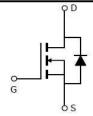


CQA34N00

30V N-CHANNEL MOSFET

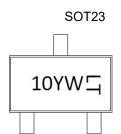
Product Summary

Description and Applications


The CQA34N00 combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON). This device is suitable for use as a load switch or in PWM applications.

RoHS and Halogen-Free Compliant.

View and Internal Schematic Diagram



Internal Schematic

Marking Information

SOT23

NOTE:

10 - Part number code

Y - Year code

W - Week code

L&T - Assembly lot code

Ordering Information

Part Number	Case	Packaging
CQA34N00	SOT23	3,000/Tape & Reel; 21,000/Inner Box

Maximum Ratings (@TA = +25°C unless otherwise specified.)

Parameters		Symbol	Max	Units
Drain-Source Voltage		VDSS	30	V
Gate-Source Voltage		VGSS	±12	V
Continuous Drain Current	TA = +25°C TA = +70°C	ID	5.7 4.7	А
Pulsed Drain Current ^C		IDM	30	Α
Power Dissipation ^B	TA = +25°C TA = +70°C	PD	1.4 0.9	W
Operating and Storage Temperature Ra	nge	TJ, TG	-55 to+150	°C

May. 2022 P-QRA-00001-22(a) 1 of 4 www.CQAOS.com

Doc No.:CDS-00008

Rev.:B

Thermal Characteristics

Characteristic		Symbol	Тур	Max	Unit
Maximum Junction-to-Ambient ^A	t ≤ 10s	D	70	90	°C/W
Maximum Junction-to-Ambient ^A D	Steady-State	$R_{\theta JA}$	100	125	°C/W
Maximum Junction-to-Case	Steady-State	$R_{ hetaJL}$	63	80	°C/W

Electrical Characteristics (@TA = +25°C unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC PA	ARAMETERS	•				
BVDSS	Drain-Source Breakdown Voltage	ID=250μA, VGS=0V	30			V
IDSS Ze		VDS=30V, VGS=0V			1	μΑ
	Zero Gate Voltage Drain Current	TJ=55℃			5	
IGSS	Gate-Body leakage current	VDS=0V, VGS= ±12V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS ID=250μA	0.4	0.9	1.5	V
	Statis Busin Course On Basistan	VGS=10V, ID=5.7A		19	26	mΩ
		TJ=125℃		28	38	
RDS(ON)	Static Drain-Source On-Resistance	VGS=4.5V, ID=5A		20.7	31	mΩ
		VGS=2.5V, ID=3A		24.8	47	mΩ
gFS	Forward Trans conductance	VDS=5V, ID=5.7A		33		S
VSD	Diode Forward Voltage	IS=1A,VGS=0V		0.7	1	V
IS	Maximum Body-Diode Continuous Current				2	Α
DYNAMIC	PARAMETERS					-
Ciss	Input Capacitance	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		834		pF
Coss	Output Capacitance	VGS=0V, VDS=15V, -f=1MHz		64		pF
C _{rss}	Reverse Transfer Capacitance	71-1101112		50		pF
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz		1.55		Ω
SWITCHIN	G PARAMETERS					
Qg(10V)	Total Gate Charge	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		9.5		nC
Qgs	Gate Source Charge	-VGS=10V, VDS=15V, -ID=5.7A		2.2		nC
Qgd	Gate Drain Charge	-ID-3.7A		2.2		nC
tD(on)	Turn-On Delay Time	VGS=10V, VDS=15V, RL=2.6Ω, RGEN=3Ω		6		ns
tr	Turn-On Rise Time			32.8		ns
^t D(off)	Turn-Off Delay Time			21		ns
tf	Turn-Off Fall Time]		44		ns
trr	Body Diode Reverse Recovery Time	IF=5.7A, dI/dt=100A/μs		7		ns
Qrr	Body Diode Reverse Recovery Charge	IF=5.7A, dI/dt=100A/μs		2		nC

A. The value of R_{0JA} is measured with the device mounted on 1in^2 FR-4 board with 1oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

May. 2022 P-QRA-00001-22(a) 2 of 4 www.CQAOS.com

Doc No.:CDS-00008

Rev.:B

B. The power dissipation P_D is based on T_{J(MAX)}=170°C, using junction-to-caset thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used

 $C. \ \ Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 170^{\circ}C. \ Ratings are based on low frequency and duty cycles to keep initial T_J = 25^{\circ}C.$

D. The R_{0JA} is the sum of the thermal impedence from junction to lead R_{0JC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% $\,$ max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 1oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERIS

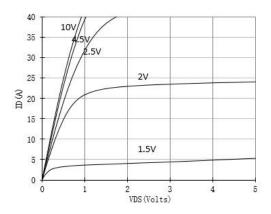


Figure 1: On-Region Characteristics (Note E)

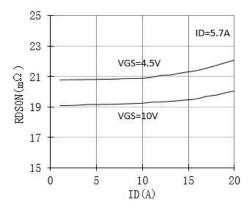


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

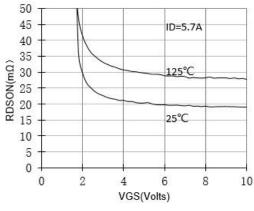


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

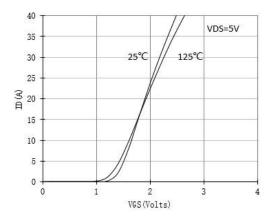


Figure 2 Transfer Characteristics (Note E)

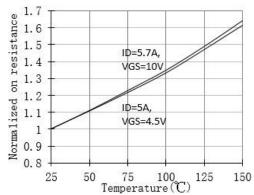


Figure 4: On-Resistance vs. Junction Temperature (Note E)

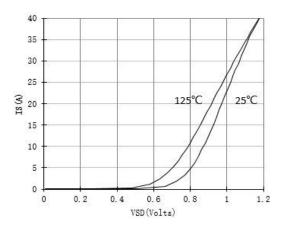


Figure 6: Body-Diode Characteristics (Note E)

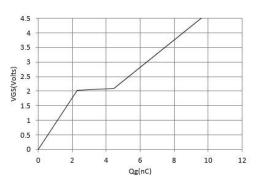


Figure 7: Gate-Charge Characteristics

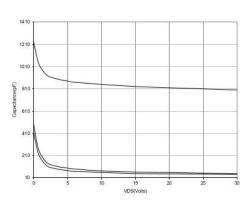


Figure 8: Capacitance Characteristics

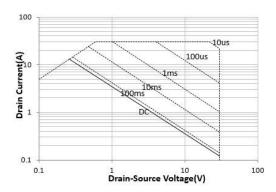


Figure 9: Maximum Forward Biased Safe Operating Area

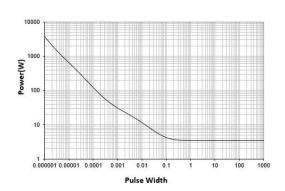


Figure 10: Single Pulse Power Rating
Junction-to-Ambient (Note E)

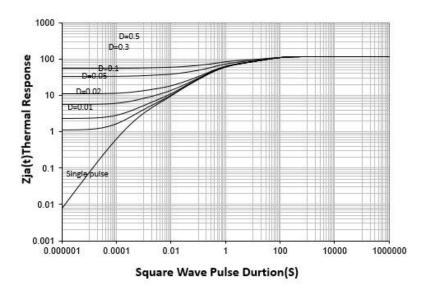


Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)

单击下面可查看定价,库存,交付和生命周期等信息

>>CQAOS