

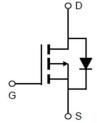
CQA34P15

20V P-CHANNEL MOSFET

Product Summary

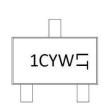
V(BR)DSS	/(BR)DSS RDS(ON) max	
-20V	<37mΩ @ VGS = -4.5V	
	<47mΩ @ VGS = -2.5V	-4.9A
	<62mΩ @ VGS = -1.8V	

Description and Applications


The CQA34P15 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltage as low as 1.8V. This device is suitable for use as a load switch or other general applications.

RoHS and Halogen-Free Compliant.

View and Internal Schematic Diagram



SOT23

Internal Schematic

Marking Information

SOT23

PN=1C YW= Date Code Marking Y= Year W = Week LT= Lot code

Ordering Information

Part Number	Case	Packaging
CQA34P15	SOT23	3,000/Tape & Reel; 21,000/Inner Box

Maximum Ratings (@TA = +25°C unless otherwise specified.)

Parameters Drain-Source Voltage		Symbol	Max -20	Units V
		VDSS		
Gate-Source Voltage		VGSS	±12	V
Continuous Drain Current	TA = +25°C TA = +70°C	ID	-4.9 -3.9	А
Pulsed Drain Current ^C		IDM	-40	А
Power Dissipation ^B	TA = +25°C TA = +70°C	PD	1.38 0.88	W
Operating and Storage Temperature R	ange	TJ, TG	-55 to+150	°C

Jun. 2022 P-QRA-00001-22(a) 1 of 4 www.CQAOS.com

Doc No.:CDS-00012

Rev.:B

Thermal Characteristics

Characteristic		Symbol	Тур	Max	Unit
Maximum Junction-to-Ambient ^A	t ≤ 10s	1	81	90	°C/W
Maximum Junction-to-Ambient ^A D	Steady-State	R _{0JA}	109	125	°C/W
Maximum Junction-to-Lead	Steady-State	$R_{ heta JL}$	38	40	°C/W

Electrical Characteristics (@TA = +25°C unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC PA	RAMETERS	'				
BVDSS	Drain-Source Breakdown Voltage	ID=-250μA, VGS=0V	-20			V
IDSS	Zero Gate Voltage Drain Current	VDS=-30V, VGS=0V			-1	μА
		TJ=55°C			-5	
IGSS	Gate-Body leakage current	VDS=0V, VGS= ±12V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS ID=-250μA	-0.3	-0.7	-0.9	V
	Static Drain-Source On-Resistance	VGS=-4.5V, ID=-4.0A		28	37	mΩ
		TJ=125℃		38	50	
RDS(ON)		VGS=-2.5V, ID=-4.0A		36	47	mΩ
		VGS=-1.8V, ID=-2.0A		49	62	mΩ
		VGS=-1.5V, ID=-1.0A		69		mΩ
gFS	Forward Transconductance	VDS=-5V, ID=-4.0A		18		S
VSD	Diode Forward Voltage	IS=-1A,VGS=0V		-0.7	-1	V
IS	Maximum Body-Diode Continuous Current				-1.9	Α
DYNAMIC I	PARAMETERS					
Ciss	Input Capacitance			792		pF
Coss	Output Capacitance	VGS=0V, VDS=-10V,		112		pF
C _{rss}	Reverse Transfer Capacitance	f=1MHz		95		pF
Rg	Gate resistance	VGS=0V, VDS=0V		11.8		Ω
SWITCHING	G PARAMETERS	•				
Qg(10V)	Total Gate Charge	1/00 451/1/00 041/		9.5		nC
Qgs	Gate Source Charge	VGS=-4.5V, VDS=-24V, ID=-4.0A		2.0		nC
Qgd	Gate Drain Charge	-1D4.0A		2.0		nC
^t D(on)	Turn-On Delay Time			8.6		ns
tr	Turn-On Rise Time	VGS=-4.5V, VDS=-10V,		35.8		ns
^t D(off)	Turn-Off Delay Time	RL=2.5 Ω , RGEN=3 Ω		62		ns
tf	Turn-Off Fall Time]		57		ns
trr	Body Diode Reverse Recovery Time	IF=-4.0A, dI/dt=100A/μs		12		ns
Q _{rr}	Body Diode Reverse Recovery Charge	IF=-4.0A, dI/dt=100A/μs		2.8		nC

A. The value of R_{0AA} is measured with the device mounted on 1in^2 FR-4 board with 1oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Jun. 2022 P-QRA-00001-22(a) 2 of 4 www.CQAOS.com

Doc No.:CDS-00012 Rev.:B

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using $\leqslant~10s$ junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 1oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

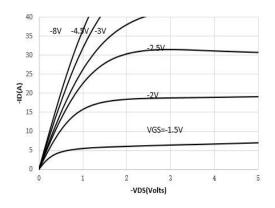


Figure 1: On-Region Characteristics (Note E)

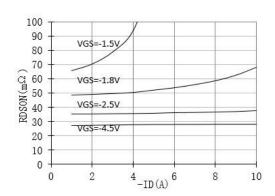


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

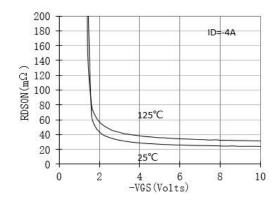


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

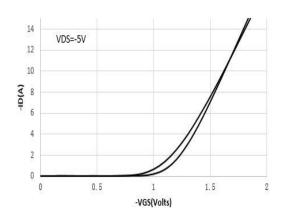


Figure 2 Transfer Characteristics (Note E)

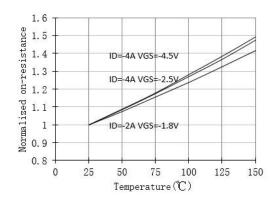


Figure 4: On-Resistance vs. Junction Temperature (Note E)

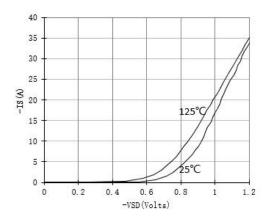


Figure 6: Body-Diode Characteristics (Note E)

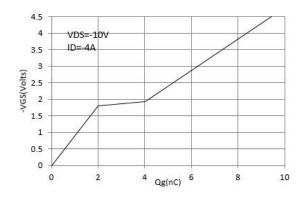


Figure 7: Gate-Charge Characteristics

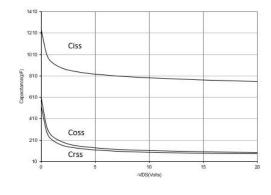


Figure 8: Capacitance Characteristics

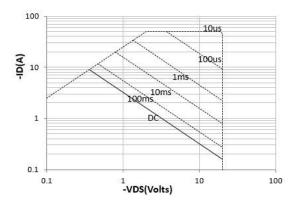


Figure 9: Maximum Forward Biased Safe Operating Area

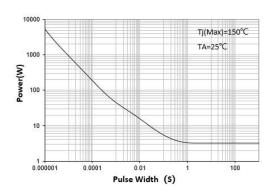


Figure 10: Single Pulse Power Rating
Junction-to-Ambient (Note E)

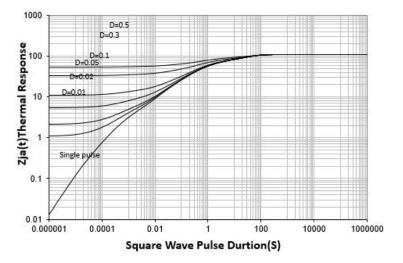


Figure 11: Maximum Transient Thermal Impedance (Note E)

单击下面可查看定价,库存,交付和生命周期等信息

>>CQAOS