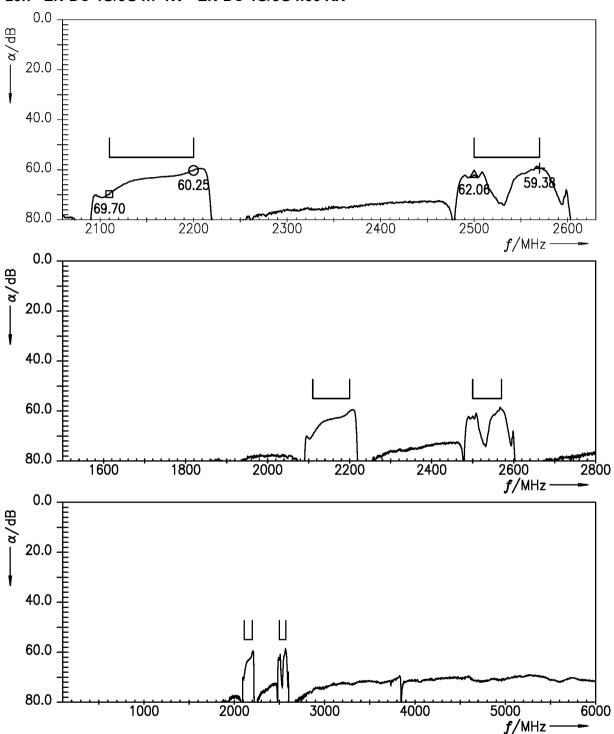
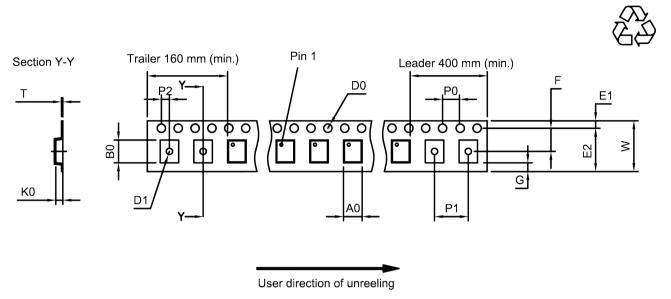


Figure 29: Cross-isolation EN-DC 4G/5G n7 TX – EN-DC 4G/5G n3 RX.

23.7 EN-DC 4G/5G n7 TX - EN-DC 4G/5G n66 RX




Figure 30: Cross-isolation EN-DC 4G/5G n7 TX - EN-DC 4G/5G n66 RX.

24 Packing material

24.1 Tape

Europe GmbH

Figure 31: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

A ₀	2.25±0.05 mm	_	E ₂	10.25+0.2/-0 mm	· –	P ₁	4.0±0.1 mm
B ₀	2.75±0.05 mm		F	5.5±0.05 mm		P_2	2.0±0.05 mm
D_0	1.5+0.1/-0 mm		G	0.75 mm (min.)		Т	0.3±0.03 mm
D ₁	1.5 mm (min.)		\mathbf{K}_0	0.84±0.1 mm	_	W	12.0+0.3/-0.1 mm
E ₁	1.75±0.1 mm		P ₀	4.0 _{±0.1} mm	_		

Table 1: Tape dimensions.

24.2 Reel with diameter of 180 mm

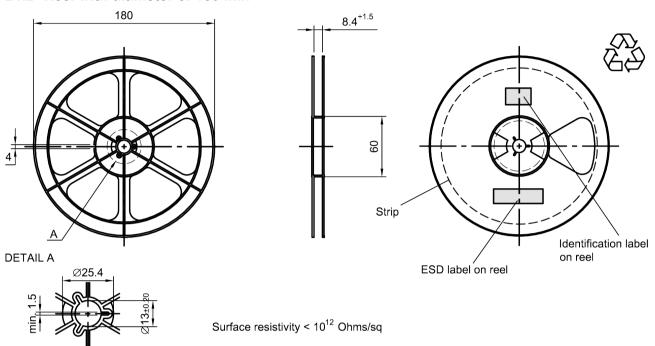


Figure 32: Drawing of reel (first-angle projection) with diameter of 180 mm.

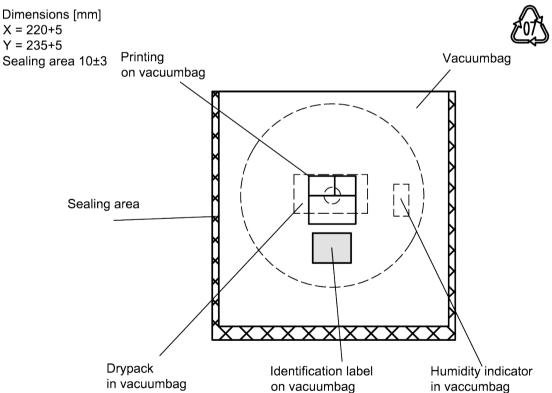


Figure 33: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

RF360 Europe GmbH

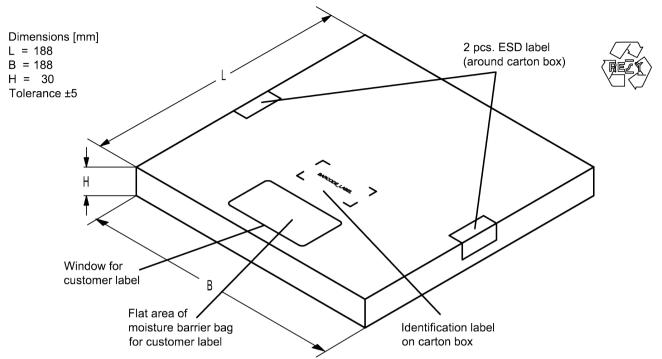
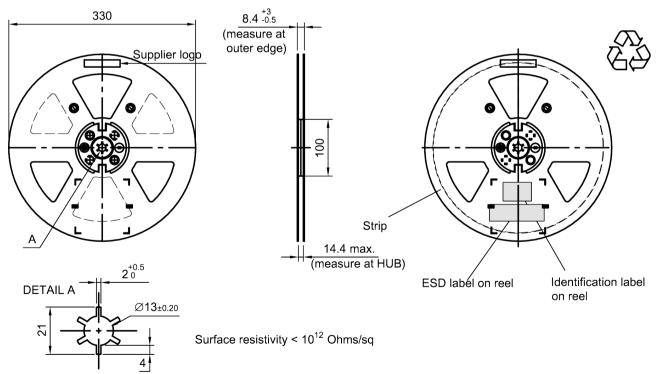



Figure 34: Drawing of folding box for reel with diameter of 180 mm.

24.3 Reel with diameter of 330 mm

Figure 35: Drawing of reel (first-angle projection) with diameter of 330 mm.

RF360 Europe GmbH



Figure 36: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

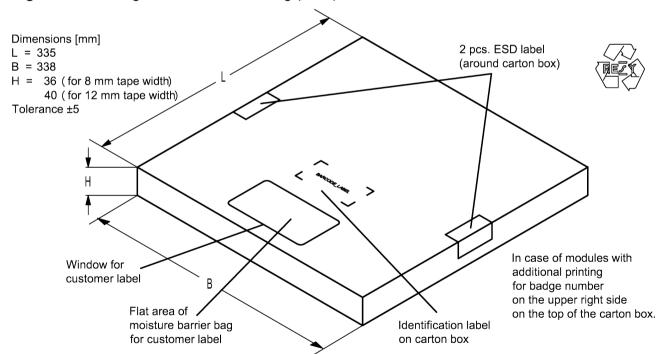


Figure 37: Drawing of folding box for reel with diameter of 330 mm.

Europe GmbH

25 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, e.g., B3xxxxB1234xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type M5009 is 4WH.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device in decimal code.

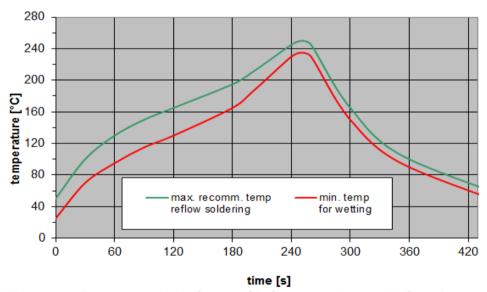
5UY => 12345

 $5 \times 47^2 + 27 = (-1) \times 47^1 + 31 = (-1) \times 47^0 = 12345$

Adopted BASE32 code for type number					
Decimal	Base32	Decimal	Base32		
value	code	value	code		
0	0	16	G		
1	1	17	Н		
2	2	18	J		
3	3	19	K		
4	4	20	М		
5	5	21	N		
6	6	22	Р		
7	7	23	Q		
8	8	24	R		
9	9	25	S		
10	Α	26	Т		
11	В	27	V		
12	С	28	W		
13	D	29	Х		
14	E	30	Y		
15	F	31	Z		

Adopted BASE47 code for lot number				
Decimal value	Base47 code	Decimal value	Base47 code	
0	0	24	R	
1	1	25	S	
2	2	26	Т	
3	3	27	U	
4	4	28	V	
5	5	29	W	
6	6	30	X	
7	7	31	Y	
8	8	32	Z	
9	9	33	b	
10	Α	34	d	
11	В	35	f	
12	С	36	h	
13	D	37	n	
14	E	38	r	
15	F	39	t	
16	G	40	V	
17	Н	41	\	
18	J	42	?	
19	K	43	{	
20	L	44	}	
21	M	45	<	
22	Ν	46	>	
23	Р			

Table 2: Lists for encoding and decoding of marking.



26 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T _{peak}	250 °C +0/-5 °C
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads
	1

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 38: Recommended reflow profile for convection and infrared soldering – lead-free solder.

27 Annotations

27.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

27.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

27.3 Ordering codes / product IDs and packing units

Ordering code / product ID	RF360 label	Packing unit
B39272M5009D310W 1	B39272-M5009-D310-W01	10000 pcs

Table 4: Ordering codes / product IDs and packing units.

28 Cautions and warnings

28.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under https://rffe.gualcomm.com/.

28.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

28.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

28.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

29 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (https://rffe.qualcomm.com). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

单击下面可查看定价,库存,交付和生命周期等信息

>>Qualcomm-RF360